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Abstract

Utilization by humans of a precise and adaptable internal model of the dynamics of the body

in generating movements is a well-supported concept. The prevailing opinion is that such an

internal model ceaselessly develops through long-term repetition and accumulation in the

central nervous system (CNS). However, a long-term learning process would not be abso-

lutely necessary for the formation of internal models. It is possible to estimate the dynamics

of the system by using a motor command and its resulting output, instead of constructing a

model of the dynamics with precise parameters. In this study, a computational model is pro-

posed that uses a motor command and its corresponding output to estimate the dynamics of

the system and it is examined whether the proposed model is capable of describing a series

of empirical movements. The proposed model was found to be capable of describing

humans’ fast movements which require compensation for system dynamics as well as sen-

sory delays. In addition, the proposed model shows equifinality under inertial perturbations

as seen in several experimental studies. This satisfactory reproducibility of the proposed

computation raises the possibility that humans make a movement by estimating the system

dynamics with a copy of motor command and sensory output on a momentary basis, without

the need to identify precise system parameters.

Introduction

Humans are endowed with a remarkable ability to execute limb movements even in the pres-

ence of changing loads arising either from interaction with the environment or from variation

in properties of the sensorimotor system. Despite substantial delays in feedback loops and the

dynamical properties of the sensorimotor system, they are capable of producing fast move-

ments in a smooth trajectory. To explain these motor abilities, the so-called “internal model”

was devised in the field of human motor behavior [1–10]. The internal model is a hypothesized

controller residing in various brain regions including the motor cortex and/or cerebellum. Evi-

dence of the existence of the internal model can be found in several phenomena. For instance,

deafferented primates are able to reach a target point with their arms even in the absence of

sensory feedback. Too, interacting forces between joints during movements need to be
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compensated to minimize movement error, yet this is nearly impossible with feedback control

alone [4].

Though it is not a universal phenomenon, especially in destabilizing force fields [11–15], it

is empirically observed that humans are capable of reaching a target position in a range of tran-

sient and smooth mechanical perturbations [16–21]. The equifinality property could not be

explained using model-based motor control formulations with an internal model that suppose

that the system adjusts the internal model by integrating the new load condition in response to

the perturbation and accurately produces perfect corrective torques to bring the system to the

same final position [21]. In model-based motor control formulations, integration of a pertur-

bation into internal models requires practice involving considerable trials (e.g., [11]). How-

ever, equifinality is exhibited in movements without the need of adaptation to applied

perturbations. Experimental evidence has supported equifinality by humans even within a sin-

gle trial through online corrections. An intact monkey can return his arm back to a predefined

trajectory immediately after his arm is perturbed while moving to a target [22]. Equifinality

alludes the possibility that internal models can be formed and updated even on a momentary

basis, as well as, on a trial-by-trial basis [11, 15, 23, 24]. This possibility is supported by

research activities that have evaluated continuous adaptation of humans in motor behaviors

[25–28].

An input-output relationship exists between the motor command and its resulting limb

kinematics; the input acts on the neuromuscular system and environment in contact with the

limb, while the output reflects the dynamic response. Although it is difficult to identify the

properties of the system and environments with only the input and output available, the quan-

titative relationship between the input and output can be used to estimate the dynamics of the

neuromuscular system for the purpose of formulating subsequent control actions. With an

estimate of the limb and environment dynamics made at the previous step, the dynamics of

the musculoskeletal system and environment in the current step could be compensated. In

other words, the estimate can be used in place of a system model.

In fact, time-delay control (TDC) in the controls field utilizes the mechanism, which is

called time-delay estimation (TDE) [29]. TDE uses the previous-step sensor reading and a

record of previous-step command to quantitatively estimate the system dynamics and distur-

bances, which are otherwise difficult to identify precisely. The estimate cancels out the system

dynamics and uncertainties through their incorporation into the control at the current step.

Consequently, employing the TDE technique leads to accuracy and robustness of control in

the presence of a wide class of uncertainties under infinitesimally small sampling intervals.

TDE alleviates computation load for the system dynamics and uncertainties in comparison

with other robust control schemes [30–34]. It does not require the use of high gain control.

TDC provides an insight as to how humans form internal models.

In this study, a computational model of human motor control is proposed that estimates

system dynamics in a similar way to TDC. The question as to whether humans estimate the

dynamics of the neuromuscular system using the input-output relationship is examined.

Regarding the issue of delays in sensory feedback loops, the proposed model handles these

delays by taking the architecture of the Smith predictor. In 1993, Miall and colleagues bor-

rowed the Smith predictor from control engineering to describe behaviors of biological sys-

tems with delays in feedback loops [35]. The Smith predictor explained how biological systems

might overcome feedback delays. The Smith predictor is a model-based controller, and accord-

ingly requires system parameters. The forward and inverse models of the Smith predictor are

liberated from the requirement for a model of the dynamics with precise parameters with the

aid of the TDC principle.

Internal model without system parameters
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Through simulation studies, it is investigated whether or not the proposed computation is

capable of reproducing a series of fast movements. Feedback control alone cannot be consid-

ered for fast movements due to the delays inherent in sensory systems. Anticipatory control

using forward models needs to be involved to make an appropriate action before sensory

information is available. Also, feedback control alone cannot compensate for intersegmental

interaction forces that arise during multi-joint movements [4]. These movements support the

existence of internal models. If the proposed computation successfully reproduces fast move-

ments, this would imply the possibility that the human motor control system produces move-

ments in a similar manner to the operation of TDC. That is, in humans it would be possible to

estimate system dynamics using the input-output relationship, not requiring a model of limb

dynamics with precise parameters. This hypothesis is in line with the perspective that a func-

tionally good enough representation/estimation of the system is sufficient to produce a rapid

response to perturbations [36, 37].

A further investigation regarding whether the proposed computation captures movements

under unexpected change in load is carried out. Perturbations by inertial changes would offer

a tool to investigate the issue regarding whether or not internal models involve a precise sys-

tem model. Attempts to reproduce the unexpectedly perturbed movements with a model-

based internal model controller and the proposed controller provide an insight into the possi-

bility that humans make movements without system parameter identification.

Computational model development

Computed torque method for human movements

In 2002, Jagacinski and Flash introduced a controller to describe human movements [38]. This

controller, which is based on the computed-torque control (CTC) for a single-DOF arm

model, is re-formulated here for a multi-DOF arm model.

The dynamics of the arm is generally described as

MðyÞ€y þ Vðy; _yÞ þ GrðyÞ þ Fð _yÞ þ U ¼ t; ð1Þ

where θ 2 Rn denotes the joint angles; M(θ) 2 Rn×n the inertia matrix; Vðy; _yÞ 2 Rn the Corio-

lis and centrifugal forces; Gr(θ) 2 Rn the gravitational forces; Fð _yÞ 2 Rn the friction; U the

unknown disturbances; τ 2 Rn the control inputs.

Eq (1) is considered as a system model throughout this study. The controller presented in

[38] for the arm model consists of system dynamics cancellation, the feedforward component

and the feedback component.

t ¼ Vðy; _yÞ þ GrðyÞ þ Fð _yÞ þ U
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Dynamics cancellation

þMðyÞ€yd|fflfflfflffl{zfflfflfflffl}
Feedforward

þ Kvð
_yd �

_yÞ þ Kpðyd � yÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Feedback

;
ð2Þ

where θd 2 Rn denotes a desired angle vector, and Kv, Kp 2 Rn×n are diagonal viscosity and stiff-

ness matrices with diagonal elements Kv1, Kv2, � � �, Kvn and Kp1, Kp2, � � �, Kpn, respectively.

Dynamics cancellation is carried out by putting force components of the arm system into

the system through the control inputs. The feedforward component is proportional to the

desired acceleration €yd, because the controlled system is an acceleration control system [38].

The feedforward control utilizes the inverse dynamics of the system; the torque component is

created by the acceleration of the desired trajectory, which is programmed according to an

intended movement. In the case that the initial condition of the arm is quiescent and no uncer-

tainty exists, the actual position of the arm converges to the desired one [38]. The third

Internal model without system parameters
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component, feedback, plays a role in diminishing the error between the desired trajectory and

actual trajectory measured by the sensory systems.

Injecting the control inputs into the arm produces the following error dynamics:

0 ¼ MðyÞð€yd �
€yÞ þ Kvð

_yd �
_yÞ þ Kpðyd � yÞ: ð3Þ

From this error dynanmics, a simplified block diagram of the arm system linearized by the

controller can be derived as shown in Fig 1. The closed-loop dynamics of the arm can be

expressed as a cascade combination of a controller C and a plant G.

However, the CTC is not tolerant to sensory delays. This indicates that the CTC is not suit-

able to describe human motor control involving sensory delays.

Smith predictor

The Smith predictor, proposed in [39], is a control architecture for systems with delays, as

shown in Fig 2. The outer control loop feeds back the actual state of the system G, but due to

the delay of the feedback loop, use of the outer loop alone would not provide satisfactory con-

trol performance and lead to instability in the worst case. Thus, the inner loop is added to send

the (estimated) current state to the controller C. The current state is estimated using a system

model Ĝ that is supposed to be simulated using a copy of the control input. The Smith

Fig 1. Simplified block diagram of the arm system linearized by the CTC. The closed-loop dynamics of the arm can

be expressed as a cascade combination of a controller C and a plant G. θd and θ denote the desired angle and actual

angle, respectively.

https://doi.org/10.1371/journal.pone.0210616.g001

Fig 2. Smith predictor. The Smith predictor is a model-based controller developed for processes with a long time

delay in feedback loops. This control intentionally delays the estimated state as long as the actual state is delayed so that

the delayed actual state and delayed estimated state cancel one another.

https://doi.org/10.1371/journal.pone.0210616.g002

Internal model without system parameters
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predictor delays the estimated state as long as the actual state is delayed so that the delayed

actual state and delayed estimated state cancel one another. If the perfect match between these

two delayed states is made, the controller C can show control performance with no influence

of delay on the outer feedback loop. Miall and colleagues [35] employed this Smith predictor

in human control modelling to describe motor ability by the CNS even in the face of sensory

delays. They assumed that the controller C and system model Ĝ are devised for the inverse

model and forward model in the cerebellum, respectively.

Now, let us try to combine the CTC with the Smith predictor. From the lineaized arm sys-

tem with the CTC, which is shown in Fig 1. The controller CCTC of the CTC can match with

the controller C of the Smith predictor and the linearized plant GCTC of the CTC with the plant

G of the Smith predictor. Then the forward model can be expressed as

ĜðsÞ ¼ ðMs2I þ Kvsþ KpÞ
� 1
: ð4Þ

Note that the forward model equals to the plant linearized by the CTC. This implies that the

forward model provides estimated states using the same plant dynamics controlled under the

CTC. Fig 3 displays a simplified block diagram of the CTC in the architecture of the Smith

predictor.

Proposed control

So far, the CTC has been combined with the Smith predictor to liberate the CTC from the sen-

sory delay issue. But the CTC does require a model of the dynamics with precise parameters.

Time-delay estimation (TDE) can eliminate this requirement while it reduces computational

load.

The equations of motion (1) can be algebraically manipulated to express it with an explicit

input-output relationship. Introducing a diagonal constant matrix �b 2 Rn�n consisting of

Fig 3. Simplified block diagram of the CTC in the architecture of the Smith predictor. The controller in this

control architecture can match with the controller C of the Smith predictor and the linearized plant of the CTC with

the plant G of the Smith predictor. The forward model equals to the plant linearized by the CTC. This control

architecture compares the actual position that is delayed in feedback loop with its estimate that is intentionally delayed.

The difference between them is compared with the desired position.

https://doi.org/10.1371/journal.pone.0210616.g003

Internal model without system parameters
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diagonal elements �b1;
�b2; � � � ;

�bn, and grouping the system dynamics plus the disturbance

term U into one term (H), Eq (1) is expressed as follows:

�b€yðtÞ �
�b€yðtÞ þMðyðtÞÞ€yðtÞ þ VðyðtÞ; _yðtÞÞ þ GðyðtÞÞ þ Fð _yðtÞÞ þ UðtÞ

¼ �b€yðtÞ þHðtÞ
¼ tðtÞ;

ð5Þ

where

HðtÞ ≜ � �b€yðtÞ þMðyðtÞÞ€yðtÞ þ VðyðtÞ; _yðtÞÞ þ GðyðtÞÞ þ Fð _yðtÞÞ þ UðtÞ: ð6Þ

In Eq (5), the input τ is linked to the output €y through the term H, which suggests that the

term H can be quantitatively estimated using the input and output. Meanwhile, it is acceptable

to assume that the term H is piece-wise continuous if the disturbance term U is continuous.

This implies that the value of the term H(t) at an instant t can be approximated by its value at

the previous instant t − dt. The shorter the gap dt between two consecutive instants of time

leads to the more accurate approximation. An estimate of the value of the term H can be

obtained in this way:

HðtÞ � Hðt� dtÞ; Ĥ ðtÞ ¼ Hðt� dtÞ: ð7Þ

In practice, the value of the H at the previous instant can be calculated using the input and

output at the previous instant, as suggested in Eq (5), as follows:

Hðt� dtÞ ¼ tðt� dtÞ � �b€yðt� dtÞ: ð8Þ

If the value of (tðt� dtÞ �
�b€yðt� dtÞ) is included in the motor command, the system dynamics

plus the disturbance U are cancelled out. As in the CTC, the motor command injects feedfor-

ward torques (€yd) and restoring torques that can be realized by placing a spring (Kp) and

damper (Kv) between the actual limb position and the desired limb position of each joint.

Then, the control law is expressed as

tðtÞ ¼ tðt� dtÞ �
�b€yðt� dtÞ þ

�bð€ydðtÞ þ Kvð
_ydðtÞ �

_yðtÞÞ þ KpðydðtÞ � yðtÞÞÞ: ð9Þ

TDC provides the similar desired error dynamics as the CTC:

0 ¼ €yd �
€y þ Kvð

_yd �
_yÞ þ Kpðyd � yÞ: ð10Þ

Accordingly, TDC can be adjustable to the architecture of the Smith predictor with a for-

ward model, which is selected as

ĜðsÞ ¼ ðs2I þ Kvsþ KpÞ
� 1
: ð11Þ

Fig 4 displays a simplified block diagram of TDC in the architecture of the Smith predictor.

Now, let us turn our attention to how delayed estimates can be obtained from the forward

model.

Internal model without system parameters
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From the error dynamics (10), it is possible to obtain the estimates of the state vectors y; _y

and €y, defined as ŷ;
_̂
y and

€̂
y respectively, as follows:

ŷ

_̂
y

" #

¼ eAt
ŷ0

_̂
y0

2

4

3

5þ

Z t

0

eAt0
0

I

" #

pðt � t0Þdt0; ð12Þ

€̂
y ¼ � Kv

_̂
y � Kpŷ þ p; ð13Þ

where

A ≜
0 I

� Kp � Kv

" #

; ð14Þ

p ≜ €yd þ Kv
_yd þ Kpyd: ð15Þ

The initial values of estimates ŷ;
_̂
y can be assumed to be the same as those of the actual state

vectors y; _y.

With the forward model, the current states are estimated and fed back to the controller.

Note that this forward model does not require a model of the dynamics with precise

parameters.

As shown in Fig 4, the actual position that is delayed in the feedback loop and its estimate

that is intentionally delayed are compared. The difference between them is compared with the

Fig 4. Simplified block diagram of TDC in the architecture of the Smith predictor. The controller in this control

architecture can match with the controller C of the Smith predictor and the linearized plant with the plant G of the

Smith predictor. The forward model equals to the plant linearized by this control.

https://doi.org/10.1371/journal.pone.0210616.g004

Internal model without system parameters
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desired position. These differences can be expressed as θr:

yrðtÞ ≜ ydðtÞ � ðyðt� tdÞ � ŷðt� t̂ dÞÞ; ð16Þ

where td denotes the time delay of the feedback loop and t̂ d is its estimate.

Then, the controller forces the controlled system to follow θr, reflecting that the controller

receives the current state estimated by the forward model. The control law of the proposed

model is designed as

tðtÞ ¼ tðt� dtÞ �
�b

€̂
yðt� dtÞ þ

�bð€yrðtÞ þ Kvð
_yrðtÞ �

_̂
yðtÞÞ þ KpðyrðtÞ � ŷðtÞÞÞ: ð17Þ

According to the closed-loop dynamics that the controller pursues, one of the formulations

for the forward model needs to be modified to

p ¼ €yr þ Kv
_yr þ Kpyr: ð18Þ

It would be possible to assume that the CNS selects appropriate values of the matrix �b and

modulates the muscle viscosity and stiffness Kv, Kp according to a given task. The matrix �b

determines the accuracy of dynamics estimation by TDE. A proof is presented in an Appendix.

Simulation

The proposed control model is validated through a series of simulation studies, examining

whether the model is capable of reproducing empirical phenomena obtained from human sub-

ject experiments.

The first study investigates whether or not the proposed model is able to reproduce fast

movements of short duration during which the sensory delay is too long to allow feedback cor-

rections. It is predicted that computational models with anticipatory control can reproduce

fast movements.

The second study evaluates whether the proposed model is capable of dealing with interac-

tion forces that arise from two-joint movements. The proposed model is predicted to compen-

sate for interaction forces successfully.

The last study attempts to address the issue regarding whether or not internal models are

formed grounded in a model of the dynamics of the system. Model-based computation pres-

ents prediction that varies with changes in the dynamic system. If a load unexpectedly perturbs

the system during movement, the system output would deviate from the planned end-point.

In contrast, the proposed computational model, which is not model-based, would show that

the planned end-point is reached even in the presence of a perturbation.

Arm model implementation

The experimental data considered in this study were produced by horizontal arm movements;

the gravitational force was neglected. The arm is modeled with a 2 DOF system involving the

shoulder and elbow joints, as depicted in Fig 5 and described as follows:

MðqÞ€q þ Cðq; _qÞ ¼ t; ð19Þ

where

MðqÞ ≜
M11 M12

M21 M22

" #

; ð20Þ

Internal model without system parameters
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M11 ≜ J1 þ J2 þM1l2m1
þM2ðl21 þ l2m2

þ 2l1lm2cosq2Þ; ð21Þ

M12 ¼ M21 ≜ J2 þM2ðl2m2
þ l1lm2cosq2Þ; ð22Þ

M22 ≜ J2 þM2l2m2
;

and

Cðq; _qÞ ≜
M2l1lm2sinq2ð2 _q1 þ _q2Þ _q2

M2l1lm2sinq2
_q2

1

" #

: ð23Þ

The parameters of the arm are adopted from [24]; for the upper arm, J1 = 0.0141 (kgm2),

M1 = 1.93 (kg), l1 = 0.31 (m), lm1 = 0.165 (m), for the forearm, J2 = 0.0188 (kgm2), M2 = 1.52

(kg), l2 = 0.34 (m), lm2 = 0.19 (m). The lengths lm1 and lm2 denote the distances between the

center of mass and the proximal joint.

It is assumed that human subjects plan a minimal-jerk trajectory in joint space and Carte-

sian space according to the given task [40]. The desired (planned) trajectory is designed as

qdðtÞ ¼ q0 þ ðqf � q0Þð6t06 � 15t05 þ 10t04Þ; t0 ¼
t
T
; ð24Þ

Fig 5. Schematic of a planar reaching experiment. The arm is modeled with a 2 degree-of-freedom (DOF) system

involving the shoulder and elbow joints.

https://doi.org/10.1371/journal.pone.0210616.g005

Internal model without system parameters
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where q0, qf denote the initial and final positions of the hand, T denotes the duration of the

movement.

Movements to be reproduced

I. Single-joint fast movement. Kistemaker and colleagues investigated single-joint

(elbow) fast movements [41]. Participants were asked to direct their hand from the marked

intermediate of one block to that of another block as fast as possible, once an auditory cue was

presented. The participants practiced until they could move quickly to the target with minimal

overshoot. Fig 4A in [41] shows trajectories by 6 participants of a flexion of 145 degrees start-

ing from an initial flexion of 45 degrees for a duration of 0.2 s. Note that these trajectories can

be described by the minimum-jerk trajectory.

II. Two-joint fast movement. Koike and colleagues had a participant make five move-

ments to five different positions with a duration between 0.5 s and 0.75 s using the shoulder

and elbow joints [42]. It was observed that deviations from the desired paths were more signifi-

cant for fast movements than those for slow movements since fast movements involve larger

interaction forces. Also it was found that deviations from transverse paths were more signifi-

cant than those from radial paths. The path from point (-0.2 m, 0.5 m) to point (0.25 m, 0.35

m) is selected for this simulation study. A comparison in movements between 0.5 s and 1 s is

made to examine whether the proposed control is able to compensate for increased interaction

forces during fast movements. The desired paths are designed by the minimum-jerk trajectory

as in [4].

III. Movement with unexpected inertial changes. Pinter and colleagues studied kine-

matic changes during movements under unexpected inertial perturbations [43]. They asked

participants to move their elbow joint from a 50 degree to an 85 degree of flexion angle as fast

as possible within 0.2 s but the inertial load was changed without informing the participants.

The participants familiarized themselves with movements with an inertial load that was then

replaced with either a lighter one (25% decrease) or a heavier one (25% increase).

The main findings of the study are that there is no significant error in the end-point posi-

tion in the presence of changes in inertial loads and that motor commands are customized for

a certain inertial load taking several trials.

In the present study, the trial of the low inertial load following continuous trials of the inter-

mediate inertial load is labelled ML and the trial of the high inertial load following continuous

trials of the intermediate inertial load is labelled MH. The label MM is made in a similar way.

Computational models for comparison

For a comparative study with a model-based control system, an optimal control model is cho-

sen which supports the internal-model hypothesis [44–47]. This model is accompanied by a

predictor for estimating the current states based on the sensory information delayed on feed-

back loops. Details on the optimal control used in this study are presented in the Appendix.

The other computational model is an equilibrium-point controller that operates using sen-

sory information with no anticipatory component. A modified equilibrium-point controller

that was developed by adding velocity feedback loop to accommodate feedback delays is

adopted [48, 49]. The control law is

t ¼ Dð _ydðtÞ �
_yðt� tdvÞÞ þ PðydðtÞ � yðt� tdpÞÞ; ð25Þ

where D, P are feedback gains and tdv, tdp denote feedback delays on velocity loop and position

loop.
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Simulation settings

Feedback signals are considered as an integration of all usable sources of sensory information

about limb movements including proprioceptive and visual feedback. The sensory delay td is

moderately set as 65 ms [4, 24]. Since a perturbation in sensory feedback was not given in the

experiment, it is assumed that the CNS estimates the exact value of the sensory delay so t̂ d is

set to 65 ms. For the equilibrium-point model, a delay of 65 ms is put into the position feed-

back loop while a delay of 25 ms is imposed on the velocity feedback loop.

For the study involving fast movements, all control gains are tuned so that they, within a

reasonable range, give the minimal deviation from the desired trajectory between 0.1 s and

0.3 s (see Fig 4A in [41]). After the 0.3 s, it would be possible that the arm impedance drasti-

cally changes to stop the arm movement at the planned position. This range is not taken into

account in the simulation studies where impedance is assumed to be constant. In the case of

the optimal control, a steady-state linear quadratic (LQ) method based on the solution of the

algebraic Riccati equation is used to set the values of the matrix K.

For the study about movements under unexpected inertial load changes, it is the first

task to ascertain control gains that enable the arm to closely follow the minimal-jerk

trajectory between the angles of 50 and 85 degrees for 0.25 s, under the intermediate load

(J = 0.165 kgm2). Then, the load is replaced with either a lighter load (J = 0.12) or a heavier

load (J = 0.205), while the control gains remain the same. In the case of the optimal control,

the predictor (41) estimates the current states with J = 0.165 (the CNS expects the intermediate

inertial load). The LQ method is used to determine the values of the matrix K.

Simulations are conducted in Matlab using ODE45. The optimization toolbox in Matlab is

used to check out the possibility of a significantly improved fit between the simulated trajec-

tory and empirically observed trajectory.

Results

Single-joint fast movement

Fig 6 presents the simulation results of the single-joint fast movement by the optimal control

(model-based internal model control), equilibrium-point control and proposed control. The

outputs of the optimal control model follow the minimum-jerk trajectory. The optimal control

is supposedly provided with the exact parameters of the system since the experimental results

Fig 3 are derived from sufficiently practiced movements.

The values of Q and R in Eq (40) are set to [10 0;0 10] and 2, respectively, but as long as val-

ues of Q and R are not too low, it is observed that the optimal control can produce the mini-

mum-jerk trajectory, noting that the forward model for this computation effectively deals with

the delay of 65 ms on the feedback loop (41).

For the equilibrium-point control, the P gain and D gain in (25) are tuned to 0 and 0.76,

respectively (the velocity feedback loop is faster than the position feedback loop). Note that

the control gains are tuned by the optimization toolbox until the best match with the planed

trajectory is achieved. However, this computation is unable to reproduce the minimum-jerk

movement. This result implies that the non-existence of the forward model leads to the failure

of reproducing.

The proposed control reproduces the minimum-jerk movement within the range between

the 0.1 s and 0.3 s. The values of Kv1 and Kp1 (1 DOF) are selected as 200 and 500, respectively.

The value of the gain �b1 (1 DOF) is arbitrarily set to 0.01. Too low and too high values of �b1

result in deviations from the minimum-jerk trajectory or instability. The successful
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Fig 6. Simulated fast movement with a delay of 65 ms. A single-joint fast movement are reproduced by the optimal control, equilibrium-

point control and proposed control. The optimal control (a, b) and proposed control (e, f) reproduce the minimum-jerk trajectory, while

the equilibrium-point control (c, d) fails to reproduce the minimum-jerk movement within the range between the 0.1 s and 0.3 s.

https://doi.org/10.1371/journal.pone.0210616.g006
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reproduction of the experimental behavior implies that the forward model works in the pres-

ence of the sensory feedback delay.

Fig 7 shows the position and velocity profiles of a fast movement by the proposed control

under a delay of 300 ms, with the gain values remaining the same. The proposed control tends

to follow the minimum-jerk trajectory with the increased delay.

Two-joint fast movement

Fig 8 shows simulated movements of a 2-joint planar arm by the proposed control, with the

duration varying from 0.5 s to 1 s. A comparable deviation is produced by the proposed con-

trol for both fast and slow movements. This suggests that the proposed control successfully

compensates for the interaction forces between the two joints.

In the proposed control, the matrix �b is selected as [0.018 0;0 0.015] (2 DOF). The matrices

Kv, Kp are set to be [25 0;0 25] and [150 0;0 150], respectively.

Movement with unexpected inertial changes

Fig 9 exhibits predictions of the effect of unexpected load changes on elbow flexion movements

by the optimal control and proposed control models. The predictions show the plots of the

elbow angle and its velocity in the cases that the low, intermediate and high inertial loads are

presented following consecutive trials with the intermediate load. For the optimal control, the

values of Q and R in (40) are selected as [500 0;0 500]T and 2, respectively, which allow the sys-

tem to follow the minimum-jerk trajectory for the intermediate load condition. For the pro-

posed control, the values of Kv1 and Kp1 (1 DOF) are selected as 25 and 150, respectively. The

value of the gain �b1 (1 DOF) is arbitrarily selected as 0.15 to follow a minimum-jerk trajectory

under the intermediate load condition.

It is observed that the two models reproduce the empirical results with the same patterns in

terms of the peak angular velocity, the time to peak angular velocity relative to the total move-

ment time, and the number of oscillations from the reversal point reversal point at which abso-

lute angular velocity dropped below 5 degrees/s to the point where the amplitude of the

Fig 7. Simulated fast movement with a delay of 300 ms. The position and velocity profiles of a fast movement are produced under

a delay of 300 ms, with the gain values remaining the same as the fast movement under a delay of 65 ms. The proposed control

follows the minimum-jerk trajectory with the increased delay.

https://doi.org/10.1371/journal.pone.0210616.g007
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oscillations drops below 2 degrees. All three measures show a decrease as the inertial load

unexpectedly presented increases (please refer to Fig 2 in [43]).

However, the two computational models offer different predictions in terms of the distance

between the target point and reversal point. While the output of the proposed model converges

to the target position regardless of inertial loads presented, the optimal model does not. The

two trajectories of conditions ML and MH in the optimal prediction reach the vicinity of the

target point, but the end-point errors of the optimal model are notably greater than those of

the proposed model, although the optimal model generates greater amplitude commands than

the proposed model. Since the proposed model eliminates the system dynamics and injects

planned dynamics, it is reasonable to expect the system simulated by the proposed control

converges to a desired point asymptotically. Meanwhile, in the optimal control, estimates of

the current state are produced with a system model in forward models and are fed back to

internal models. If the system model becomes inaccurate due to unexpected loads, then the

estimates become inaccurate accordingly, which leads to residual error in the end-point.

Discussion

TDC-type control shows robust performance against system parameter uncertainties. Using

the motor command and its outcome at the previous instant, TDC-type control estimates the

controlled system dynamics interacting with the environment. With no need of high stiffness

and damping gains, TDC-type control achieves accurate and robust tracking tasks. Humans

Fig 8. Simulated movement of a 2-joint planar arm with a duration of 0.5 s and 1 s. A linear movement with a

duration between 0.5 s and 0.75 s using the shoulder and elbow joints is reproduced by the proposed control. A faster

movement involves larger interaction forces. A comparable deviation is produced by the proposed control for both fast

and slow movements, indicating that the proposed control successfully compensates for the interaction forces between

the two joints.

https://doi.org/10.1371/journal.pone.0210616.g008

Internal model without system parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0210616 February 27, 2019 14 / 27

https://doi.org/10.1371/journal.pone.0210616.g008
https://doi.org/10.1371/journal.pone.0210616


show a remarkable ability to execute limb movements even in the presence of changes in the

environment as well as in the properties of the sensorimotor system, even with low stiffness

[50]. Even in the case that the arm is perturbed gradually or abruptly during task, corrective

torques will be generated to compensate for the perturbation and the arm will be positioned as

planned in the end. These common points bring forward a question regarding whether

humans control their limbs in a similar way to TDC-type control. This study proposed a

Fig 9. Simulated movements. The position and velocity are exhibited on the left and right panels, respectively, under unexpected inertial load changes with the

optimal control (a, b) and the proposed control (c, d). ML stands for the inertial change from the intermediate load to the low load; MH from the intermediate load to

the high load. MM indicates no change from the intermediate load. The output of the proposed model converges to the target position regardless of inertial loads

presented, whereas the optimal model does not; the end-point errors of the optimal model are notably higher than those of the proposed model. Since the proposed

model eliminates the system dynamics and injects planned dynamics, it is reasonable to expect the system simulated by the proposed control converges to a desired

point.

https://doi.org/10.1371/journal.pone.0210616.g009
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computational scheme of human control based on the TDC principle and evaluated the possi-

bility that the model captures empirical phenomena.

Model of human control

The proposed computation consists of the inverse model and forward model components as

in typical computational models that support the existence of internal models in the CNS [2, 3,

6, 35, 45, 51–53]. From the view of advocators for the role of internal models in motor control,

when initiating a reach to a target, a human sets a motor plan including a trajectory to be fol-

lowed, based on the initial movement conditions. During movement, a forward model of the

biological system integrates sensory inflow and a copy of motor outflow to estimate the conse-

quence of the motor commands sent to a limb [1, 54–56]. The estimated position of the move-

ment is continuously compared to the target position and the differences between them cause

an error signal that modifies the motor command. The proposed model follows this mecha-

nism, except for some points presented below.

The inverse model of the proposed computation calculates motor command that moves the

controlled limb to a desired state. The inputs to the inverse model include an efferent copy of

motor command and the position, velocity and acceleration values of the desired limb state

and (estimated) actual limb state. Unlike typical internal-model-based controllers, an efferent

copy of the motor command is sent to inverse models as well as forward models. The copy,

with its estimated corresponding acceleration of the limb, is used to cancel out the dynamics of

the limb and environment, and desired dynamics injected is formed by a combination of the

position, velocity and acceleration of the limb based on muscle viscoelasticity [57]. It can be

emphasized that a model of the dynamics with precise parameters is not required in the inverse

model.

The proposed forward model estimates the current limb state that is otherwise substantially

delayed by the transmission along feedback loops. The model takes a copy of motor command

and sensory information as inputs. The copy provides the forward model with information

about the desired shape of the system dynamics designed in the inverse model. The forward

model supposes that the inverse model realizes the desired dynamics during movements.

Using the designed dynamics, the current limb state is estimated from the delayed sensory

information through a recursive process. Note that a system model is not required in the pro-

posed forward model.

The structure of the Smith predictor was used to enhance stability against feedback delays.

In 1993, Miall and colleagues published a seminal study that showed the possibility that the

forward model in dealing with feedback delays can be captured by the Smith predictor [35].

An estimate from the forward model is intentionally delayed to match the sensory delay and

compared with the sensed state. The error between prediction and sensory feedback is then

used to modulate the motor command. The forward model component in the Smith predictor,

which requires a system model, is replaced with one that does not require a system model.

More recently, Miall presented evidence against their Smith predictor model [58]. The study

examined manual tracking tasks with a long visual feedback delay of 300 ms and found that

adaptation to the delay led to reduction in tracking error and the mean power of tracking

responses. However, the empirical results are against the prediction of an increase in response

frequencies by the Smith predictor [58]. In the proposed model, it is assumed that the CNS

keeps adjusting the values of the matrix �b to improve performance as it adapts to the task. The

matrix �b has an effect on response frequencies, depending on its value. Hence, it would be pos-

sible to speculate that the proposed model is able to describe the empirical phenomena of the

decrease in response frequencies in contrast to the Smith predictor. However, in this study the
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author focuses on the compensation of computational models for system dynamics, rather

than the compensation for substantial delays. Here we do not look into the issue on whether or

not the proposed model is capable of reproducing the tracking tasks with visual feedback

delays.

Neurophysiological correlates

How can the proposed computation be realized in a real biological system? The cerebellum

receives afferent sensory information about the limb and reafference carrying copies of the

motor commands and information required for movements including a desired trajectory

from the primary motor, somatosensory and parietal cortex. Efferent copies of descending

motor commands could be stored in the CNS and be transmitted by motor neurons [59].

Brodmann area 5 in the parietal cortex would be thought to possess a device that generates

desired trajectories composed of position, velocity and acceleration values [4, 60, 61]. It was

demonstrated that excitations of Brodmann area 5 cells were correlated with position, velocity

and acceleration. Muscle length and lengthening velocity are measured through muscle spin-

dles and mossy fibers [62]. The measured actual limb state ascends to the cerebral cortex and

is inputted into the forward model after comparison. As for the states dealt with by the forward

model, mossy fibers as well as area 5 cells are thought to transmit the acceleration component

in addition to the position and velocity components [63]. The parietal lobe and cerebellum

appear to play a crucial role in estimating the current state [64, 65].

Single-joint fast movement

The ability of the proposed control to drive fast movements was evaluated. During fast move-

ments for which duration is comparable to the delays of feedback loops, the roles of internal

models in sensorimotor processing are emphasized [2, 53, 66]. Even during movements in

which sensory information has an influence, online corrections depending only on sensory

feedback could lead to instability. Feedback control is highly sensitive to delays and should

maintain the open-loop gains low at high frequencies where the delays would introduce a

phase lag of 180 degrees to prevent instability. This restriction makes feedback control impos-

sible to produce fast movements.

In the simulation of the fast movement, it is observed that the optimal control model gener-

ates a trajectory following the minimum-jerk trajectory. The proposed control successfully

reproduces the minimum-jerk trajectory. This indicates that the proposed forward model in

the architecture of the Smith predictor efficiently estimates the current states of the limb and

feeds them back to the inverse model. While the forward model in the optimal control gener-

ates the current states by simulating behaviors of the system using a model of the dynamics

with precise parameters in the CNS, the proposed forward model calculates the current states

from desired dynamics. In contrast, the equilibrium-point control model that does not involve

internal models fails to reproduce the minimum-jerk movement, as shown in Fig 6.

Two-joint fast movement

In the simulation of the multi-joint movement, it was investigated whether the proposed con-

trol compensates for system dynamics in multi-joint movements involving simultaneous

motion at the shoulder and elbow. Interaction forces arise at one joint (e.g., the shoulder),

because of motion of limb segments about other joints (e.g., the elbow), which include inertial

forces from movements of other joints, centripetal torques and Coriolis torques, disturb

achieving planned movements. That is, these interaction forces act as disturbances that need

to be compensated. As movements become faster, interaction forces increase more. It was
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asserted that the cerebellum should possess a priori knowledge of the arm’s dynamics to com-

pensate for interaction forces by simulating empirical movements with two kinds of computa-

tional models [4]. One of the computational models that is not equipped with an inverse

model does not show accurate reproduction of fast movements, whereas the other one with an

inverse model does. The proposed control does not show a notable difference in deviation

between slow and fast movements, as shown in Fig 8. This suggests that the inverse model of

the proposed control efficiently carries out dynamics compensation. Note that identifying

interaction forces requires an explicit system model including the inertia and length of each

segment of the limb (see Eq (19)). But the proposed control does not require a model of the

dynamics with precise parameters. The proposed control builds inverse models using the rela-

tionship between the motor command and its responses. Through the compensation of the

system dynamics and sensory delay, the proposed control captures the human’s voluntary

movements, which is in agreement with a study presented in [67].

Movement with unexpected inertial changes

The main characteristic of the proposed computational model is that it estimates and cancels

out the system dynamics using a copy of motor outflow and (estimated) sensory inflow. This

would have the system reach the target even when the properties of the system unexpectedly

change. Model-based computations including the optimal control presented in this study

probably show outcomes that depend on system properties. In the case of the optimal control,

it could be that the forward model component generates an estimate or the inverse one pro-

duces a command based on the system model recognized in the CNS.

To investigate whether internal models in the CNS require a precise system model or not,

an experimental study of [43] was revisited that evaluated the effect of changes in the inertial

property of the controlled system on movement. They revealed that participants pointed to the

target position regardless of whether an inertia was added or subtracted. Their second finding

is that motor commands were designed and customized according to the inertia that the par-

ticipants expected; EMG signals varied with the inertia to be presented. Another similar study

showed that equifinality was preserved when the inertia of the arm system was changed unex-

pectedly [20]. The author would say that these studies not merely suppose that motor com-

mands are tailored to the circumstance before the movements begin, but also imply that the

movements might not be programmed using a model of the dynamics with precise parameters.

From the view of the internal model hypothesis, equifinality has been refuted [12, 13, 68, 69].

Rather, equifinality is one of the characteristics supported by the equilibrium-point hypothesis

that does not require a system model to calculate motor commends. However, the equilib-

rium-point hypothesis [18, 70–72], even with an assumption that it can deal with feedback

delays, would be unable to explain the results by a study in [43]. Prediction by an equilibrium-

point model would be similar to that by the optimal or proposed models during the ML condi-

tion, as shown in Fig 9. When the intermediate load is replaced with the high load and moved

by an equilibrium-point controller; the commend designed for the intermediate load lacks to

move the high load on the planned trajectory. But, in the case that the intermediate load is

replaced with the low load, the system under equilibrium-point control would follow the tra-

jectory that is displayed for the MM condition.

It would be possible to assume that the values of the matrix �b are updated as the CNS adapts

to a task. Indeed, Pinter and colleagues found that it takes 6-10 trial to adapt to a new inertial

load [43]. It was also demonstrated that participants familiarized themselves with an inertial

load through several trials [73]. After the customization trials, participants produce closely

overlapping trajectories (perhaps the minimum-jerk trajectory) under the high and low loads
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(see Fig 1 in [43]). The proposed model produces the minimum-jerk trajectory if appropriate

values of the gain �b are found for the system with the high or low loads. If the value is much

smaller or much larger than the one suitable to move the system along the planned trajectory,

the produced command is correspondingly smaller or larger than the command that enables

the system to stay on the planned trajectory during the movement. The value of the gain �b

impacts how accurately the system dynamics is estimated by TDE. TDE error, which is deter-

mined by the values of the matrix �b, leads to deviations from the planned trajectory; according

to the value of the matrix �b, the movement can either fall short of or go beyond the planned

trajectory during tracking. But, in the end, the movement approaches the planned end-point

asymptotically. TDE error decreases as the movement begins to lose its momentum, diminish-

ing the error between the planned position and actual position.

Parameter sensitivity

Fig 10 shows the sensitivity of the parameters �b and Kp (Kv is arbitrarily set as 0.4Kp) on

tracking error between the desired and actual trajectories during a single-joint fast movement.

Overall, it turns out that tracking error is low when �b and Kp are both set high, whereas

tracking performance becomes worse when �b and Kp are both set low. The minimum-jerk

trajectory is achieved in a satisfactory manner over wide ranges of the values of �b and Kp

(7×10−3� �b and� 2×10−2 150� Kp� 500). It is agreeable that fast movements are typically

accompanied by high stiffness through muscle contractions and high stiffness would lead to

Fig 10. Sensitivity of the parameters �β and Kp. With �b varying from 5×10−3 to 2×10−2 and Kp varying from 50 and 500, the root mean square error between the desired

and actual trajectories during a single-joint fast movement is investigated. Kv is arbitrarily set as 0.4 times Kp. Position and velocity profiles are presented for each case:

(Left) the value of �b varies while Kp is fixed at 100; (Right) the value of �b varies while Kp is fixed at 500. (Top) the value of Kp varies between 100 and 500 with the value of
�b selected as 7×10−3; (Bottom) the value of Kp varies between 100 and 500 with the value of �b selected as 2×10−2.

https://doi.org/10.1371/journal.pone.0210616.g010

Internal model without system parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0210616 February 27, 2019 19 / 27

https://doi.org/10.1371/journal.pone.0210616.g010
https://doi.org/10.1371/journal.pone.0210616


accurate tracking. Meanwhile, the analysis shows that the limb fails to accurately track the

desired trajectory even with high stiffness when �b is set low (around 5×10−3 in this case), sug-

gesting that dynamics compensation is poorly achieved. With relatively low muscle stiffness

(around 50 in this case), both a low value and a great value of �b lead to an increase in tracking

error. These results perhaps originate from undercompensation and overcompensation of

dynamics, while the stiffness is too low to suppress these compensation errors.

Fig 11 displays the effect of the value of the estimated time delay t̂ d in feedback loops, while

the value of the actual delay t̂ d is fixed at 65 ms. It is revealed that the proposed control model

tolerates the difference in value between the actual delay and its estimate within a certain

range regardless of whether or not the value of the estimate is greater than that the actual

Fig 11. Sensitivity of the estimated delay t̂ d. The effect of variations in the value of the estimated delay t̂ d is evaluated with the actual delay td anchored

at 65 ms. The top profiles of position and velocity present the cases when the value of t̂ d is chosen as 50 and 60, which are both less than that of t̂ d . The

bottom profiles of position and velocity present the cases when the value of t̂ d is selected greater than that of t̂ d as 70 and 80.

https://doi.org/10.1371/journal.pone.0210616.g011
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delay. However, the system is unstable with a great difference between the two values, which is

in accordance with the study presented in [35].

Appendix

Role of matrix �β
The system (1) can be rewritten as

MðyÞ€y þ f ¼ t; ð26Þ

where function variables are omitted for simplicity.

Eq (26) can also be re-expressed with a diagonal constant matrix �b, as

�b€y þH ¼ t; ð27Þ

where

H ≜ ðMðyÞ � �bÞ€y þ f: ð28Þ

The control input (17) can be simplified as

tðtÞ ¼
�bnðtÞ þ Ĥ ðtÞ ¼ �bnðtÞ þHðt� dtÞ; ð29Þ

where n ≜ €yr þ Kvð
_yr �

_̂
yÞ þ Kpðyr � ŷÞ:

Originally, the proposed computational model compensates for H(t) with its previous-step

value H(t−dt), but there exists a difference between H(t) and H(t−dt). The estimation error � is

defined as

�ðtÞ ≜ �b � 1ðHðtÞ � Hðt� dtÞÞ: ð30Þ

This estimation error can be written in terms of the new control input ν and the angular

acceleration €y through a combination of Eqs (27) and (29) as

�ðtÞ ¼ nðtÞ �
€yðtÞ: ð31Þ

From Eqs (26), (28), (29), and (31), a relationship can be drawn as follows:

MðyðtÞÞ�ðtÞ ¼ MðyðtÞÞðnðtÞ � €yðtÞÞ

¼ MðyðtÞÞnðtÞ þ f ðtÞ � tðtÞ

¼ MðyðtÞÞnðtÞ þ f ðtÞ � �bnðtÞ � Hðt� dtÞ

¼ MðyðtÞÞnðtÞ þ f ðtÞ � �bnðtÞ � ðMðyðtÞÞ � �bÞ€yðt� dtÞ � f ðt� dtÞ

¼ ðMðyðtÞÞ � �bÞnðtÞ � ðMðyðtÞÞ � �bÞ€yðt� dtÞ þ f ðtÞ � f ðt� dtÞ

¼ ðMðyðtÞÞ � �bÞnðtÞ � ðMðyðt� dtÞÞ � �bÞ€yðt� dtÞ

� ðMðyðt� dtÞÞ � MðyðtÞÞÞ€yðt� dtÞ þ f ðtÞ � f ðt� dtÞ

¼ ðMðyðtÞÞ � �bÞnðtÞ þ ðMðyðt� dtÞÞ � �bÞð�ðt� dtÞ � nðt� dtÞÞ

� ðMðyðt� dtÞÞ � MðyðtÞÞÞ€yðt� dtÞ þ f ðtÞ � f ðt� dtÞ:

ð32Þ

Internal model without system parameters

PLOS ONE | https://doi.org/10.1371/journal.pone.0210616 February 27, 2019 21 / 27

https://doi.org/10.1371/journal.pone.0210616


Multiplying the inverse of M(θ(t)) to the both hands of Eq (32) leads

�ðtÞ ¼ ðI � M� 1ðyðtÞÞ
�bÞ�ðt� dtÞ þ ðI � M� 1ðyðtÞÞ

�bÞzðt� dtÞ þ Zðt� dtÞ; ð33Þ

where

zðt� dtÞ ≜ nðtÞ � nðt� dtÞ; ð34Þ

Zðt� dtÞ ≜ ðI � M� 1ðyðtÞÞMðyðt� dtÞÞÞ€yðt� dtÞ þ f ðtÞ � f ðt� dtÞ: ð35Þ

Eq (33) is the closed-loop dynamics in terms of the estimation error �.

These three equations can be rewritten in discrete-time domain as follows in order:

�ðkÞ ¼ ðI � M� 1ðyðkÞÞ
�bÞ�ðk� 1Þ þ ðI � M� 1ðyðkÞÞ

�bÞzðk� 1Þ þ Zðk� 1Þ; ð36Þ

where

zðk� 1Þ ≜ nðkÞ � nðk� 1Þ; ð37Þ

Zðk� 1Þ ≜ ðI � M� 1ðyðkÞÞMðyðk� 1ÞÞÞ
€yðk� 1Þ þ f ðkÞ � f ðk� 1Þ: ð38Þ

From the viewpoint of the estimation error �, the terms η, z in Eq (33) are regarded as forc-

ing functions that are bounded in the case of a sufficiently small sampling period. If the roots

of ðI � M� 1ðyðkÞÞ
�bÞ are all placed inside the unit circle, � is asymptotically bounded [74]. The

coefficient ððI � M� 1ðyðkÞÞ
�bÞ, in particular, the matrix �b determines how accurately dynamics

estimation is achieved; the gains affect the difference between H and Ĥ , which eventually affect

the tracking error [75].

Optimal control

The control law of optimal control can be typically designed as

t ¼ K
qd � q̂
_qd �

_̂q

" #

; ð39Þ

where K denotes a matrix.

The state feedback gain matrix K is selected in a way to minimize the following perfor-

mance index:

I ¼
Z 1

0

eTQeþ tTRtdt; ð40Þ

where e ≜ ½ðqd � q̂ÞT ð _qd �
_̂qÞT�T , and Q denotes an a state-weighting matrix and R denotes

an input-weighting matrix. Note that these methods require a model of the dynamics with pre-

cise parameters to determine K that minimizes the index I.
Estimates of the current states required for motor command are provided by a predictor

that acts as the forward model in the CNS, which can be constructed as [47]

q̂
_̂q

" #

¼ eAst̂d
qðt � tdÞ

_qðt � tdÞ

" #

þ

Z t̂ d

0

eAst0Bstðt � t0Þdt0; ð41Þ

where As and Bs are matrices, respectively.
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The predictor estimates the current states from the sensed states, which are td-ms delayed,

based on a system model (matrices As and Bs). The matrices As and Bs represents the limb sys-

tem in state space:

_q

€q

" #

¼ As

q

_q

" #

þ Bst: ð42Þ

In the case of the forearm, the matrices As and Bs can be defined as, neglecting viscoelastic-

ity,

As ¼
0 1

0 0

" #

; Bs ¼ 1=J2: ð43Þ
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