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Abstract: Background: Reproducibility and generalization are major challenges for clinically signifi-
cant prostate cancer modeling using MRI radiomics. Multicenter data seem indispensable to deal
with these challenges, but the quality of such studies is currently unknown. The aim of this study was
to systematically review the quality of multicenter studies on MRI radiomics for diagnosing clinically
significant PCa. Methods: This systematic review followed the 2020 Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) checklist. Multicenter studies investigating the value
of MRI radiomics for the diagnosis of clinically significant prostate cancer were included. Quality was
assessed using the checklist for artificial intelligence in medical imaging (CLAIM) and the radiomics
quality score (RQS). CLAIM consisted of 42 equally important items referencing different elements of
good practice AI in medical imaging. RQS consisted of 36 points awarded over 16 items related to
good practice radiomics. Final CLAIM and RQS scores were percentage-based, allowing for a total
quality score consisting of the average of CLAIM and RQS. Results: Four studies were included. The
average total CLAIM score was 74.6% and the average RQS was 52.8%. The corresponding average
total quality score (CLAIM + RQS) was 63.7%. Conclusions: A very small number of multicenter
radiomics PCa classification studies have been performed with the existing studies being of bad or
average quality. Good multicenter studies might increase by encouraging preferably prospective data
sharing and paying extra care to documentation in regards to reproducibility and clinical utility.

Keywords: radiomics; multicenter MRI; prostate cancer

1. Introduction

Prostate cancer (PCa) has a high incidence rate and causes a high absolute number
of deaths [1]. Improvements in PCa diagnosis have been made with the introduction of
MRI and the prostate imaging and reporting data system (PI-RADS) [2–4]. Computer aided
detection (CAD) techniques [5] have shown promise for additional diagnostic improve-
ments of MRI. Particularly, many efforts on improvement of MRI-based PCa diagnosis
were based on some form of machine learning [6]. Nevertheless, the correct diagnosis of
clinically significant (CS) PCa (i.e., PCa pathologically defined as International Society of
Urological Pathology grade ≥2), remains difficult, even when including novel strategies
such as miRNA [7]. With the introduction of radiomics [8], a seemingly simple technique
was brought forward as a possible valuable addition to machine learning models for CS
PCa. Radiomics extracts image information normally invisible to the human eye, which can
be used to quantify tumor phenotypes [8]. Over the years, the combination of radiomics
and machine learning has shown its strengths in MRI-based CS PCa diagnosis [9].

However, models based on radiomics data are not without weaknesses [10–12]. While
building a working radiomics model is a relatively straightforward process, attaining a
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generalizable radiomics model that outperforms a radiologist is considerably more com-
plex. Multiple guidelines have been suggested to help with development and improve
both machine learning models and radiomics in healthcare [13–15]. Mongan et al. recently
introduced the checklist for artificial intelligence in medical imaging (CLAIM). CLAIM can
be used as a guideline for authors and reviewers of artificial intelligence papers in health-
care [14]. In an effort to tackle the lack of radiomics standardization, Zwanenburg et al.
compiled the extensive image biomarker standardization initiative [13]. Furthermore, Lam-
bin et al. introduced the radiomics quality score (RQS) to fill the need for homogeneous
radiomics evaluation criteria and reporting guidelines [15].

Multicenter large scale data appear invaluable to create generalizable radiomics mod-
els that are clinically useful [10,16], and that may assist or outperform radiologists in
diagnosing CS PCa on MRI [17]. Herein lies the issue with current radiomics PCa studies
and reviews, with almost all of them having been developed on a single center dataset
or focus on single center performance [9,18]. Good single center performance does not
guarantee good multicenter performance, while the opposite does seem to be true [10,16].
To our knowledge, no previous review has focused specifically on multicenter radiomics.
Therefore, this study aimed to systematically review the quality of multicenter radiomics
studies for the diagnosis of CS PCa according to CLAIM and RQS.

2. Materials and Methods

This systematic review followed the 2020 Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) checklist.

2.1. Eligibility Criteria

Studies were potentially eligible for inclusion if their goal was to investigate the
diagnosis of clinically significant PCa using multicenter radiomics MRI data. Studies were
included for total study screening if the following terms could be found in either the title,
abstract, or key words: radiomics, prostate cancer, MRI, and multicenter. Term synonyms,
abbreviations, and their closest fitting medical subject heading (MeSH) terms were included
in the search strategy. Only original research was eligible for inclusion. Exclusion criteria
were: studies with less than 150 patients (less than 150 patients appears insufficient for
learning the patterns in usually complex multicenter data [10,19]), and studies exclusively
focusing on the diagnosis of extraprostatic tumor extension and PCa recurrence.

2.2. Search Strategy and Sources

Scopus, Embase, Web of Science, and Pubmed were searched in February 2022. The
following search string was used: ((radiomics) OR (feature-based) OR (feature based))
AND ((prostate) OR (PCA) OR (PC) OR (prostate cancer)) AND ((MRI) OR (bpMRI) OR
(magnetic resonance imaging)) AND ((multicenter) OR (multi-center) OR (collaborative)
OR (multi-institutional)). Only English search terms were used.

2.3. Study Selection and Data Extraction

Reference files extracted from the searched databases were added to Mendeley (Version
1.19.8, Elsevier, London, UK). Duplicate papers were removed by the internal duplicate
scanner. A single reviewer (JB, with 4 years of hands-on research experience in MRI
radiomics of PCa) checked each title, abstract, and key terms manually for their fit to
the specified inclusion and exclusion criteria. All remaining eligible studies were read
by the same reviewer and graded according to CLAIM and RQS [14,15]. Grades were
checked for bias by another reviewer (CR, with 1.5 years of hands-on research experience
in MRI research). The number of included patients and/or lesions, number of institutions,
use of multicenter data, and available model performance metrics (area under the curve,
sensitivity, specificity, etc.) were extracted.
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2.4. CLAIM

CLAIM consists of 42 quality items, with special focus on ground truth, data par-
titions, modeling, training, evaluation, and performance. CLAIM was divided into six
sections/topics starting with title/abstract, then introduction, Methods, Results, Discussion,
and finally other information which was the last main section for the CLAIM checklist.
Each of the sections, subsections, and their 42 items with a short description can be found
in Table 1.

Table 1. CLAIM checklist table with three columns containing the section/subsection, CLAIM item
number, and the description of the item.

Title/Abstract

1 Identification as a study of AI methodology, specifying the
category of technology used (e.g., deep learning)

2 Structured summary of study design, methods, results,
and conclusions

Introduction

3 Scientific and clinical background, including the intended use
and clinical role of the AI approach

4 Study objectives and hypotheses

Methods

Study Design 5 Prospective or retrospective study

6 Study goal, such as model creation, exploratory study,
feasibility study, non-inferiority trial

Data 7 Data sources

8

Eligibility criteria: how, where, and when potentially eligible
participants or studies were identified (e.g., symptoms, results
from previous tests, inclusion in registry, patient-care setting,
location, dates)

9 Data pre-processing steps

10 Selection of data subsets, if applicable

11 Definitions of data elements, with references to Common
Data Elements

12 De-identification methods

13 How missing data were handled

Ground Truth 14 Definition of ground truth reference standard, in sufficient
detail to allow replication

15 Rationale for choosing the reference standard (if
alternatives exist)

16 Source of ground-truth annotations; qualifications and
preparation of annotators

17 Annotation tools

18 Measurement of inter- and intrarater variability; methods to
mitigate variability and/or resolve discrepancies

Data Partitions 19 Intended sample size and how it was determined

20 How data were assigned to partitions; specify proportions

21 Level at which partitions are disjoint (e.g., image, study,
patient, institution)

Model 22 Detailed description of model, including inputs, outputs, all
intermediate layers and connections
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Table 1. Cont.

23 Software libraries, frameworks, and packages

24 Initialization of model parameters (e.g., randomization,
transfer learning)

Training 25 Details of training approach, including data augmentation,
hyperparameters, number of models trained

26 Method of selecting the final model

27 Ensembling techniques, if applicable

Evaluation 28 Metrics of model performance

29 Statistical measures of significance and uncertainty (e.g.,
confidence intervals)

30 Robustness or sensitivity analysis

31 Methods for explainability or interpretability (e.g., saliency
maps), and how they were validated

32 Validation or testing on external data

Results

Data 33 Flow of participants or cases, using a diagram to indicate
inclusion and exclusion

34 Demographic and clinical characteristics of cases in
each partition

Model
performance 35 Performance metrics for optimal model(s) on all

data partitions

36 Estimates of diagnostic accuracy and their precision (such as
95% confidence intervals)

37 Failure analysis of incorrectly classified cases

Discussion

38 Study limitations, including potential bias, statistical
uncertainty, and generalizability

39 Implications for practice, including the intended use and/or
clinical role

Other
information

40 Registration number and name of registry

41 Where the full study protocol can be accessed

42 Sources of funding and other support; role of funders

Argumentation for the inclusion of each of the 42 items can be found in the original
publication by Mongan et al. [14]. Some of the CLAIM items were not applicable to some of
the included studies. For example, “tools used for annotation” requires manual annotation
by multiple experts. If a study used an automatic annotation or no annotation at all, this
CLAIM item was scored as not applicable. Each CLAIM checklist item was seen as equally
important and worth 1 point with a maximum of 42 points.

2.5. RQS

The RQS consists of 16 detailed quality items mainly focusing on reproducibility and
validation of radiomics. The first four RQS items were mostly scanner and protocol related:
the detailed documentation/description of the image protocol, the requirement for multiple
segmentations, phantom studies on all scanners, and imaging at multiple time points. The
next three RQS items focused on everything feature related: setup of feature reduction or
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adjustment for multiple testing, multivariable analysis with non-radiomics features, and
detection and discussion of biological feature correlates. The following three RQS items
contained statistic quality checks: determination of risk groups through cut-off analysis,
inclusion of discrimination statistics, and reporting the calibration statistics. The eleventh
RQS item was standalone, seen as extra important, and checked the study for prospective
trial database registry. The eleventh RQS item was followed by two performance-related
RQS items: detailed execution of validation, and comparison to gold standard. The last
three RQS items were more general with one checking the potential clinical utility, the
second checking for the inclusion of a cost-effectiveness analysis, and finally if the study
was open source. There was minimal overlap with the 42 CLAIM items. Some items of the
RQS checklist are seen as more important than others and are assigned more points when
fulfilled. RQS item argumentation can be found in Lambin et al. [15]. A Tabular overview
of each detailed RQS item and its weight can be found in Appendix A.

2.6. Data Analysis

Each of the CLAIM items scored as not applicable was deducted from the total of 42
CLAIM items before calculating the percentage of CLAIM items that was fulfilled by each
study. RQS percentage scores were calculated based on the RQS points table and their
maximum of 36. Excellent studies should be able to achieve 85–90% for both CLAIM and
RQS, a percentage estimated based on the CLAIM and RQS review by our clinical and
technical radiomics PCa experts (9 years and 4 years experience). Averages and standard
deviations of the total CLAIM and RQS were calculated.

3. Results

The search strategy resulted in 151 results, 41 from Scopus, 39 from Embase, 26
from Web of science, and 45 from Pubmed. A total of 65 duplicate studies were removed.
Furthermore, 86 studies remained for screening their title, abstract, and key terms according
to the inclusion and exclusion criteria. In addition, 82 studies were removed because they
were clearly ineligible or because it did not concern original data. Four studies remained
and were included in this review. The corresponding PRISMA flow diagram can be found
in Figure 1.

3.1. Description of Included Studies

The first study by Bleker et al. [10] aimed to investigate a previously developed
radiomics-based biparametric MRI (T2-weighted imaging, diffusion-weighted imaging)
approach for the diagnosis of clinically significant peripheral zone PCa. Their study used
both a single center, single vendor dataset and a multicenter, multivendor dataset for
validation and model development. The study population consisted of 262 single center
lesions from a single institution and vendor and another set of 262 multicenter lesions
originating from nine different institutions and two vendors. Both sets were split into
171 training lesions and 91 test lesions. The radiomics model developed on single center
data showed a performance reduction of 27% when validated on multicenter data (AUC
0.82 vs. 0.59). A multicenter developed model achieved a multicenter validation AUC of
0.75 and a single center validation of 0.66.

The second study by Castillo et al. [20] aimed to compare the performance of a
multiparametric MRI radiomics model with that of a deep learning model for the diagnosis
of clinically significant PCa. Their study included 271 patients from one institution and
three external sets of 195, 100, and 78 patients from three other institutions. The external
datasets were used as test datasets. Their radiomics model achieved AUCs of 0.88, 0.91,
and 0.65, while the deep learning model achieved AUCs of 0.70, 0.73, and 0.44 on the three
test sets, respectively.
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The third study by Lim et al. [21] aimed to develop and evaluate both a T2-weighted-
based radiomics model and apparent diffusion coefficient (ADC)-based radiomics model to
diagnose clinically significant PCa in PI-RADS category 3 lesions. Their study population
consisted of 158 patients with 160 PI-RADS category 3 lesions from two different institutions.
The T2-weighted radiomics model achieved an AUC of 0.547 and the ADC-based model,
an AUC of 0.684

The fourth study by Montoya Perez et al. [22] aimed to develop and validate bipara-
metric MRI radiomics and blood kallikrein (peptidase family of which prostate specific
antigen (PSA) is a member) models for the detection of clinically significant PCa. Their
study population consisted of 543 patients from four different institutions. The total study
population was divided equally in data split 1 and data split 2, which were both split into
train, validation, and test sets. AUCs for the biparametric MRI radiomics model were 0.83
and 0.83 for both test sets, which were not significantly different from a prediction made
using a risk stratification scheme such as PI-RADSv2 [4].

3.2. Quality of Included Studies

CLAIM evaluation for each of the studies included in this review can be found in
Table 2 and the RQS evaluation in Table 3.
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Table 2. Checklist for artificial intelligence in medical imaging evaluation for each of the five studies
included in the review. If the study fit the total CLAIM item description, a score of 1 was awarded.
For example, item 1: “Indicate the use of the AI techniques—such as “deep learning” or “random
forests”—in the article’s title and/or abstract” requires detailed mention of all AI techniques used.
If one or more is missing, a zero was given. N/A stands for non-applicable and is used when the
specific item does not fit with the goal or approach of the study. Each N/A reduces the possible total
score (42—number of N/As) that is used for calculating the percentage of items fulfilled.

Domain Item Bleker et al. [10] Castillo et al. [20] Lim et al. [21] Montoya Perez et al. [22]

Title/Abstract

1 0 0 1 0

2 1 1 1 1

Introduction

3 1 1 1 1

4 1 0 0 0

Methods

Study Design 5 1 1 1 1

6 1 1 1 1

Data 7 1 1 1 1

8 1 1 1 0

9 0 0 0 0

10 N/A N/A N/A N/A

11 1 1 1 1

12 0 0 0 0

13 0 1 0 1

Ground Truth 14 1 1 1 1

15 1 1 1 1

16 1 0 1 1

17 N/A 0 1 1

18 N/A N/A 0 N/A

Data Partitions 19 1 1 1 1

20 1 1 0 1

21 1 1 1 1

Model 22 1 1 1 1

23 0 1 1 0

24 1 1 1 1

Training 25 1 1 1 1

26 1 1 1 1

27 N/A 1 N/A N/A

Evaluation 28 1 1 1 1

29 1 0 1 1

30 1 1 1 0

31 1 1 0 1

32 1 1 1 1
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Table 2. Cont.

Domain Item Bleker et al. [10] Castillo et al. [20] Lim et al. [21] Montoya Perez et al. [22]

Results

Data 33 1 1 1 1

34 0 0 1 1

Model
performance 35 1 1 0 1

36 1 1 1 1

37 1 0 0 0

Discussion

38 1 1 1 1

39 0 0 0 0

Other
information

40 N/A N/A N/A N/A

41 N/A N/A N/A N/A

42 1 0 1 1

Total score
percentage 80.6 (29/36) 71.1 (27/38) 71.1 (27/38) 75.7(28/37)

RQS grading for each of the studies included in this review can be found in Table 2.

Table 3. Radiomics quality scores and total percentages for each of the studies included in this review.
Total maximum score that could be achieved is 36 points.

RQS Bleker et al. [10] Castillo et al. [20] Lim et al. [21] Montoya Perez et al. [22]

Image Protocol Quality 2 2 2 1

Multiple segmentations 1 1 1 0

Phantom Study on all scanners 0 0 0 0

Imaging at multiple time points 0 0 0 0

Feature reduction or adjustment
feature reduction or adjustment

for multiple testing
3 3 3 3

Multivariable analysis with non
radiomics features 0 0 0 1

Detect and discuss
biological correlates 0 0 0 1

Cut-off analyses 0 0 0 0

Discrimination statistics 2 2 2 2

Calibration statistics 1 1 1 1

Prospective study registered in a
trial database 0 0 0 0

Validation 5 5 3 3

Comparison to ‘gold standard’ 2 2 2 2

Potential clinical utility 2 2 2 2
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Table 3. Cont.

RQS Bleker et al. [10] Castillo et al. [20] Lim et al. [21] Montoya Perez et al. [22]

Open science and data 2 3 0 3

Total score percentage 55.6 (20/36) 58.3 (21/36) 44.4 (16/36) 52.8 (19/36)

CLAIM scores ranged from 71.1% to 80.6% and RQS ranged from 44.4% to 58.3%. Study
design, ground truth labeling, data partitioning, and model training scored particularly
well. While items related to data preprocessing, de-identification, and clinical use scored
terribly. For radiomics, the feature reduction, model performance, and proper validation
with correct ground truth showed excellent results. More specific items related to feature
reproducibility, prospective data, and cost-effectiveness analysis are generally lacking.

4. Discussion

This systematic review investigated the quality of currently available multicenter
MRI radiomics studies for the diagnosis of clinically significant PCa, with quality defined
according to CLAIM [14] and RQS [15]. The first important finding of our systematic
review is that the number of multicenter radiomics PCa classification studies eligible is
low. Most literature seems to agree that large scale multicenter datasets are required
for radiomics [19,23,24]. Lagging use of multicenter datasets for radiomics diagnosis of
clinically significant PCa has been observed to be related to technical challenges, patient
privacy, and data security issues [25]. Developments for faster and secure data sharing
and storage, and data partnerships between hospitals and corporations, may be able to
circumvent these challenges [25,26]. Overall, data sharing initiatives are occurring more
frequently [27] and publicly available datasets are increasing [28]. This will hopefully
increase the number of multicenter studies in the field of MRI radiomics of PCa. The
second important finding of this systematic review is that the few studies which did
use multicenter PCa data scored reasonably well on CLAIM (74.6%) and worse on RQS
(52.8%). Items related to experiment setup and model training and validation performed
generally very well. While items related to data preprocessing, data de-identification,
feature reproducibility, and implications for practice did not.

Interestingly, models developed using multicenter radiomics data seem to struggle
with diagnostic performance. Both Lim et al. [21] and Bleker et al. [10] developed models
that are generalizable (i.e., maintain diagnostic performance in external datasets), but they
did not achieve AUC scores that are higher than 0.75. Both Bleker and Lim et al. believe
this lower performance is related to multicenter data heterogeneity (differences in included
sequences and image intensity related to vendor, scanner, and protocol variability) and
data processing, which does not fully combat this heterogeneity. Recent literature confirms
this observation [13,23,24,29] and more studies should be performed on multicenter data
processing. Another interesting addition to multicenter PCa radiomics might be the in-
clusion of clinical features. Montoya Perez et al. showed that the introduction of clinical
features to their PCa radiomics model showed potential and stability in the 10-fold cross
validation of the multicenter test dataset. [22]. Yet another improvement might be a more
diverse approach to model development where instead of one single model, multiple
models are developed and combined [30]. Castillo et al. [20] developed a combined model
(consisting of 100 different models) which outperformed its cross validated training score
on an external validation dataset (n = 195, ProstateX [31], General Electric vs. Siemens AUC
0.83 vs. 0.91). However, this same combined model showed a reduction in performance on
another external dataset from a different vendor (n = 78, General electric vs. Philips, AUC
0.83 vs. 0.65). Due to the mismatch in generalization, more research on combined models
for multicenter radiomics PCa classification is recommended.

Besides challenges in data sharing and multicenter performance, quite a few general
model quality deductions could be made. According to the CLAIM scores in Table 1, authors
could benefit from including more details in their studies. Documentation of settings related
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to MR protocols, anonymization, and radiomics feature extraction that directly influence
reproducibility is lacking. This documentation is especially important for radiomics since a
major challenge is reproducibility [12,32]. A recent review by Midiri et al. also confirmed
that reproducibility and standardization remain main challenges for radiomics [33]. CLAIM
item 9 related to the total description of data preprocessing is the first item where all authors
lacked any scores caused by missing details. All settings (i.e., voxel spacings, algorithms
used, scaling, etc.) need to be included to make processing reproducible. Further issues
were: handling of missing data, missing anonymization, removal of outliers, and detailed
specification of any software used was missing completely. CLAIM item 12 related to the
description of the data anonymization protocol was the second item all authors failed. No
information on any of the anonymization approaches was included. Finally, the description
of future clinical implementation tested by CLAIM item 39 was also failed by all authors.
For the RQS, it was observed that the prospective study design, “Phantom studies on all
scanners” and “Imaging at multiple time points—Delta radiomics” was likewise lacking.
While prospective study design is a critical shortcoming [33], phantom use and Delta
radiomics might be less important.

This systematic review had some limitations. First, there were slight differences in
study goals, patient numbers, labels, and datasets among the four included studies, which
makes direct quality comparison slightly more difficult. Nevertheless, some comparison is
warranted since a certain degree of generalization is expected with multicenter data and
trends in quality issues can be deducted. Second, the RQS study was published back in
2017 [15]. Radiomics and artificial intelligence is a rapidly developing field which makes
the current RQS slightly outdated. Third, CLAIM is focused on deep learning models and
not feature-based radiomics models, which resulted in various non-applicable checklist
items for each included study.

In conclusion, a very small number of multicenter radiomics PCa classification studies
have been performed with the existing studies being of bad or average quality. Good
multicenter studies might increase by encouraging preferably prospective data sharing and
paying extra care to documentation in regards to reproducibility and clinical utility.
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Appendix A

Table A1. The radiomics quality score: RQS.

Criteria Points

1

Image protocol quality—well-documented image protocols
(for example, contrast, slice-thickness, energy, etc.) and/or
usage of public image protocols allow
reproducibility/replicability

+1 (if protocols are well-documented) +1 (if
public protocol is used)
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Table A1. Cont.

Criteria Points

2

Multiple segmentations—possible actions are: segmentation
by different physicians/algorithms/software, perturbing
segmentations by (random) noise, segmentation at different
breathing cycles. Analyze feature robustness to
segmentation variabilities

+1

3
Phantom study on all scanners—detect inter-scanner
differences and vendor -dependent features. Analyze
feature robustness to these sources of variability

+1

4

Imaging at multiple time points—collect images of
individuals at additional time points. Analyze feature
robustness to temporal variabilities (for example, organ
movement, organ expansion/shrinkage)

+1

5

Feature reduction or adjustment for multiple
testing—decreases the risk of overfitting. Overfitting is
inevitable if the number of features exceeds the number of
samples. Consider feature robustness when selecting
features

−3 (if neither measure is implemented) +3 (if
either measure is implemented)

6

Multivariable analysis with non radiomics features (for
example, EGFR mutation)—is expected to provide a more
holistic model. Permits correlating/inferencing between
radiomics and non radiomics features

+1

7

Detect and discuss biological correlates—demonstration of
phenotypic differences (possibly associated with underlying
gene-protein expression patterns) deepens understanding of
radiomics and biology

+1

8

Cut-off analyses—determine risk groups by either the
median, a previously published cut-off or report a
continuous risk variable. Reduces the risk of reporting
overly optimistic results.

+1

9

Discrimination statistics—report discrimination statistics
(for example, C-statistic, ROC curve, AUC) and their
statistical significance (for example, p-values, confidence
intervals). One can also apply resampling methods (for
example, bootstrapping, cross validation)

+1 (is a discrimination statistic and its statistical
significance are reported) +1 (if a resampling
method technique is also applied)

10

Calibration statistics—report calibration statistics (for
example, Calibration-in-the-large/slope, calibration plots)
and their statistical significance (for example, p-values,
confidence intervals). One can also apply resampling
methods (for example, bootstrapping, cross validation)

+1 (is a calibration statistic and its statistical
significance are reported) +1 (if a resampling
method technique is also applied)

11
Prospective study registered in a trial database— provides
the highest level of evidence supporting the clinical validity
and usefulness of the radiomics biomarker

+7 (for prospective validation of a radiomics
signature in an appropriate trial)

12
Validation—the validation is performed without retraining
and without adaption of the cut-off value, provides crucial
information with regard to credible clinical performance

−5 (if validation is missing) + 2 (if validation is
based on a dataset from the same institute) +3 (if
validation if based on a dataset from another
institute) +4 (if validation is based on two
datasets from two distinct institutes) +4 (if the
study validates a previously published signature)
+5 (if validation is based on three or more
datasets from distinct institutes) Datasets should
be of comparable size and should have at least 10
events per model feature
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Table A1. Cont.

Criteria Points

13

Comparison to ’gold standard’—assess the extent to which
the model agrees with/is superior to the current ’gold
standard’ method (for example, TNM-staging for survival
prediction). This comparison shows the added value of
radiomics

+2

14
Potential clinical utility—report on the current and potential
application of the model in a clinical setting (for example
decision curve analysis)

+2

15 Cost-effectiveness analysis—report on the cost-effectiveness
of the clinical application (for example, QALYs generated) +1

16
Open science and data—make code and data publicly
available. Open science facilitates knowledge transfer and
reproducibility of the study

+1 (if scans are open source) +1 (if region of
interest segmentations are open source) +1 (if
code is open source) +1 (if radiomics features are
calculated on a set of representative ROIs and the
calculated features and representative ROIs are
open source)

Total points (36 = 100%)
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