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in accelerating atherosclerosis in a plethora of studies  
(1, 2). The liver plays a pivotal role in the regulation of 
cholesterol metabolism. It secretes cholesterol packaged in 
VLDL particles that are subsequently converted into IDL 
and LDL particles, largely by the action of different lipases 
in the periphery (3). A key step in the uptake of cholesterol 
is the internalization of LDL via the LDL receptor (LDLR) 
(4). Mutations in the LDLR as well as mutations in genes 
encoding APOB or proprotein convertase subtilisin/kexin 
type 9 (PCSK9) are causally related with hypercholesterol-
emia (5). These genetic mutations, however, do not ex-
plain all hypercholesterolemic cases. For instance, in the 
UK pilot cascade project, 403 of 635 (63.5%) hypercholes-
terolemic subjects did not have mutations in LDLR, APOB, 
or PCSK9 (6). In a recent large scale study designed to 
evaluate the prevalence of a familial hypercholesterolemia 
(FH) mutation among individuals with severe hypercholes-
terolemia (7), only 24 of 1,386 subjects with LDL choles-
terol above 5 mmol/l were identified to have mutations  
in these three canonical genes. Although the prevalence  
of genetically defined hypercholesterolemia varies across 
studies (8), a substantial proportion of hypercholesterol-
emic subjects do not have mutations in LDLR, APOB, or 
PCSK9. A major reason for this finding could be the pres-
ence of disease-causing mutations in other genes involved 
in cholesterol homeostasis either affecting the LDLR path-
way or other yet to be defined mechanisms. Interest-
ingly, whole exome sequencing of a cohort with FH subjects 
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without mutations in LDLR, APOB, and PCSK9 did not 
identify novel causal mutations (9).

Recently, we analyzed a cohort of 119 young females with 
plasma LDL cholesterol above the 99th percentile for their 
age. In 20 hypercholesterolemic females, we identified 12 
causal heterozygous mutations in LDLR and one causal het-
erozygous mutation in APOB (10). In the 99 remaining fe-
males, we found eight subjects carrying a variant in LDLR or 
APOB with unknown clinical significance (10). This left us 
with 91 females that suffered from hypercholesterolemia 
caused by either a polygenic (11) or epigenetic (12) mecha-
nism, or the presence of a pathogenic variant in yet un-
known genes. To get further insight into the underlying 
pathobiology of hypercholesterolemia of unknown origin, 
we performed plasma metabolite analysis on all of the 119 
hypercholesterolemic females. We hypothesized that muta-
tions in genes belonging to the same metabolic pathway 
(e.g., the LDLR pathway) should render a similar plasma 
metabolome. This analysis differentiated four subgroups, 
which could be distinguished along two axes represented by 
plasma triglyceride and large LDL particle concentration.

MATERIALS AND METHODS

Participants
The selection of the participants (N = 119) in this study is  

described in detail elsewhere (10). In brief, these women were 
apparently healthy, aged 25–40 years, and had a plasma LDL cho-
lesterol level above 4.7 mmol/l. Exclusion criteria were diagnosis 
of cardiovascular disease (e.g., myocardial infarction, stroke, or 
coronary surgery), diabetes mellitus, use of lipid-lowering drugs, or 
having aberrant thyroid, liver, or kidney function. The study pro-
tocol was approved by the Medical Ethical Committee of the Uni-
versity Medical Center Groningen in The Netherlands and all 
participants provided written informed consent.

Next generation sequencing
With a custom target sequencing array developed based on the 

SureSelect capture system, we sequenced the coding regions of 11 
genes, including LDLR, APOB, PCSK9, LDLRAP1, APOE, ABCG5, 
LIPA, STAP1, MTTP, ANGPTL3, and SAR1B to assess a monogenic 
cause of hypercholesterolemia. If a mutation had a minor allele 
frequency below 0.1% in the Genome of the Netherlands (13), it 
was considered a rare mutation. Mutations that are verified to cause 
hypercholesterolemia were listed in our previous publication (10).

Detection of copy number variations was performed using Copy 
Number Variation Detection in Next-generation Sequencing 
Gene (CoNVaDINGs) panels (14). Detected copy number varia-
tions were validated using either multiplex ligation-dependent 
probe amplification or by long-range PCR or real-time PCR (10).

Genetic risk score calculation
To study a possible polygenic cause of hypercholesterolemia, 

we calculated the weighted genetic risk score (wGRS). The Global 
Lipid Genetic Consortium meta-analysis of genome-wide associa-
tion studies identified 95 loci affecting LDL cholesterol concen-
tration (15). Among these loci, 12 SNPs had the highest power to 
discriminate between FH mutation-negative individuals and 
the general population (11, 16). For each individual, we calcu-
lated the wGRS using the weighted sum of the risk allele (the 
LDL cholesterol-raising allele) (10). The weights used were the  

corresponding per-allele effect in plasma LDL cholesterol changes 
reported by the Global Lipid Genetic Consortium (15).

Lifestyle score calculation
To investigate the association between lifestyle and plasma me-

tabolome in hypercholesterolemic females, we used a recently de-
scribed healthy lifestyle score (17). Points were given for the major 
lifestyle parameters, including smoking status and eating habits. The 
details were described in our previous publication (10). In short, a 
maximum of four points reflects a very healthy lifestyle: the smaller 
the score, the less healthy the lifestyle. The minimum point is zero.

Metabolite measurements
Fasting plasma samples were routinely collected by Lifelines 

(www.lifelines.nl) and stored at 80°C until analysis on the Night-
ingale metabolomics platform (Nightingale Health, Finland). 
This platform includes 225 metabolic features, including lipids, 
lipoproteins, fatty acids, amino acids, and glycolysis precursor 
molecules (listed on https://nightingalehealth.com/biomarkers), 
using a NMR spectroscopy platform (18, 19).

Statistical analysis
To explore the subtypes of hypercholesterolemia, we performed 

hierarchical clustering based on the plasma metabolomics data. 
Because the metabolomics data contains measurements of differ-
ent units, we first scaled the data so that every variable had mean 0 
and standard deviation 1. Next, we ran the hierarchical clustering 
with the function, hclust, from R (https://cran.r-project.org/). We 
used Euclidean distance as the dissimilarity measure and complete 
linkage as the similarity measure between the clusters. The den-
drogram was made by using the ggdendro and ggplot2 (20) R pack-
age. Finally, we cut the dendrogram into four clusters by using the 
cutree function in R.

To identify the cluster corresponding to hypercholesterolemia 
due to defects in the LDLR pathway, we performed principal com-
ponent analysis (PCA) on the metabolomics data. Because the data 
contains measurements of different units, we converted the metabo-
lomics data into ranks, so that every metabolite had a value ranging 
between 1 and 119. We then calculated the covariance matrix and 
performed eigenvector decomposition. Entries of every eigenvector 
are also called loadings. Based on the loadings, we identified me-
tabolites that most correlated to the first and second principal com-
ponents (PCs) by calculating the Spearman correlation coefficients.

To evaluate associations between genetic risk/lifestyle scores 
and metabolite concentrations, we applied a nonparametric 
method, namely, the Kendall’s tau correlation test. We reported 
the Kendall’s tau correlation coefficient and P value. A P value 
below 0.05 is considered significant.

RESULTS

A group of 119 young women with hypercholesterol-
emia, defined as plasma LDL cholesterol levels above the 

TABLE  1.  Characteristics of 119 hypercholesterolemic females

Clinical 
Chemistry

Nightingale 
Metabolomics

Spearman 
Correlation 
Coefficients

LDL cholesterol (mmol/l) 5.25 ± 0.50 2.27 ± 0.26 0.66
Total cholesterol (mmol/l) 7.17 ± 0.64 5.57 ± 0.43 0.68
Triglyceride (mmol/l) 1.50 ± 0.68 1.45 ± 0.47 0.96
HDL cholesterol (mmol/l) 1.39 ± 0.28 1.47 ± 0.22 0.84
ApoB (g/l) 1.25 ± 0.14 1.10 ± 0.11 0.78

Data are expressed as mean ± SD; N = 119; Age (year), 32.90 ± 4.37; 
BMI, 27.9 ± 5.10.
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99th percentile for their age, was selected from the Life-
lines cohort. The baseline characteristics are presented in 
Table 1. To analyze the underlying pathobiology of the hy-
percholesterolemic phenotype, plasma metabolomics was 
performed using the Nightingale platform. Although the 
absolute values measured in the Nightingale platform are 
lower than the conventional measured plasma lipids, the 
two measurements showed a similar pattern (Table 1). A 
summary of all the results of metabolite analysis is pre-
sented in supplemental Table S1. Hierarchical clustering 
analysis of the metabolomics data set revealed three main 
clusters and one cluster containing only one sample (Fig. 1). 
The size of clusters 1, 2, 3, and 4 was 43, 15, 60, and 1, 
respectively.

To analyze the divergence of the different clusters, we 
ran PCA. The first and second PC explained 38% and 
21% of the total variance of the metabolic variables across 
the 119 individuals, respectively (Fig. 2). To understand 
which metabolites corresponded to the first and second 
PC the most, we calculated the Spearman correlation co-
efficients between original variables and PCs (supple-
mental Table S2). We observed that plasma triglyceride 
and large LDL particle concentration were the most cor-
related variables with the PC1 (Spearman correlation 
coefficient 0.988) and PC2 (Spearman correlation coef-
ficient 0.978), respectively. Therefore, we used these 
two variables to represent the axes of PC1 and PC2 (Fig. 3). 
Our next question was whether the four clusters derived 

Fig.  1.  Hierarchical clustering of plasma metabolomics data derived from 119 hypercholesterolemic females. Euclidean distance was used 
as the dissimilarity measure and complete linkage was used as the dissimilarity measure between the clusters.

Fig.  2.  Proportion of variance explained by PCs derived from plasma metabolomics data of 119 hypercholesterolemic females.
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from the hierarchical clustering analysis (Fig. 1) were in-
deed separated by PC1 and PC2. To answer that, we added 
the hierarchical clustering results to the scatterplot (Fig. 3). 
Inspection reveals that the females in cluster 3 are sepa-
rated from the other groups by showing a high plasma 
large LDL particle concentration coupled with relatively 

low plasma triglyceride, suggesting a defect in hepatic 
LDL uptake.

Because we sequenced LDLR, APOB, and PCSK9 in all 
subjects, we could verify whether the females with known 
heterozygous mutations in the LDLR pathway plotted in 
the region of cluster 3. Indeed, from 20 subjects with 

Fig.  3.  Plasma triglyceride against large LDL particle 
concentration in 119 hypercholesterolemic females. 
Different colors refer to the hierarchical clustering 
outcomes (red, cluster 1; blue, cluster 2; green, cluster 
3; purple, cluster 4).

Fig.  4.  Plasma triglyceride against large LDL particle 
concentration in 119 hypercholesterolemic females. 
Different colors refer to the hierarchical clustering 
outcomes (red, cluster 1; blue, cluster 2; green, cluster 
3; purple, cluster 4). The hypercholesterolemic fe-
males with mutations that were known to affect the 
LDLR pathway were highlighted.
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heterozygous mutations in LDLR or APOB, 15 subjects 
were located in cluster 3 (Fig. 4). The other five carriers 
were found in cluster 1 (n = 3) and cluster 2 (n = 2). In ad-
dition, we identified eight women who were heterozygous 
carriers of a novel variant in LDLR or APOB from which the 
pathogenicity has not yet been determined. Five of these 
eight subjects were positioned in cluster 3 and three in 
cluster 1 (Fig. 5).

To improve our understanding of the underlying patho-
biology of the elevated plasma LDL cholesterol in the re-
maining 91 women, we calculated the wGRS and lifestyle 
score, and assessed the associations between both scores 
and plasma concentrations of large LDL particles and tri-
glyceride. As shown in supplemental Figs. S1 and S2, no 
relation could be demonstrated between both scores and 
plasma large LDL particle concentration (wGRS: Kendall 
tau correlation coefficient 0.017, P = 0.80; lifestyle score: 
Kendall tau correlation coefficient 0.04, P = 0.57). Both 
scores showed moderate association with plasma triglyceride 
concentration (wGRS: Kendall tau correlation coefficient 
0.156, P = 0.02; lifestyle score: Kendall tau correlation  
coefficient 0.198, P = 0.0099).

DISCUSSION

In the current study, we showed that combining plasma 
metabolomics data with genetic information can improve 
our understanding of the origin of severe hypercholester-
olemia in young healthy women. These analyses may help 
with the diagnosis and personalized treatment of patients 

with hypercholesterolemia in which no causal mutations in 
the canonical LDL genes can be identified.

Metabolic profiling has been used in a large number of 
cohort studies to assess the value of circulating metabolites 
in prediction of risk for cardiovascular events (21, 22). 
More specifically, metabolomics has been used to study as-
sociations between circulating metabolites and statin usage 
(23), CETP inhibition (24), and PCSK9 inhibition (25), 
generating insight into the broad metabolic effects of these 
interventions. Nightingale metabolomics data contain not 
only concentrations in different units but also other quan-
tities, such as ratios, percentages, degrees of saturation, 
and lipoprotein particle size. Therefore, in the current 
study, we scaled all the metabolic variables to make them 
have equal importance in the hierarchical clustering.

The hierarchical clustering analysis revealed four clus-
ters in the 119 hypercholesterolemic females with plasma 
LDL cholesterol above the 99th percentile for their age. 
We hypothesized that mutations in genes belonging to the 
same metabolic pathway (e.g., the LDLR pathway) should 
render a similar plasma metabolome (one cluster). The 
PCA revealed that plasma triglyceride and large LDL par-
ticle concentrations were the major discriminators for the 
four clusters. Because cluster 3 is characterized by a high 
concentration of large LDL particles and relatively low tri-
glyceride in plasma, we hypothesized that this cluster rep-
resented the hypercholesterolemia due to defective LDL 
clearance. Incorporation of the genetic information pro-
vided us with the verdict, because we expected the 20 sub-
jects carrying a known functional heterozygous mutation 
in LDLR or APOB to position in cluster 3. Indeed, 15 sub-
jects fit this hypothesis and were located in cluster 3.

Fig.  5.  Plasma triglyceride against large LDL particle 
concentration in 119 hypercholesterolemic females. 
Different colors refer to the hierarchical clustering 
outcomes (red, cluster 1; blue, cluster 2; green, cluster 
3; purple, cluster 4). The highlighted dots represent 
eight individuals who carry a heterozygous variant in 
LDLR or APOB of unknown clinical significance. The 
specific variant in LDLR or APOB is shown.



Phenotype-genotype relation in hypercholesterolemic women 2179

Then we came up with the question: “Can we get insight 
into whether a novel variant in LDLR or APOB is the under-
lying cause for the severe hypercholesterolemia based on 
the metabolome profile?” Indeed, six out of eight carriers 
of a novel mutation fit in cluster 3, suggesting potential  
effects of these variants on LDLR-mediated uptake. This 
observation suggests that metabolic profiling is useful to 
delineate the subjects with a pathogenic mutation from 
those that do not carry any variant in either LDLR or APOB. 
However, not all subjects in cluster 3 carry a variant in 
LDLR or APOB. We realize that the pathway of LDLR-
mediated endocytosis and intracellular cholesterol traffick-
ing contains many more genes (26–28) than we have 
sequenced in our cohort. So expansion of the number of 
genes on the chip or choosing whole genome sequencing 
will ultimately improve the information on all genes in-
volved in the LDLR pathway and may thus help to identify 
additional genetic variants underlying the pathobiology in 
the remaining 40 females in cluster 3. Meanwhile, we can-
not exclude other processes underlying the hypercholes-
terolemia, such as epigenetic changes (12), lincRNA (29), 
microRNA (30), or combinations thereof.

Cluster 4 contained only one subject, and the individual 
had the highest large LDL particle concentration among 
the 119 hypercholesterolemic females. Interestingly, we 
did not identify any mutations in the sequenced genes, in-
cluding LDLR, APOB, and PCSK9. This female subject was  
28 years old with a BMI of 21.7 kg/m2. Her waist circumfer-
ence was 69 centimeters. When we compared her plasma 
metabolomics data to the other 118 hypercholesterolemic 
females, we identified 77 outlier variables [either below the 
first quantile (1.5 × interquartile range) or above the third 
quantile (1.5 × interquartile range); supplemental Table S3]. 
We noticed that this female had a high proportion of esteri-
fied cholesterol in VLDL and HDL particles compared 
with the remaining 118 subjects. Interestingly, the CETPtg/ 
apoCI/ mouse model showed a very similar phenotype 
(31). APOC1 is an important regulator for CETP activity, 
which may partly underlie the observed phenotype (32). 
So far, no mutations in APOC1 have been described.

A recent study (33) showed that hypercholesterolemic 
subjects without any known genetic defect had lower levels 
of LDL cholesterol than those with a mutation. Therefore, 
we hypothesized that the origin of the hypercholesterol-
emia in cluster 1 may be either polygenic or due to lifestyle 
factors. After additional analysis of the relationships be-
tween the wGRS or lifestyle score and triglyceride or large 
LDL particle concentration, we observed that only genetic 
risk scores were negatively associated with triglyceride con-
centration (Kendall tau correlation coefficient 0.23, P = 
0.04). This observation suggests that this cluster of hyper-
cholesterolemic subjects may be caused by less damaging 
mutations in genes involved in the LDLR pathway. The ma-
jor observation in the subjects located in cluster 2 is that 
they had elevated plasma triglyceride. The genetic array 
used in the current study does not contain the genes in-
volved in triglyceride metabolism. Our data suggest that 
generation of a triglyceride-specific gene array may gener-
ate interesting results in the subjects in this cluster.

In summary, this study shows that bioinformatic analysis 
of metabolomics data derived from hypercholesterolemic 
subjects generates interesting clusters of patients that may 
help to guide targeted genomics approaches for hypercho-
lesterolemia.

The authors would like to thank all participants of the Lifelines 
study. This study makes use of data generated by the Genome of 
the Netherlands Project. A full list of the investigators is available 
from www.nlgenome.nl.
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