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Abstract

Salt marshes provide a bulwark against sea-level rise (SLR), an interface between aquatic

and terrestrial habitats, important nursery grounds for many species, a buffer against

extreme storm impacts, and vast blue carbon repositories. However, salt marshes are at risk

of loss from a variety of stressors such as SLR, nutrient enrichment, sediment deficits, her-

bivory, and anthropogenic disturbances. Determining the dynamics of salt marsh change

with remote sensing requires high temporal resolution due to the spectral variability caused

by disturbance, tides, and seasonality. Time series analysis of salt marshes can broaden our

understanding of these changing environments. This study analyzed aboveground green

biomass (AGB) in seven mid-Atlantic Hydrological Unit Code 8 (HUC-8) watersheds. The

study revealed that the Eastern Lower Delmarva watershed had the highest average loss

and the largest net reduction in salt marsh AGB from 1999–2018. The study developed a

method that used Google Earth Engine (GEE) enabled time series of the Landsat archive for

regional analysis of salt marsh change and identified at-risk watersheds and salt marshes

providing insight into the resilience and management of these ecosystems. The time series

were filtered by cloud cover and the Tidal Marsh Inundation Index (TMII). The combination of

GEE enabled Landsat time series, and TMII filtering demonstrated a promising method for

historic assessment and continued monitoring of salt marsh dynamics.

Introduction

Drivers of salt marsh loss are diverse from direct anthropogenic disturbances such as reclama-

tion for agriculture [1], and indirect factors such as replacement by mangroves [2,3], eutrophi-

cation [4], herbivory [5,6], and sea-level rise (SLR) [7, 8, 9]. For example, less than half of salt

marshes are predicted to keep pace with projected SLR under the Intergovernmental Panel on

Climate Change’s (IPCC) representative concentration pathway 2.6, which assumes significant

reductions of CO2 emissions [10]. The mid-Atlantic coast is one region where accretion is

unlikely to keep pace due in part to high projected rates of SLR [11], glacial isostatic adjust-

ment, and anthropogenic processes [12].
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The current and future response of salt marsh to SLR is uncertain. Recent estimates of salt

marsh change have shown a slowing of loss across the Atlantic coast of the USA from 2004 to

2009 with a 0.4% reduction of estuarine emergent vegetation [13]. In contrast, estimates from

specific sites have demonstrated extensive losses of salt marsh including Rhode Island, Jamaica

Bay, and the Chesapeake Bay [7,14,15]. Recent projections of salt marsh change suggest salt

marshes will expand if they can migrate into the uplands unimpeded by coastal development

[16]. Anthropogenic action or inaction contributes to the uncertainty of the projections

which, necessitates monitoring of salt marsh to identify areas of loss. In situ methods for moni-

toring salt marsh have limited ability to understand regional and global salt marsh trends or

verify salt marsh models. Time series analysis of satellite remote sensing has appropriate spatial

and temporal resolution to monitor and understand salt marsh change.

In the mid-Atlantic, SLR is exceeding accretion rates at many locations [10]. The character-

istics of these salt marshes makes them the equivalent of canaries in the coal mine; ideal sys-

tems for studying and monitoring the effect of SLR on salt marsh resilience. Many mid-

Atlantic salt marshes have microtidal ranges and low sediment budgets. These characteristics

increase the risk of loss to SLR [17]. The limited sediment supply of the mid-Atlantic coastal

salt marshes, composed predominantly of S. alterniflora or S. patens, results in peat dominated

wetlands [18], i.e., salt marshes which rely primarily on organic matter to build elevation, as

opposed to those along the southeast U.S. coast, which accrete mostly mineral material [19].

Peat dominated salt marshes adapt more slowly to SLR [20]. Mid-Atlantic salt marsh charac-

teristics such as tidal range, soil material, subsidence, and human disturbance, elevate the risk

of SLR to the regions salt marsh.

A variety of remote sensing data have been applied to evaluate wetland change including

very high-resolution (VHR) satellite imagery [21], Landsat [22], Synthetic Aperture Radar

(SAR) [23], and aerial imagery [7]. Time series analysis of salt marshes has been conducted

with many sensors including the Moderate Resolution Imaging Spectroradiometer (MODIS)

[24], SPOT-5 [25], and the Landsat archive [26,27]. Google Earth Engine (GEE) has enabled

time series, analysis in freshwater wetland change analysis [28]. Cloud computing and High-

Power Computing are frequently employed in time series studies to quantify ecological pro-

cesses, and land cover land use change (LCLUC) [29–31]. GEE facilitates our ability to under-

stand LCLUC at regional and global scales. The utilization of these methods in salt marsh

landscapes can further clarify how and where these ecosystems are changing.

Remote sensing of salt marsh is prone to time series outliers due to tidal inundation, extreme

water events, and atmospheric anomalies. The tidal stage at the time of image acquisition can

directly impact the extent of salt marsh vegetation in Landsat imagery [32] and VHR imagery at

high tide when portions of the low marsh are submerged [21]. Time series outliers can alter the

attributes and the results of an analysis [33]. Therefore, the effect of tidal outliers is a concern in

remote sensing of salt marsh. The tidal marsh inundation index (TMII) has been successfully

used to identify inundated pixels and improve time series results for MODIS [34]. Season and

trend decomposition of the time series is another way to minimize the effect of outliers, the

method is robust to noise when detecting changes greater than 0.1 Normalized Difference Veg-

etation Index (NDVI) [35]. In this study, filtering and seasonal and trend decomposition miti-

gated the effect of tidal inundation on the time series. This study innovates by applying a time

series approach to aboveground green biomass (AGB) estimates derived from remote sensing

to clarify long-term change of the salt marsh at a regional scope.

This study explores the capacity of time series analysis to help understand salt marsh

dynamics in association with locations of stability, gradual loss, change driven by disturbance,

or a combination of loss and recovery and the sources of change such as interior drowning,

edge erosion, barrier island migration processes, and shifts in vegetation composition. The

GEE enabled salt marsh change analysis
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(https://www.fws.gov/wetlands/data/Mapper.html).

Additional training and testing data were utilized

and are available from U.S. Geological Survey

(https://www.sciencebase.gov/catalog/item/

5a0c7b04e4b09af898cd401c) [52] and the

Environmental Data Initiative (https://doi.org/10.

6073/pasta/

44051c788e3bb5339b20a0ce9307d992.
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objectives of this study include: (1) to evaluate the salt marsh AGB estimates with high spatial

resolution imagery and in situ biomass samples; (2) to model the change in AGB of mid-Atlan-

tic salt marshes from 1999 to 2018 and (3) to test the TMII for use with GEE enabled Landsat

time series.

Methods

Study site

The mid-Atlantic coastal region has a variety of estuaries and bays including drowned river

valleys such as the Chesapeake and Delaware Bays and barrier island lagoon systems such as

Great South Bay and Barnegat Bay. Watersheds were used as the spatial extents for this study

because salt marshes are affected by their watershed’s sediment supply [36] and nutrient loads

[4]. The study selected USGS Hydrological Unit Code 8 (HUC-8) watersheds. This study, cov-

ered coastal watersheds across the southern sections of Long Island, NY, New Jersey, Delaware,

Maryland, Virginia, and northern North Carolina (Fig 1). The majority of these watersheds

are dominated by back-barrier lagoon systems with extensive salt marshes. The exception was

the Tangier watershed within the Chesapeake Bay which is a drowned river valley. The Tangier

watershed is an area of extensive land loss due to SLR, low sediment load, and groundwater

withdrawal [22]. The dominant salt marsh species in these watersheds are S. alterniflora in the

low marsh and Juncus gerardii, S. patens, Distichlis spicata, and J. roemerianus in the high

marsh. Extensive changes in the mid-Atlantic are projected from climate change including

shifts in salt marsh plant composition and extent, displacement of species [37], increases in

decomposition rates leading to a reduction of organic accretion in the low marsh [38], and

possible reductions in belowground biomass due to earlier senescence of S. alterniflora [39].

Data

Landsat 7 and Landsat 8 Tier-1 imagery accessible with GEE were used for the time series anal-

ysis. Multispectral Landsat 7 Enhanced Thematic Mapper + (ETM+) has a 30 m spatial resolu-

tion for bands 1–5 and 7. The panchromatic band 8 has a 15 m spatial resolution. Landsat 8

Operational Land Imager (OLI) has a 30 m spatial resolution for bands 1–7 and 9. The OLI

panchromatic band 8 has the same 15 m spatial resolution as the ETM+ panchromatic band.

The selected ETM+ imageries were acquired from 7/01/1999 to 4/01/2017. The OLI imager-

ies were acquired 3/20/2013–7/28/2018. The HUC-8 watersheds are covered by Landsat scenes

of WRS-2 Path/Row 14/34, 14/33, 13/32, 13/31, 14/32, and 14/35. The selection and filtering

resulted in a variable number of scenes per pixel across the study sites, e.g. the pixel in the

Southern Long Island study area had 144 scenes (Fig 2). The average number of scenes after fil-

tering for each watershed was 173.5, 173.0, 139.5, 169.7, 141.5, 146.3, and 170.2 for the Eastern

Lower Delmarva, Tangier, Southern Long Island, Chincoteague, Mullica-Toms, Great Egg

Harbor, and Albemarle, respectively. GEE was used to convert Landsat 7 surface reflectance to

Landsat 8 surface reflectance following the methods in [42]. The transformed values were then

used to calculate vegetation indices, Wide Dynamic Range Vegetation Index (WDRVI), Soil

Adjusted Vegetation Index (SAVI), Normalized Difference Red Green, Normalized Difference

Green Blue, Normalized Difference SWIR2 Red, Normalized Difference SWIR2 NIR, Normal-

ized Difference Water Indexgreen, swir (NDWIgreen, swir), and NDWInir, swir utilized in the tidal

filtering and random forest regression estimating AGB [43]. Raw time series of the spectral

indices were computed for each pixel within the defined extent of salt marsh and exported

from GEE (Fig 3).

National Wetland Inventory (NWI) data were used to select all pixels within the estuarine

emergent vegetation class. The use of the NWI to constrain the analysis ensured that biomass

GEE enabled salt marsh change analysis
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models were applied to only salt marsh pixels. Pixel centroids which fell directly within creeks,

ditches, and mapped pools were also excluded, resulting in the removal of some partial salt

marsh pixels from the analysis. Some concern surrounds the use of the NWI layers e.g. an Illi-

nois field assessment found they omit many wetlands [44]. All of our study areas have been

updated since being mapped in the 1970/1980s, and had image acquisition dates between

Fig 1. The seven HUC-8 watersheds located across the mid-Atlantic coast. Background data in display are 100 m

impervious surface [40] and 30 arc-second GEBCO bathymetry data [41]. Watershed subsets are true color displays of

the Landsat 8 imagery courtesy of the U.S. Geological Survey with HUC-12 watershed outlines in grey. Color outlines

match watersheds in the overview to each watershed inset.

https://doi.org/10.1371/journal.pone.0229605.g001

GEE enabled salt marsh change analysis
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2000–2015. The exception being the Albemarle watershed which had a range of image dates

between 1977–2015, however, salt marshes were only in areas mapped between 1990–2015. A

linear regression model was used to compare image acquisition date and average within water-

shed change rates.

VHR satellite imagery, e.g., Worldview-2 data, were used to verify the relationship of AGB

estimates and vegetation extent. The Worldview-2 data were collected on October 11 and

October 16, 2016, for the Chincoteague watershed. This imagery covered the entirety of Assa-

teague Island. Multispectral Worldview-2 imagery possesses 2.4 m spatial resolution and a

panchromatic band of 0.46 m. The spectral coverage includes 8 bands ranging from coastal

blue, blue, green, yellow, red, red edge, to near infrared.

Landsat tidal marsh inundation index

Many spectral indices such as the Enhanced Vegetation Index share formulas between Landsat

and MODIS. TMII was developed for MODIS data. This study assessed the index for use with

Landsat data. NDWIgreen, swir, and NDWInir, swir were calculated for each salt marsh pixel. The

NDWInir, swir was averaged for each month across each pixel’s time series for a single sensor.

The monthly mean replaced the rolling average of the MODIS TMII which included 44 tem-

porally adjacent images [34]. Replicating such a rolling average would not be reasonable for

Fig 2. The year, Julian date, and Landsat sensor of each image after filtering by pixel cloud cover and TMII for a single Southern Long Island

watershed time series.

https://doi.org/10.1371/journal.pone.0229605.g002

GEE enabled salt marsh change analysis
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our coarse temporal resolution. The adapted formulas and the original MODIS formulation

are shown below.

1. MODIS TMII (Eq 1)

TMII ¼ ð1 � ð1=e^ð0:3þ 16:6 �NDWI4;6 � 25:2 � rolling meanðNDWI2;5ÞÞÞ ð1Þ

[34].

2. Landsat 7 TMII (Eq 2)

TMII ¼ ð1 � ð1=e^ð0:3þ 16:6 � NDWI2;5 � 25:2 �monthly meanðNDWI4;5ÞÞÞ ð2Þ

3. Landsat 8 TMII (Eq 3)

TMII ¼ ð1 � ð1=e^ð0:3þ 16:6 � NDWI3;6 � 25:2 �monthly meanðNDWI5;6ÞÞÞ ð3Þ

The resulting index was evaluated at the Sapelo Island, GA phenocam across Landsat 7 and

Landsat 8 images from WRS-2 Path/Row 16/38 and 17/38 and a date range from 8/09/2013 to

5/03/2018. The evaluation followed the approach of [34] i.e. verifying if the salt marsh visible

from the phenocam was inundated or not during a Landsat image acquisition.

Above ground biomass model

Vegetation indices are frequently used in time series analysis, including monitoring forest dis-

turbance [45], rice distribution [46], agricultural abandonment [47], and salt marsh change

[48]. NDVI and many related vegetation indices (i.e. WRDVI and SAVI) are indicators of

aboveground biomass [49]. Recent methods for estimating AGB in freshwater and salt marsh

Fig 3. Diagram of the study’s GEE data processing, AGB model, verification, and time series analysis.

https://doi.org/10.1371/journal.pone.0229605.g003

GEE enabled salt marsh change analysis
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environments have relied on vegetation indices [43,50]. This method allows for the estimation

of AGB for the majority of plants common in the estuarine emergent wetland category of [51].

By utilizing AGB instead of vegetation indices this study seeks to communicate to a wider

interdisciplinary audience.

The spectral indices were converted to AGB following the methods put forth in [43] which

achieved a RMSE of 310 g/m2 and R2 = 0.59, for calculating AGB with Landsat data. A training

data set of in situ biomass and corresponding Landsat spectral indices (n = 2400) were col-

lected from 2005 to 2015 in San Francisco Bay, the Everglades, Louisiana, Cape Cod, Puget

Sound, and Chesapeake [52]. A random forest model was trained utilizing a subset of the train-

ing data to control for over representation of the San Francisco Bay and Everglades training

points [43]. This study trained a model following the same approach and achieving similar

results, however, given the random downsampling model performance varied slightly.

Further verification of the model was performed using end of season in situ biomass esti-

mates from 1999–2014 for the Eastern Lower Delmarva and Chincoteague Watersheds [53].

These samples were outside the area previously sampled and represent the transferability of

the model to the additional watersheds. The aboveground biomass estimates included 16 sites

at Mill Creek, Bellvue, Steelman’s landing, Gator Track, Cushman’s landing, Oyster Marsh,

Indian Town, Box Tree, Brownsville, Hog Island north, Hog Island south, Kegotank, Green

Creek, Wallops Island, Woodland Farm, and Assateague [53]. The sites were sampled along

transects at four locations, creekside, low marsh, high marsh, and upland transition [53]. Rep-

licates from each location were averaged to get an estimate of each sites aboveground biomass

in a single year which was then compared to the average AGB estimates for July, August, and

September in the corresponding years. RMSE was calculated considering each year at each

site, and comparing the average across all years for each site.

Time series analysis and statistical analysis

The time series analysis was conducted on Landsat 7 and 8 scenes filtered by cloud cover

<50%, pixel quality, and a TMII value of>0.2. Landsat 5 data were not utilized in this study

due to the lack of both a conversion method into Landsat 8 surface reflectance and verification

of the AGB model [42, 43].

The R package Prophet was used for time series analysis [54]. The seasonal-trend decompo-

sition method uses locally weighted regression smoother (LOESS) to isolate the seasonality,

trend, and noise [55]. The approach has been used for many remote sensing time series studies

[30,35,56]. The prophet package was used due to its robustness to irregular time series, ability

to calculate many time series and identify trends and seasonality. All measures of change were

derived from the time series analysis using the trend component i.e. trend end–trend start

resulting in time series derived measure of change in AGB.

The effect of tidal range on salt marsh change was explored with the use of data from

NOAA tidal stations. The tidal ranges of each tidal station within the study area were interpo-

lated into a raster map of tidal ranges as they coincided with HUC-12 watersheds within the

study area (Fig 1). All Landsat centroids that were in the interior of the salt marsh, i.e., >30 m

from an edge, were analyzed. The effect of tidal range on average change in AGB across HUC-

12 watersheds for the four most prevalent salt marsh classes, i.e., estuarine emergent regularly
flooded, estuarine emergent irregularly flooded, estuarine emergent ditched regularly flooded,

and estuarine emergent ditched irregularly flooded, were compared with linear regression. The

average change in AGB was compared to the average tidal range. The Albemarle watershed,

NC was excluded from the analysis due to the large gaps between tidal stations. Each HUC-12

watershed also had the change rate for edge pixels and interior pixels compared. Edge pixels

GEE enabled salt marsh change analysis
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were those within 20 m of the NWI polygon boundary. Interior pixels were those further than

20 m from the NWI polygon boundary.

An analysis of all Landsat pixels of the estuarine emergent regularly flooded, estuarine emer-
gent irregularly flooded, estuarine emergent ditched regularly flooded, and estuarine emergent
ditched irregularly flooded classes were conducted for each HUC-8 watershed. Kruskal-Wallis

and post-hoc Dunn’s test with Bonferroni adjustment compared the trend in AGB from 1999

to 2018 for each watershed across these four salt marsh classes. Kruskal-Wallis is a non-

parametric comparison on ranks [57], pairwise comparisons between classes were conducted

using Dunn’s test [58].

Worldview-2 image classification of interior salt marsh mudflats was used to assess the rela-

tionship of AGB estimates and vegetation extent within the test pixel. The Wordlview-2 image

classification was an object-based image analysis [14,21]. This analysis was conducted for a

portion of the salt marsh on the Maryland side of Assateague Island within the Chincoteague

watershed. This analysis was conducted for mudflats on Assateague Island which corre-

sponded with WRS-2 Path/Row 14/33.

Results

Tidal marsh inundation index

The TMII was assessed by evaluating the inundation of each Landsat image date and time of

collection at the phenocam and by plotting the decomposed time series before and after filter-

ing (Fig 4). The filtered time series removed all pixels with a TMII >0.2. This level of TMII

was suggested previously and performed well in the analysis with the phenocam. The filtered

time series removed extreme outliers reduced the observed trend and improved the seasonal

graph. The phenocam analysis had a limited number of inundated scenes to work with using

images from both WRS-2 Path/Row 16/38 and 17/38. For Landsat 7 and 8, the phenocam

image evaluation verified that 10 of the 14 images with TMII>0.2 were inundated. The perfor-

mance improved slightly when just considering the Landsat 8 imagery, which found 7 out of 9

inundated images were correctly identified. The index had few false negatives for inundation

with 148 out of 150 non-inundated images being accurately determined. The filter was applied

due to its ability to remove outliers and improve both the seasonal and trend component of

the time series decomposition (Fig 4).

Biomass model and change

The ability of the time series trend component to reveal salt marsh change was evident in the

identification of both losses and gains across the watersheds. Across the studied watersheds

52% of salt marsh experienced a decline in AGB with an average change of -17 g/m2 (Table 1).

Fig 4. Evaluation of TMII with time series analysis using Landsat 7 and 8. Raw time series includes inundated dates.

Filtered time series was excluded dates with TMII> 0.2.

https://doi.org/10.1371/journal.pone.0229605.g004

GEE enabled salt marsh change analysis
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In the Chincoteague watershed, declines were common, and interior loss along the back-bar-

rier of Assateague Island National Seashore was apparent (Fig 5). Increases in AGB were most

prominent in the prograding areas to the south of Assateague Island (Fig 5c) and on the over-

wash fans on northern Assateague Island (Fig 5b). Chincoteague, Eastern Lower Delmarva,

Table 1. The percentage of change, total area, and mean trend of estuarine emergent irregularly flooded, estuarine emergent regularly flooded, estuarine emergent

irregularly flooded ditched, and estuarine emergent regularly flooded ditched classes from 1999 to 2018.

HUC 8 Code Name Decrease (%) Increase (%) Area (hectares) Mean trend (g/m2)

02080110 Tangier 35 65 35650 15

02030202 Southern Long Island 76 24 7226 -48

02040301 Mullica-Toms 48 52 18891 1

02040302 Great Egg Harbor 49 51 21172 3

02040303 Chincoteague 62 38 14538 -63

02040304 Eastern Lower Delmarva 75 25 25880 -67

03010205 Albemarle 40 60 16223 5

Mid-Atlantic coast 52 48 139580 -17

https://doi.org/10.1371/journal.pone.0229605.t001

Fig 5. a-c. Change in AGB from 1999–2018 for the Chincoteague watershed, encompassing the eastern shore of Maryland and a section of Virginia and

Delaware. Background image Landsat 8 courtesy of the U.S. Geological Survey d. Inset (white box in c.) of salt marsh change and mosquito ditches. e.

2018 NAIP imagery courtesy of the U.S. Geological Survey in pseudo-color image of the same extent as d.

https://doi.org/10.1371/journal.pone.0229605.g005
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and Southern Long Island all had moderate declines in biomass (Table 1). Tangiers, Mullica-

Toms, Albemarle, and Great Egg Harbor had slight increases. The Chincoteague, Eastern

Lower Delmarva, and Southern Long Island watersheds demonstrated considerable net loss of

AGB (Fig 6). The Eastern Lower Delmarva watershed had the largest average loss which was

-67 g/m2. The Tangier watershed had the largest average gain which was 15 g/m2.

The in situ analysis resulted in a site-wide RMSE of 144±7 g/m2 with the confidence interval

resulting in a conversion factor from wet biomass to dry of between 0.55 and 0.6. The in situ
yearly RMSE for the Eastern Lower Delmarva watershed 1999 to 2014 was found to be 298 g/

m2 ±15. This RMSE compares favorably with the RMSE calculated internally 310 g/m2 [43],

and arrived at by this study (RMSE of 350 g/m2 ±16, R2 = 0.62). The areas of uncertainty

include the exact location of the sampling sites and differences between dates of the end of

season sampling and July, August, and September satellite estimates.

Fig 6. The net change (1999–2018) in AGB for each watershed.

https://doi.org/10.1371/journal.pone.0229605.g006
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Time series trend and statistical analysis

The NWI acquisition dates effect on change rate for the area was determined across all water-

sheds. No relationship between acquisition date and change rate was found F(1,18) = 0.67,

p = 0.42) and R2 = -0.02. Instead the rates of change varied greatly both across watersheds and

within a watershed. The analysis with Moran’s I for each of the watershed confirmed clustering

of salt marsh change within all watersheds (Table 2). In particular, the Eastern Lower Del-

marva watershed, which had the largest total loss, has very evident clusters of loss (Figs 6 and

7). Trend maps reveal a clustering of loss around landscape features such as ditches, inlets, and

rivers even in stable watersheds (Fig 8).

Kruskal-Wallis test was used to test the difference between dominant salt marsh types with

each analysis finding significant differences (Table 3). Dunn’s post hoc test determined that

Chincoteague and Albemarle were the only watersheds were ditched regularly flooded marshes

lost vegetation at a lesser rate than regularly flooded salt marshes. Eastern Lower Delmarva

and Tangiers were the watersheds where the regularly flooded salt marsh lost more biomass

than the irregularly flooded salt marsh. Mullica-Toms, Great Egg Harbor, and Tangier water-

sheds were the watersheds to demonstrate a small increase in AGB. These watersheds were

mosaics composed of a combination of increases and decreases in AGB (Figs 8, 9 and 10).

No significant effect of the tidal range was found for the entirety of the average AGB change

by HUC-12 watersheds (F(1,573) = 0.52, p = 0.52) and R2 = 0. However, when comparing those

sites with irregular tidal inundation, mosquito ditches, and a tidal range < 0.8 m; then sites

with small tidal ranges saw significantly more loss (F(1,34) = 6.2, p< 0.05) and R2 = 0.16).

When comparing those sites with regular tidal inundation, mosquito ditches, and a tidal

range< 0.8 m; then small tidal ranges also saw significantly more loss (F(1,14) = 7.1, p< 0.05)

and R2 = 0.33). Neither inundation regime without mosquito ditches had a significant relation-

ship to tidal range.

The relationship of Landsat derived estimates of AGB and salt marsh extent were verified

with Worldview-2 image classification of salt marsh on Assateague Island National Seashore

[59]. The Worldview-2 classification was used to compare non-vegetated extent within a pixel

to the estimates of AGB. This comparison found a negative relationship between biomass esti-

mates and the area of mudflat within a pixel (F(1165,1) = 1316, p< 0.001) and R2 = 0.53. The

verification with VHR imagery suggests that the Landsat AGB is related to vegetation extent.

Discussion

The in situ AGB samples from the Eastern Lower Delmarva verify a similar accuracy to inter-

nal out-of-box accuracy assessments from the Random Forest model. A RMSE of 310 g/m2

was achieved in [43] compared to this study’s out of box estimate of 350 ±16 g/m2. However,

Table 2. The results of the Moran’s I test of spatial autocorrelation for each of the watersheds. The neighbor dis-

tance was 200 m across all watersheds.

Watershed Moran’s Index P value z-score

Tangier 0.39 < 0.001 1572

Southern Long Island 0.41 < 0.001 1319

Mullica-Toms 0.53 < 0.001 1509

Great Egg Harbor 0.34 < 0.001 1050

Chincoteague 0.57 <0.001 1252

Eastern Lower Delmarva 0.45 <0.001 1513

Albemarle 0.41 <0.001 1319

https://doi.org/10.1371/journal.pone.0229605.t002
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models have been observed to perform better at the site scale [50]. The site-wide RMSE, com-

pared site averages for all available years, was 144±7. The yearly comparison between in situ
samples and Landsat estimates had high variability in part due to different resolutions i.e., in
situ samples were a much finer resolution (0.0625 m2) than a Landsat pixel (900 m2). More in
situ samples in the site-wide aggregate resulted in an improved RMSE.

Fig 7. a) Eastern Lower Delmarva watershed change in AGB from 1999 to 2018. b) Eastern Lower Delmarva watershed with the average AGB in July,

August, September of 2017. Background imagery Landsat 8 courtesy of U.S. Geological Survey c) Salt marsh trend for an area of loss (2014–2016), NAIP

image from 2012 courtesy of the U.S. Geological Survey. d) NAIP 2016 image following barrier spit change.

https://doi.org/10.1371/journal.pone.0229605.g007
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AGB loss includes several processes observed in the high-resolution imagery and time

series: 1) interior loss and fragmentation, 2) salt marsh loss due to inlet widening and change,

3) edge erosion, and 4) overwash (Fig 11). Additional processes such as the conversion of high

marsh to low marsh likely occurred but require additional in situ data to identify. Migration

into the upland was outside the scope of this study. However, future studies should pursue

monitoring both these components of salt marsh change.

Fig 8. Change in AGB from 1999 to 2018 in the Tangier watershed. a. Shows an inset area of concentrated change in

the AGB trend. Background imagery Landsat 8 courtesy of U.S. Geological Survey. b. shows a subset of the heavily

ditched area with pseudo color NAIP imagery from 6/1/2017.

https://doi.org/10.1371/journal.pone.0229605.g008
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AGB declined in three of the study watersheds. Clusters of significant loss were even evi-

dent in stable watersheds (Figs 8, 9 and 10). One possible explanation for the variability in

watershed-wide change is tidal range. The analysis of tidal range makes it clear that ditched

salt marshes with < 0.8 m tidal range were more prone to loss of AGB than the relatively more

stable areas (> 0.8 m). This result is supported by previous models which found for the same

suspend sediment concentrations macrotidal marshes (>4m tidal range) can adapt to much

higher rates of SLR than microtidal (<2 m tidal range) salt marsh [60]. The tidal range and

mosquito ditches were some of the site-specific factors which drove loss at the sub-watershed

scale. These patterns agree with the literature which suggests long-term declines at the local

scale [7,14,15] and projected salt marsh stability until the late 21st century under conservative

estimates of SLR [60].

The higher rates of loss in ditched tidal range marshes could be related to the filling of mos-

quito ditches which has been identified as a possible contributing factor to salt marsh dieback

and loss of Spartina patens in Rhode Island [61]. The fragility of these microtidal marshes is

likely due to the relationship between tidal range and the growth range of Spartina alterniflora
[62,63]. Ditched salt marshes comprised approximately 1/3 of all salt marsh pixels analyzed.

The filling or removal of ditches can result in increased inundation of the salt marsh platform

[64]. These salt marshes are undergoing hydrological changes that are altering vegetation

extent and quantity of plant biomass.

Edge erosion was compared to interior loss finding all watersheds besides Chincoteague

had a higher average rate of edge loss. In Chincoteague watershed edge areas lost on average

56 g/m2 compared to interior areas which lost on average 63 g/m2. Chincoteague’s site con-

ditions, i.e., microtidal range and mosquito ditches, partially explained the higher rates of

loss (Fig 5c; Table 3). Additionally, Chincoteague saw similar rates of loss occurring in reg-

ularly flooded and irregularly flooded salt marsh suggesting minimal differences between

tidal regimes in microtidal areas (Table 3). However, in both Tangiers and Easter Lower

Delmarva regularly flooded salt marsh had a greater loss than an irregularly flooded salt

marsh. Despite spatial proximity, these watersheds are experiencing different change

regimes.

Table 3. The results of the Kruskal-Wallis and Dunn’s post hoc test for each of the 7 watersheds. The tests compared the four most common estuarine emergent vege-

tation subclasses including irregularly flooded (E2EM1N), regularly flooded (E2EM1P), ditched irregularly flooded (E2EM1Nd), ditched regularly flooded (E2EM1Pd).

Watershed Kruskal-

Wallis

Dunn’s post hoc test

regularly flooded

vs. ditched

regularly flooded

regularly flooded

vs. irregularly

flooded

ditched regularly

flooded vs.

irregularly flooded

regularly flooded vs.

ditched irregularly

flooded

ditched regularly

flooded vs. ditched

irregularly flooded

irregularly flooded

vs. ditched

irregularly flooded

Tangier H(3) = 1239,

p< 0.001

Z = 11.9 p< 0.001 Z = -27.3

p< 0.001

Z = -15.4 p< 0.001 Z = -16.5 p< 0.001 Z = -16.5 p< 0.001 Z = -13.9 p< 0.001

Southern Long

Island

H(3) = 248,

p< 0.001

Z = 9.0 p< 0.001 Z = 8.5 p< 0.001 Z = -3.9 p = 0.001 Z = 14.4 p< 0.001 Z = -0.4 p = 1.00 Z = 8.2 p< 0.001

Mullica-Toms H(3) = 3099,

p< 0.001

Z = 14.5 p< 0.001 Z = 2.5 p = 0.04 Z = -14.0 p< 0.001 Z = 36.9 p< 0.001 Z = 5.7 p< 0.001 Z = 47.2 p< 0.001

Great Egg

Harbor

H(3) = 4166,

p< 0.001

Z = 13.8 p< 0.001 Z = 4.1 p<0.001 Z = -12.8 p< 0.001 Z = 36.1 p< 0.001 Z = 6.1 p< 0.001 Z = 57.9 p< 0.001

Chincoteague H(3) = 1280,

p< 0.001

Z = -5.3 p< 0.001 Z = 2.1 p = 0.1 Z = 6.8 p < 0.001 Z = 28.2 p< 0.001 Z = 28.2 p< 0.001 Z = 23.4 p< 0.001

Eastern Lower

Delmarva

H(2) = 2262,

p< 0.001

NA Z = -47.5

p< 0.001

NA Z = 2.3 p = 0.04 NA Z = 4.5 p< 0.001

Albemarle H(3) = 2142,

p< 0.001

Z = -31.6

p< 0.001

Z = 14.7 p< 0.001 Z = 39.3 p< 0.001 Z = 19.9 p< 0.001 Z = 43.9 p< 0.001 Z = 1.6 p = 0.36

https://doi.org/10.1371/journal.pone.0229605.t003
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Fig 9. Great Egg Harbor watershed, stretching from Cape May, NJ to just south of Great Bay, NJ. The change of AGB from 1999

to 2018. Background imagery Landsat 8 courtesy of U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0229605.g009
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RMSE was high on individual dates of imagery, decomposing the time series addresses

much of this uncertainty by removing both the seasonal component and error isolating the

trend, e.g., differencing 2018 AGB by 1999 AGB would compound the error. BFAST, a decom-

position-based change detection method was robust to added noise when detecting changes

[35]. Additionally, most areas had little change (< 100 g/m2) demonstrating the approaches

ability to discern stable areas. Small declines in AGB could be the result of within pixel

changes, including vegetation type, plant composition, and percent cover or some combina-

tion of these factors. For example, increased inundation can cause replacement of high marsh

plants with S. alterniflora, and this is likely to reduce aboveground biomass [65]. Declines in

AGB of irregularly flooded areas were possibly related to the replacement of high marsh with

S. alterniflora which has been observed on Long Island [66] and Rhode Island [61]. In the mid-

Atlantic, estimates of aboveground biomass for S. patens, J. roemerianus, and S. alterniflora
were 1399 g/m2, 853 g/m2, and 257 g/m2, respectively [18]. The shift from S. patens or J. roe-
merianus to S. alterniflora could result in a loss of above, and presumably, belowground

biomass.

Fig 10. Change in AGB from 1999–2018 for an area surrounding Great Bay, NJ, a section of the Mullica-Toms watershed. Background imagery

Landsat 8 courtesy of U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0229605.g010
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The high-resolution satellite imagery analysis found that salt marsh/mudflat extent within

a pixel partially explained Landsat estimates of AGB. However, vegetation extent did not

explain all variation in the AGB. Other likely contributing factors include the amount of water,

vegetation composition, and geometric rectification of the two datasets, in some salt marshes

Spartina alterniflora along the marsh edge has greater aboveground biomass [67]. These differ-

ences and other site characteristics result in variability of the biomass estimates. Additional in

situ verification would be necessary to establish the relationship of these changes to shifts in

the vegetation community.

Tidal filtering

The use of all available data is vital for understanding seasonal and long-term vegetation trends

[29]. The time series limited temporal phases due to clouds, tides, 16-day revisit, and Landsat

7’s shutter synchronization anomalies makes keeping all quality data essential. The TMII filter

is unique to the vegetation cover of a particular pixel. Therefore, it did not over filter those

areas with frequent inundation. Adapting the index to Landsat posed several challenges,

Fig 11. Two subsets of the Southern Long Island watershed. Change in AGB from 1999–2018: a) the back bay salt marshes of Jones Beach Island; b)

the north-eastern section of Fire Island and Moriches Bay. Background imagery Landsat 8 courtesy of U.S. Geological Survey.

https://doi.org/10.1371/journal.pone.0229605.g011
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including different bandwidths and lower temporal resolution. The conversion of rolling to

monthly averages and substitution of bands with appropriate equivalents addressed these

issues (Eqs 1–3). The filtering improved time series trend estimates (Fig 4). The rarity of false

positives limited any reduction of quality data while removing many inundated images. In this

study, the amount of data was essential to ensure enough images were available following fil-

tering by tides, cloud cover, and data quality. Tidal filtering is necessary to improve time series

modeling of salt marsh and our understanding of long-term salt marsh change.

Salt marsh change

There is debate about how salt marshes will change in the Anthropocene; site-level research

offers conflicting insight into the relationship of SLR to salt marsh loss such as multiple stress-

ors leading to rapid loss [68] or only extreme SLR scenarios (30 cm) resulting in drowning

[69]. Modeling studies suggest migration could lead to relative salt marsh stability [16]. Due to

differences in scale, these two estimates are not necessarily mutually exclusive, therefore to

bridge these studies, we require regional and global studies of salt marsh change such as this

one. This study found localized areas of significant salt marsh loss across all watersheds, but

also relative stability when examined at the watershed scale. The mid-Atlantic salt marshes are

projected to change rapidly, and this research suggests a limited change in many of the water-

sheds studied. The biomass model utilized in this study should be expanded and verified for

additional countries were similar species exist, such as China, where both Phragmites australis
and Spartina alterniflora are prevalent species with a complex relationship [70, 71]. Salt

marshes are changing globally [72], with losses resulting in the release of blue carbon stores

[73]. A critical carbon sink and potential source are global reasons for interest in salt marsh

change. Global studies are not always possible at high spatial resolution and fine time scale.

Regional studies in high-risk areas can inform our comprehensive understanding of salt marsh

change.

Persistence versus die-off of salt marshes has been attributed to a variety of drivers such as

sediment supply [74], edaphic characteristics of the salt marsh [75], elevation [7], nutrient

enrichment [4], and basin characteristics [76]. Honeycombing of the interior salt marsh was

evident particularly, in ditched salt marshes and across the Chincoteague watersheds (Fig 5d

and 5e.). This relationship was most likely due to the combination of altered hydrology from

mosquito ditches and small tidal ranges, causing greater vulnerability to SLR. The clustering of

change in the salt marsh environments was evident visually and from the results of the Moran’s

I analysis (Table 1).

The Eastern Lower Delmarva watershed, had a significant average rate of loss (Fig 6) and

low average biomass, 529 g/m2 over July, August, and September of 2017 (Fig 7b). Barrier

island migration at rates of 1–6 m yr-1 drives salt marsh losses in the region [77]. Sediment

supply and salt marsh basin width have been suggested as drivers of salt marsh change in the

Eastern Lower Delmarva [76]. The Eastern Lower Delmarva represents a different change

regime than this study’s other barrier island watersheds. Migration of the seaward salt marsh

boundary, minor shifts in the interior back-barrier salt marsh, and significant edge erosion

due to inlet shifting was evident across the watershed (Fig 7). The time series approach was

able to isolate discrete events; however, this process was not automated (Fig 7c). Temporally

discrete events such as overwash or barrier spit shifts resulted in a significant reduction in per-

cent AGB for many of the back barrier salt marshes. In the Eastern Lower Delmarva, 1% of all

areas analyzed experienced a< -400 g/m2 loss from (Summer 2014-Summer 2016). This study

demonstrates that the site’s salt marshes are low biomass, suggesting even small losses are a
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large percent of the sites AGB. This method has the ability to monitor salt marsh under a vari-

ety of change regimes.

Conclusion

A combination of medium resolution imagery, time series analysis, biomass modeling, and

tidal filtering were utilized to understand salt marsh change. This paper reports a new

approach to tidal filtering Landsat time series data for salt marsh environments. The approach

improved time series analysis in the tidally inundated areas. The combination of time series

analysis and biomass models gave an improved understanding of salt marsh change. The

regional study included barrier island (n = 6) watersheds across the mid-Atlantic and a sub-

watershed of the Chesapeake Bay. AGB declines were identified across the study area, with a

mean of -17 g/m2 (Table 1). In the mid-Atlantic coastal watersheds, 52% of all area analyzed

declined from 1999 to 2018. Four watersheds demonstrated positive trends (> 0 g/m2), how-

ever minor, widespread declines due to SLR were not evident. However, clusters of loss in all

watersheds were apparent. These clusters of loss corresponded with barrier island processes

and interior drowning.

The methods of this study demonstrate the importance of tidally filtering the time series.

Additionally, in situ verification of biomass estimates, and use of time series decomposition to

isolate long term trends. This study conducted a completely new accuracy assessment from in
situ data outside the training areas of the biomass models, demonstrating the model’s applica-

bility at additional sites in the USA. The conversion to AGB is an important approach for

engaging an interdisciplinary audience that may not be familiar with vegetation indices. Fur-

ther, biomass is a clear indicator of salt marsh resilience, tied to ecogeomorphic feedbacks that

contribute to salt marsh resilience. The current analysis demonstrates the use of AGB estimates

as an indicator of salt marsh change applied to multiple watershed scales. Limitations of the

method lead to the exclusion of important change processes such as migration, future work

will include the development of methods to integrate migration into this methodology.

GEE created a single processing environment facilitating the filtering of Landsat images,

analysis. The limiting factor for the process was exporting data from GEE to be further ana-

lyzed. The Landsat archive is the only option for decadal time series of salt marsh environ-

ments with medium spatial resolution and an extensive archive. GEE was an efficient data

processing environment for the calculation of vegetation indices, the conversion of Landsat 7

surface reflectance into Landsat 8 surface reflectance, and processing of the raw time series.

These methods utilized globally available remote sensing data in the form of the Landsat

archive and GEE limiting the computing costs. These methods reduced hardware limitations

and expand the potential geographic scope of salt marsh change analysis for both historical

assessments and continued monitoring. However, higher spatial resolution imagery, e.g., Sen-

tinel-2, is necessary to increase the sensitivity of this methodology to fine-scale change. Next

steps include applying the method to compare a broader range of sites, mapping areas identi-

fied as clusters of change with high spatial resolution imagery and expanding the methods to

include the long record of Landsat 5 data.
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