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Introduction: Intracranial electrodes are implanted in patients with drug-

resistant epilepsy as part of their pre-surgical evaluation. This allows the

investigation of normal and pathological brain functions with excellent spatial

and temporal resolution. The spatial resolution relies on methods that

precisely localize the implanted electrodes in the cerebral cortex, which is

critical for drawing valid inferences about the anatomical localization of brain

function. Multiple methods have been developed to localize the electrodes,

mainly relying on pre-implantation MRI and post-implantation computer

tomography (CT) images. However, they are hard to validate because there

is no ground truth data to test them and there is no standard approach

to systematically quantify their performance. In other words, their validation

lacks standardization. Our work aimed to model intracranial electrode arrays

and simulate realistic implantation scenarios, thereby providing localization

algorithms with new ways to evaluate and optimize their performance.

Results: We implemented novel methods to model the coordinates of

implanted grids, strips, and depth electrodes, as well as the CT artifacts

produced by these. We successfully modeled realistic implantation scenarios,

including different sizes, inter-electrode distances, and brain areas. In total,

∼3,300 grids and strips were fitted over the brain surface, and ∼850 depth

electrode arrays penetrating the cortical tissue were modeled. Realistic CT

artifacts were simulated at the electrode locations under 12 different noise

levels. Altogether, ∼50,000 thresholded CT artifact arrays were simulated

in these scenarios, and validated with real data from 17 patients regarding

the coordinates’ spatial deformation, and the CT artifacts’ shape, intensity

distribution, and noise level. Finally, we provide an example of how the

simulation platform is used to characterize the performance of two cluster-

based localization methods.

Conclusion: We successfully developed the first platform to model implanted

intracranial grids, strips, and depth electrodes and realistically simulate
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thresholded CT artifacts and their noise. These methods provide a basis

for developing more complex models, while simulations allow systematic

evaluation of the performance of electrode localization techniques.

The methods described in this article, and the results obtained from

the simulations, are freely available via open repositories. A graphical

user interface implementation is also accessible via the open-source

iElectrodes toolbox.

KEYWORDS

SEEG, ECoG, iEEG, intracranial electrodes, depth electrodes, subcortical grids,
subdural grids

Introduction

Intracranial subdural grids and depth electrodes are
implanted in patients with drug-resistant epilepsy as
part of their pre-surgical evaluation. Electrophysiological
and neuroanatomical data are used to delineate the
seizure onset zone and functional areas that will guide
respective surgery (Rosenow and Lüders, 2001). Intracranial
electroencephalography (iEEG) recordings provide insights
into human brain electrophysiology and functional mapping
with unparalleled spatial and temporal resolution, offering
both clinical and research applications. Knowing the exact
location of electrodes in relation to the individual cortical
or subcortical anatomy is a prerequisite for a complete
understanding of the electrophysiological data; leading to
a precise resection of the epileptic foci and the anatomical
localization of specific brain functions (Lachaux et al., 2003;
Parvizi and Kastner, 2017; Frauscher et al., 2018; Stolk et al.,
2018).

One of the most common approaches to define electrode
coordinates is to localize their artifacts in post-implantation
computer tomography (CT) images co-registered to pre-
implantation magnetic resonance imaging (MRI) scans.
Typically, electrode CT artifacts are extracted by thresholding
CT images, and then electrode coordinates are manually or
semi-automatically computed from these (Blenkmann et al.,
2017; Stolk et al., 2018; Li et al., 2019; Centracchio et al., 2021;
Rockhill et al., 2022). In both cases, errors associated with the
procedure are rarely quantified. It is well known that other CT
artifacts than the ones of interest (e.g., connection cables or
clips), adjacent electrodes, overlapping grids or strips, and noise
or low image resolution make precise localization problematic
(Brang et al., 2016; LaPlante et al., 2016; Narizzano et al., 2017).

Other localization approaches are based on the use of
post-implantation MRI and CT images (LaViolette et al.,
2011b; Hinds et al., 2018), clinical neuronavigational data

Abbreviations: IED, inter-electrode distance; SCE, smooth cortical
envelope; SNR, signal to noise ratio.

(Gupta et al., 2014), or electrophysiological data (Branco et al.,
2018b). However, these data might not be available in some
clinical setups.

Over the last few years, the spatial resolution of grids and
depth electrodes has reached inter-electrode distances (IED)
of 2–3 mm, and will likely improve even more (Gupta et al.,
2014; Chang, 2015; Martin et al., 2018). Given their size and the
low signal-to-noise ratio (SNR) of images, high-density (HD)
arrays are harder to localize with currently available methods
[see novel attempts in Hamilton et al. (2017), Narizzano et al.
(2017), Branco et al. (2018a), and Erhardt et al. (2020)].

Although methods to localize CT artifacts and co-localize
them to pre-implantation MRI are common, there is no reliable
gold standard to quantify their precision and robustness against
noise. Methods are usually validated with different datasets,
where noise is not quantified. This lack of standardization in
the validation makes the comparison of methods imprecise
and leaves unanswered questions: what is the localization error
associated with a particular SNR? Which localization method
performs better for a particular case? These are important
factors undermining the validity of claims regarding specific
brain areas related to a function or pathology.

To aid in solving these problems, we propose a new
platform to model realistic intracranial electrode implantation
scenarios and their respective CT artifacts, enabling systematic
quantification of errors in electrode localization algorithms.

In the next sections, we will introduce methods for fitting
subdural grid and strip electrode models onto the smooth hull
surface, and depth electrode array models targeting subcortical
sites. We then describe the modeling of thresholded CT artifacts
and their noise. Thereafter, we report the simulation results
and their validation with real data. Moreover, we provide two
examples: (i) performance evaluation of localization methods,
and (ii) modeling implantations on a patient’s native anatomy.
Finally, we discuss the results in the context of existing electrode
localization methods, the limitations of our approach, and
future challenges.

The methods and results presented in this article are publicly
available (except for individual patient data).
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Materials and methods

The proposed platform allows the systematic evaluation
of intracranial electrode localization algorithms. The workflow
consists of several steps. Concisely, they can be grouped into
pre-processing of images to obtain a Smooth Cortical Envelope
(SCE), the simulation of electrode coordinates, the simulation
of CT artifacts, and the performance evaluation. Figure 1 shows
the main steps, and the following subsections describe them in
detail.

Unless otherwise specified, the methods were implemented
in Matlab R2019 (The MathWorks Inc., USA) and iElectrodes
toolbox for Matlab (Blenkmann et al., 2017). The most relevant
functions needed to perform the simulations are mentioned
along the method’s subsections.

In general, median values were used to describe the central
tendencies of the variables of interest since most distributions
were not normal. Their corresponding CIs were obtained
by bootstrapping.

Smooth cortical envelope surface and
seed points

The implantation of real grids and strips onto different
cortical areas introduces variations in how these arrays bend
to follow the brain curvature. To reproduce realistic scenarios,
we simulated grids implanted over 3D cortical surfaces. High-
resolution pial surfaces extracted from the MNI atlas were
used as a starting point (or individual structural MRI images
for simulations in native space; see subsection “Example II:
Interactive modeling of implanted electrodes in patient’s native
brain space” for details). In our processing pipeline, we used
Freesurfer software (Dale et al., 1999), and individual cortical
parcellation images were obtained using the Destrieux atlas
(Destrieux et al., 2010), but other atlases or software could also
be used. We then computed an SCE surface for each cerebral
hemisphere by enclosing the corresponding pial surface with
a 30 mm radius sphere. A mesh smoothing was applied to
remove small local protuberances (low-pass spatial filter, 100
iterations, alpha weight = 0.5, Iso2Mesh toolbox, Fang and Boas,
2009). Supplementary Figure 1 shows an example of the pial
surface and SCE computed for an individual patient’s brain. The
procedure is implemented in the buildSCE.m function.

We visually selected 57 seed points over the SCE surface
and used them as reference points to model grids, strips, and
depth electrode arrays. We computed the local curvature of a
smoothed version of the SCE (Rusinkiewicz, 2004). Seed points
were visually selected on regions where the local curvature
was relatively “Low,” “Medium,” or “High” within the range
of curvature values. We modeled different electrode arrays
depending on the location and the local curvature of the SCE
surface.

Modeling grid and strip electrode
coordinates

The following steps are performed for modeling subdural
grids and strips:

(1) A 2D flat model of the array is generated and
placed tangentially to the SCE in a given “seed”
point (e.g., the purple grid in Figure 2D) using the
function tangentialGrid.m. For strip cases, the number
of rows is set to three to avoid unrealistic geometrical
deformations (e.g., undulating shapes).

(2) The 2D model is fitted over the SCE surface using an
energy minimization algorithm (Figure 2D, Dykstra
et al., 2012; Trotta et al., 2018) implemented in the
function projection2mesh.m. The energy function

E = Et + KEd (1)

is minimized by varying the electrode coordinates to the
final position xi, where Et is the translation energy, Ed
is the deformation energy, and K is a constant value.
The energy minimization is constrained to the electrode
coordinates xi being closely located over the SCE surface, i.e.,
∀i, ||xi − si|| ≤ ε, where si is the closest point in the SCE
surface to electrode i, and ε is a tolerance distance.

Et (Figure 2B) represents the energy needed to translate
the electrode coordinates from the original position of each
electrode x0

i to the final position xi on the SCE surface:

Et =

N∑
i=1

||xi − x0
i ||

2 (2)

where N is the number of electrodes.
Ed (Figure 2C) represents the energy required to change the

inter-electrode euclidean distance between neighbors from the
original to the final location. It is defined as

Ed =

N∑
i=1

N∑
j=i+1

αij

(
dij − d0

ij

)2
(3)

where dij is the distance between electrodes, d0
ij is the initial

distance between contacts, and αij takes values of 1 or 0 if
electrodes i and j are neighbors or not, respectively. To control
for normal, bending, and shear deformations, first, second, and
diagonal (grids only) neighbors are considered, as shown in
Figure 2A (Trotta et al., 2018). Ed is typically interpreted as
the deformation of “springs” connecting the electrodes (Dykstra
et al., 2012).

(3) A normal vector at each electrode coordinate is
computed. We select the coordinates from each
electrode of interest and the nearest neighbors and

Frontiers in Neuroinformatics 03 frontiersin.org

https://doi.org/10.3389/fninf.2022.788685
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-788685 October 1, 2022 Time: 16:16 # 4

Blenkmann et al. 10.3389/fninf.2022.788685

FIGURE 1

Workflow for simulating electrode CT artifacts and evaluating localization algorithms. The main steps of the workflow are shown in the diagram.
First, a Smooth Cortical Envelope (SCE) is obtained from an individual or average atlas image. Electrode arrays are modeled according to design
parameters and fitted over the SCE (grids) or placed within the brain tissue (depths) to obtain the electrode coordinates. Then, CT artifacts are
simulated at each electrode coordinate, considering the electrode type and spatial orientation. Subsequently, noise is added to simulate
different realistic scenarios. CT artifacts are then fed into the localization algorithm under evaluation. Finally, localized coordinates are
compared with the ground truth electrode coordinates. Knowing the true electrode coordinates allows a correct estimation of the localization
error and its sensitivity to different noise levels. Moreover, the results can be easily replicated. Orange parallelograms represent data, and purple
squares represent processes.

compute a principal component analysis (PCA) of these
points. The normal vector is the one associated with the
smallest component (Figure 2E).

(4) For strips, only the middle row coordinates
are kept from the three rows, while the lateral
ones are discarded.

We simulated electrode arrays of multiple dimensions
representing models frequently available in the market by
different manufacturers. These cover various combinations of
size and IED, including grids of 2 × 4, 4 × 4, 4 × 8, 8 × 8,
8 × 16, and 16 × 16 contacts, strips of 1 × 4, 1 × 6, and 1 × 8
contacts. Arrays were simulated at the 57 seed points in the
standardized MNI SCE surface with different local curvatures
(Supplementary Figure 2).

Grid and strip implantation scenarios were simulated
several times at each seed point, rotating the grids at angles
multiple of 30 degrees around the center. The location and
the local curvature of the SCE surface surrounding the seed

points determined which arrays were simulated. Large grids
were simulated over Low curvature regions, whereas medium
and small size grids were simulated over Medium and High
curvature areas. For example, over the lateral fronto-temporo-
parietal cortex, it is realistic to simulate an 8 × 8, 10 mm IED
grid, but unrealistic (in usual clinical settings) to simulate the
implantation of such a big grid over the frontal pole.

For the fitting of grid and strips onto the SCE surface,
coefficient K was set to 1,000, and the tolerance distance
ε = 0.1 mm for all arrays, except for the 16× 16 grid cases where
K = 100 and ε = 0.5 mm (Equation 1).

Deformations are needed to fit a grid or strip (originally
plane objects) over the brain surface (a curved object). When
localizing grids, we typically observe that these deformations
are small. Therefore, we measured the IED after fitting grids
and strips to the SCE surfaces and discarded simulations if one
or more neighboring electrodes had IED variations over 5%
from the original values. A simple example of the simulation is
implemented in the simulateArraySCE.m function.
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FIGURE 2

Modeling grid and strip electrode coordinates over the SCE surface. Electrode arrays are initially modeled as 2D (grids) or 1D (strips) objects, and
then fitted to the SCE surface by minimizing the translation (Et) and deformation (Ed) energies (Equation 1). (A) First, diagonal, and second
neighboring connections are used to compute the deformation energy Ed, accounting for normal, shear, and bending, respectively. (B) The
translation energy Eti associated with electrode i is proportional to the distance between the initial (x0

i) and the final location (xi) over the SCE
surface. (C) The deformation energy Edij associated with neighboring electrodes i and j is proportional to the amount of deformation between
the original (d0

ij) and final distance (dij). Equation details are explained in Subsection “Modeling grid and strip electrode coordinates”.
(D) Example of a 2D grid model (4 × 8, 10 mm IED) before (pink) and after (green) being fitted to the SCE surface on the left frontal lobe.
(E) Zoom-in detail showing the normal vectors at each electrode location. Normal vectors are subsequently used to orient the simulated CT
artifacts. IED, inter-electrode distance; SCE, smooth cortical envelope.

Modeling depth electrode coordinates

In clinical practice, the implantation of depth electrodes
is defined by two points, and therefore a unique trajectory
connecting them. The points are typically defined as an “entry
point” on the cortical surface and a “target point” at the
deepest brain location reached. We will adopt this nomenclature
throughout this paper.

It is common practice to use trajectories orthogonal to the
skull surface to avoid sliding of the drill and minimize bone
damage during surgery. Therefore, given an entry point on the
SCE surface, we define the array trajectory vector orthogonal

to this surface. Two strategies are applied to distribute the
electrodes along the trajectory uniformly:

(1) If the array is shorter than the amount of tissue
intersected by the trajectory, the target point is defined
as a random point within the trajectory while keeping
all contacts inside the brain.

(2) If the array is longer than the intersected tissue, the
target point is defined as the deepest electrode point
in the trajectory within the brain tissue (enclosed
by the SCE surface). Contacts outside the brain
tissue are removed.
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As an optional step, a curvature deformation can be applied
within a random orientation 2D plane containing the principal
axes of the array. Using the symmetric Lanczos window, an arc-
shaped electrode array is obtained. A simple example of the
simulations is implemented in simulateDepthArray.m function.

We selected 33 entry points over the MNI SCE from the
previous set of 57 seed points, restricted to locations where the
implantation of depth electrodes were realistic. At each point, we
simulated the implantation of depth electrodes as combinations
of 4, 8, 10, 12, 15, and 18 contacts; 3, 5, and 10 mm of IED; and
linear or curved deformation (maximum deformation of 1% of
the total length).

Modeling overlapping grids and strips
coordinates

Overlapping grids or strips are obstacles for methods
that aim to detect intracranial electrodes automatically
(e.g., Figure 3F). We developed a method to realistically
simulate these cases (Figure 3E), implemented in the function
simulateOverlaps.m. Briefly, it consists of:

(1) A surface is fitted to the background array (Figure 3A).
(2) The coordinates are projected to a 2D principal

component space (PCA) where the overlapping array
is initially positioned (Figure 3B).

(3) The overlapping array is displaced in a random
direction until the desired amount of overlap is
achieved (Figure 3C).

(4) The coordinates are back-projected to the initial surface
(Figure 3D).

A more detailed explanation of the procedure can be found
in Supplementary Section 3.

Grids and strips were simulated with a 10% overlap and
no overlap. Overlapping grids were defined with a random
orientation and translated in a random direction. In principle,
grids and strips of any size and IED can be overlapped.
However, for the sake of simplicity, we used arrays with the
same dimensions.

Modeling electrode computer
tomography artifacts and their noise

Grid and depth arrays have a flat disc and cylinder-shaped
metallic contacts, respectively. Their corresponding thresholded
CT artifacts usually show ellipsoidal shapes, and their voxels’
intensity typically decreases with their distance to the center
of the electrode (Blenkmann et al., 2017; Stolk et al., 2018).
Therefore, we modeled the CT artifacts representing electrodes
as ellipsoidal-shaped clusters of voxels of varying intensity. In
a parsimonious approach, we defined the intensity as a linear

function that declined with the scaled radial distance r of a given
location (x, y, z) to the ellipsoid center as:

Intensity (x, y, z) = 1− r
(
x, y, z

)
(4)

where

r
(
x, y, z

)
=

√(x
a

)2
+

( y
b

)2
+

( z
c

)2
(5)

and a, b, and c are the semi-axes of the ellipsoid model. Semi-
axes length parameters were defined depending on electrode
type, their inter-electrode distance, following manufacturers’
specified dimensions, and visually adjusted to match real CT
artifacts’ observed size and shape. Specifically, we used a = 2.2,
b = 2.2, and c = 1.5 for 10 and 5 mm IED grids, a = 1.1, b = 1.1,
and c = 1 for 3 mm IED grids, a = 1.25, b = 1.25, and c = 1.75
for 10 and 5 mm depth electrode arrays, and a = 1.1, b = 1.1, and
c = 1.5 for 3 mm IED depth electrode arrays.

The function simulateVoxels.m was used to simulate
the clusters of voxels for each CT artifact. First, voxel
coordinates were generated by using a 0.5 mm resolution
3D square lattice grid of 10 mm × 10 mm × 10 mm
around each electrode to represent the effect of discrete
sampling in CT images. All sampling lattice grids had
a common random origin and orientation mimicking the
random location and orientation of the patient’s head in
the image reference system. Then, we centered the reference
coordinate system at the electrode’s coordinate. We rotated
the reference system to align its z-axis to the electrode’s
specific normal vector, i.e., the surface’s orthogonal vector
for grids and strips (Figure 2E) or the trajectory vector for
depths. Finally, we computed the intensity of each voxel using
Equation 4.

The localization of intracranial electrodes is typically
sensitive to the signal-to-noise ratio of the processed CT
images. To model the noise in the CT artifacts, we added
spatially correlated and uncorrelated noise to each voxel’s
intensity using the function addnoise2electrodes.m (Britten
et al., 2004; Gravel et al., 2004). Spatially correlated noise
was computed by convolving uncorrelated noise from a
N(0, σ2

corr) distribution with a kernel provided by Britten
et al. (2004). Uncorrelated noise values were drawn from a
N(0, σ2

uncorr) distribution. Therefore, the total noise variance
was σ2

total = σ2
corr + σ2

uncorr . The two noise sources contributed
differently to the deformations observed in the CT artifacts.

Finally, voxels with intensity values below zero were
removed after adding noise.

We simulated the CT artifacts at each electrode location
and manipulated the noise levels affecting these. Twelve noise
levels were simulated for each scenario, where σ2

total was
logarithmically distributed between 0.2 and 2.2 (from now on
denoted as noise levels 1–12). The ratio between correlated
and uncorrelated noise variances was set to 20:1, a heuristically
determined ratio obtained by observing the shape of CT
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FIGURE 3

Modeling overlapping grids. Example of an overlapping grid in an 8 × 8, 10 mm, IED case. (A) Original electrode coordinates (green) were
transformed into the principal component space, where a surface (Sfit) was fitted to the coordinates. (B) In a 2D space defined by PC1 and PC2,
the overlapping grid (magenta) was defined with a random orientation. (C) The overlapping grid was translated (in the arrow direction) until the
desired number of overlapping electrodes was achieved. (D) Coordinates were back-projected to the original 3D space surface. (E) Voxel
artifacts were simulated in the new overlapping grid electrode coordinates, overlaying the SCE surface. Voxel artifacts’ orientations were
interpolated from close-by electrodes of the original array. (F) Example of real overlapping grids (5 × 4, 10 mm IED and 4 × 12, 6 mm IED)
overlaying the left SCE surface. The inset shows the corresponding thresholded CT artifact voxels. Plots (B,C) show the PC1 axes direction
inverted for illustrative purposes. IED, inter-electrode distance; SCE, smooth cortical envelope; A, anterior; S, superior.

artifacts. The individual impact of these two noise sources
was clear at high noise levels. Higher ratios of uncorrelated
noise left many “disconnected” voxels surrounding the CT
artifacts, whereas higher ratios of correlated noise introduced
unrealistically deformed shapes.

Validation

Patients
To validate our modeling platform, we compared our

simulations with real data. We analyzed MRI and CT images
from 17 adult patients with drug-resistant epilepsy who
underwent iEEG recording as part of the pre-surgical evaluation
for respective surgery.

Three patients were implanted with only subdural grids,
seven with subdural grids and depth electrodes, and seven with
only depth electrodes. IED ranged from 3 to 10 mm for both
grids and depth arrays. Patients implanted with depth electrode
arrays had on average 69 depth contacts (range 8–172 contacts
per patient, total of 1,068 contacts, DIXI Medical, France, Ad-
Tech Medical Instrument Corporation, USA, or PMT Corp.,
USA). Patients implanted with subdural grids had on average
146 subdural contacts (range 29–306 contacts per patient, total

of 1,656 contacts, Ad-Tech Medical Instrument Corporation,
USA, or PMT Corp., USA).

Electrode localization in real cases
We followed a routine procedure to localize intracranial

electrodes (Stolk et al., 2018; Blenkmann et al., 2019). Pre-
implantation T1-weighted MRI images were processed using
the FreeSurfer standard pipeline (Dale et al., 1999), where
individual brain segmentation images, pial surfaces, and
cortical parcellation images (Destrieux atlas) were obtained
(Destrieux et al., 2010). Post-implantation CT images were co-
registered to the pre-implantation MRI using SPM 12 software
(Studholme et al., 1999). Realigned MRI and CT images were
resampled to 0.5 mm × 0.5 mm × 0.5 mm resolution. CT
images were thresholded to visualize the clusters of high-
intensity voxels (also known as CT artifacts). Threshold values
were visually defined to identify clusters of voxels representing
individual electrodes following the procedure described in
Blenkmann et al. (2017).

Each cluster of high-intensity voxels was extracted using the
k-medoids clustering algorithm (as implemented in iElectrodes
toolbox). Then, the weighted center coordinates of each cluster
were computed. In noisy situations, the center of each cluster
was visually identified instead of using automatic clustering.
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Validation of electrode coordinates
To validate the modeling of electrode array coordinates,

we visually inspected the resulting coordinates. Grid and strip
coordinates were expected to follow the SCE surface, while
only minimally deforming the IED. Moreover, we described
deformations in the distance between their first, second,
and diagonal neighbors. To integrate the impact of these
deformations in the framework of electrode localizations, we
qualitatively compared these deformations with those obtained
from manually localized real arrays of 10 mm IED. We
anticipated simulation deformations to be smaller than the
localized ones, since the latter includes array deformations and
localization errors.

In addition, we evaluated the deformations of depth arrays.
First, array lengths were normalized to allow their comparison.
Then, we defined the main axis connecting the first and last
contact. Finally, we measured the shortest distance between each
contact and the axis.

Validation of computer tomography artifacts
To validate our model of electrode CT artifacts, we

compared the characteristics of these synthetic artifacts with
those of real artifacts. Noise characterization was particularly
relevant since it can affect the accuracy of localization
algorithms. We applied an information theory measure,
entropy, to delineate the noise level of simulated and real data.
With this aim, we first computed the principal axis of each
electrode. For grids, we computed the orthogonal direction
at each electrode given its closest neighbors, and for depth
electrodes, we computed the principal axis as the direction
connecting the first and last electrodes of the array. We aligned
the principal axes to the z-axis and positioned their centers at the
coordinate system’s origin. Then, the 2-dimensional intensity-
radius histograms were computed, showing the bivariate
distribution of voxels in terms of intensity (on the y-axis)
and radial distance to the center (on the x-axis). Histograms
were computed in 0.25 mm bins between 0 and 5 for the
radial distance, and 0.05 bin size for the normalized intensity
values between 0 and 1, while excluding intensity values
below percentile 2.5 and above percentile 97.5. Afterward, we
computed the pairwise 2D cross-correlation matrices between
all histograms within an array. A cross-correlation matrix
indicates the degree of similarity between two intensity-
radius histograms as a function of the displacement of one
relative to the other. Sharp cross-correlations are indicative of
similar histograms, whereas smother (more distributed) cross-
correlations indicate less consistency between the histograms.
In our case, we expected the noise to differently affect
each CT artifact within an array. Therefore, this should be
reflected in smother cross-correlations of their corresponding
2D histograms when noise levels are high, and sharp and
peakier cross-correlations when noise levels are low. Finally,
we estimated the array’s noise by measuring the entropy of

these cross-correlation images and computing their average.
Entropy values represent the amount of disorder present in the
cross-correlation matrices. Entropy has been previously used to
estimate the focus of images, by evaluating the uniformity of the
2D spectral decomposition of images (Bove, 1993; Kristan and
Pernu, 2004). Similarly, in our case, entropy values will increase
as the cross-correlation images get close to uniformly distributed
(e.g., smoother images) and decrease as they get farther from
uniform (e.g., peakier images). Therefore, low entropy values
indicate more consistent, i.e., less noisy, artifacts within an
array, and vice versa. Entropy values were sensible to the size
of the electrodes. Therefore, entropy values were normalized by
subtracting each electrode size group’s mean value.

To evaluate the similarity between simulation and real
data arrays, we computed the average correlation across their
electrode histograms (normalized by the mean correlation
within electrodes of the real array). If our model is able to
capture the effect of noise in real data, real electrodes with
high noise levels should correlate better with high noise level
simulations. To test this hypothesis, we used a linear model to
evaluate the relationship between the estimated noise level in
real electrodes and the noise level of the highest correlating (i.e.,
best fitting) simulation.

Grids with less than twelve electrodes were discarded. These
grids have a high proportion of edge-located electrodes which
can lead to less accurate estimations of the orthogonal vector
and affect the following analysis.

The spatial organization of electrodes in strips precludes the
computation of orthogonal vectors and, therefore strips were
not included in the current analysis. However, strip electrodes
are usually the same size as grid electrodes, and we assume
that the conclusions drawn from the analysis of grids also
apply to strips.

Example I: Evaluation of cluster-based
localization methods

We demonstrate the applicability of our modeling platform
by evaluating the performance of two localization approaches
implemented in v1.000 and v1.010 of the iElectrodes toolbox.
These are based on the k-means and k-medoids clustering
algorithms, respectively (Hartigan and Wong, 1979; Kaufman
and Rousseeuw, 1990). Before running the localization scripts,
artifacts were thresholded between 0.25 and 0.6 depending on
the noise level.

Localized coordinates were contrasted with simulated
coordinates to evaluate their accuracy under several noise levels.
The methods were compared with the Wilcoxon signed-rank
tests, and effect sizes were approximated from their estimated
z-scores (Pallant, 2007).

The function localizeArray.m and dependencies provide
an exemplary code for testing localization algorithms. The

Frontiers in Neuroinformatics 08 frontiersin.org

https://doi.org/10.3389/fninf.2022.788685
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-788685 October 1, 2022 Time: 16:16 # 9

Blenkmann et al. 10.3389/fninf.2022.788685

script can be easily modified for comparison of other
localization algorithms.

Example II: Interactive modeling of
implanted electrodes in patient’s native
brain space

To demonstrate the algorithm’s usefulness in more realistic
scenarios, we applied our methods in a patient’s native
brain space. We processed pre-implantation MRI and post-
implantation CT images from an adult patient with drug-
resistant epilepsy, a potential candidate for respective surgery,
as described in Section “Patients.” The SCE surfaces for each
hemisphere were computed following the steps described in
Section “Smooth cortical envelope surface and seed points.”

We simulated grids, strips, and depth electrodes over
multiple center points (seeds) and orientations using the
interactive Graphical User Interface (GUI) provided by the
iElectrodes toolbox (Blenkmann et al., 2017). For grids and
strips, the 2D flat model arrays were first manually translated
and rotated over the 3D SCE surface (Figure 2D). Once the
desired location was reached, they were fitted to the SCE surface.
Depth electrodes were defined by visually setting the target and
entry points in the 2D views.

Results

In the following subsections, we will present the simulation
results, their validation with real data, and examples.

Simulation and validation of electrode
array coordinates

A total of 3,646 scenarios for grids and strips were simulated,
and in 3,321 instances the arrays were successfully placed over
the SCE surface. In 9% of the cases, the IED deformations
between at least one pair of contacts exceeded the 5% threshold
and were discarded.

For depth electrodes, the procedure resulted in 858
simulation scenarios for depth electrodes within the MNI brain.

We first validated our results by visual observation. Grid
and strip electrode coordinates closely followed the SCE surface
and showed an almost uniform spatial distribution. Changes in
the IED were difficult to detect. For example, Figures 4A,B,D,E
show simulated and real localized grid coordinates. Another
important aspect was the simulation of overlaps, comparable
to those observed in real situations (Figures 3E,F). Besides, the
curved trajectories of simulated depth arrays mimicked those of
real cases (Figures 4C,F).

FIGURE 4

Examples of real and simulated electrode coordinates. Observe that in real and simulated cases, the grid coordinates follow the brain curvature
and that depth electrode trajectories are slightly bent. The top row shows real electrode coordinates from an 8 × 8, 3 mm IED array over the
lateral temporal cortex (A), a 4 × 4, 10 mm IED array over the frontal pole (B), and an 8 contacts, 5 mm IED, depth electrode array into the
temporal lobe (C). The bottom row shows simulated electrode arrays from an 8 × 8, 10 mm IED grid over the lateral fronto-temporo-parietal
cortices (D), an 8 × 8, 3 mm IED high-density array over the frontal pole (E), and a 10 contacts depth electrode array into the temporal lobe (F).
SCE and pial surfaces are depicted semi-transparently in the top plots to enhance visualization.
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The implantation of subdural electrode arrays often
introduces a brain shift, and this causes post-implantation CT
images to capture the electrode artifacts “buried” under the
pial or SCE surface reconstructed from pre-implantation MRIs.
This deformation of the brain surface is not modeled in our
current implementation.

To evaluate the quality of the simulated grid and strip
coordinates, we quantified the deformations introduced by
projecting them onto the SCE. We measured the distance
between 1st, diagonal, and 2nd neighboring contacts,
normalized in each case by the IED. The median deformations
were 0.174, 0.169, and 0.243% of the IED, respectively. The
median deformation increased for higher values of IED and
SCE curvature (Figures 5A,B). As an upper bound reference,
we measured the IED deformations from CT localized real grids
(13 arrays, 484 electrodes). These deformations were one order
of magnitude larger than the simulated ones (Supplementary
Figure 3A).

To better quantify the effect of curvature and the number
of electrodes on the simulations, we measured the distance
between the fitted electrodes and the SCE. Although these
values were constrained in the fitting procedure, some variability
was observed. The electrodes’ median distance to the SCE
decreased with the number of contacts and increased with the
SCE curvature (Supplementary Figure 4). Overall, the median
distance of electrodes to the SCE was 0.012 mm.

To validate the bending model of depth arrays, we
measured deformations in real cases. Across real arrays,
the maximum deformation (i.e., the maximum normalized
distance to the main axis) was 0.82%, 95% CI [0.72, 1.01],
comparable to the 1% maximum deformation implemented in
our approach. Supplementary Figure 3B shows the bending
profile over distance and the Lanczos function used in

the simulations. Interestingly, the profile indicates that the
maximum deformation is not centered, but closer to the deepest
contact (normalized distance to target 0.37, 95% CI [0.33, 0.43]).

Simulation and validation of electrode
computer tomography artifacts

We simulated the CT artifacts at each electrode location and
manipulated the noise levels affecting these. By using the normal
orientation vector, the procedure generated grid and strip CT
artifacts aligned with the brain’s surface curvature. Similarly,
depth electrode artifacts were aligned with the arrays’ principal
axes. Altogether, we produced∼40,000 simulations of grids and
strips and∼10,000 depth electrode CT artifacts.

To validate our procedure, we first visually inspected the CT
artifacts in a subset of 100 randomly selected simulations. Grid
and depth arrays have flat disc and cylinder-shaped metallic
contacts, respectively, whereas their CT artifacts usually have
ellipsoidal shapes following these geometries (Figures 6, 7).
Importantly, similar shapes were achieved by the simulations
(Figures 6, 7).

Even under the effect of brain shift, we observed grids and
strips electrodes in the CT images to be approximately parallel to
the SCE obtained from pre-implantation MRIs (Figures 6B,E).
Accordingly, simulated CT artifacts followed the SCE curvature
(Figures 6C,F).

Moreover, noise levels gradually affected the shape of
real artifacts. In general, larger noise levels hampered the
visual identification of individual artifacts (e.g., Figures 6E,F).
Importantly, similar effects were obtained in the simulations.
Other noise sources, like cables or metallic clips, could also affect
the visual identification, but were not simulated.

FIGURE 5

Deformation between contacts for simulated grids and strips. Bar plots show that the median deformation between contacts increases with the
IED (A), and the SCE curvature (B). As a reference, the observed deformations in real cases were an order of magnitude larger (Supplementary
Figure 3A). Error bars denote 95% CI of the median. SCE, smooth cortical envelope; IED, inter-electrode distance.
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FIGURE 6

Examples of real and simulated electrode CT artifacts. Images on the top row (A,D,G,J) show electrode artifacts on CT images superimposed on
co-registered MRIs from real cases. Plots on the middle row (B,E,H,K) show thresholded CT voxels corresponding to electrodes in relation to
the SCE surface for the same cases as above. Plots on the bottom row (C,F,I,L) show simulations similar to the real examples above. Observe
the similarity between the real and simulated CT artifacts. The examples selected have different noise levels to reflect some of the variability
observed. The real grid case in (A,B), and the correspondingly simulated grid (C) have relatively low noise, whereas the real case depicted in
(D,E), and simulation (F) show a higher noise level. The case depicted in (E) also shows a cable passing over the grid. Both real and simulated
depth electrodes depicted in (G–I) have low noise levels, whereas cases shown in (J–L) have medium noise levels. Array details: (A,B) 4 × 8
grid, 10 mm IED, implanted over the temporal cortex. (D,E) 10 × 25 grid, 3 mm IED, implanted over the temporal cortex. (G,H) 12 electrodes
depth array, 3.5 mm IED, implanted into the superior frontal cortex. (J,K) 8 electrodes depth array, 5 mm IED, implanted into the temporal
cortex. (C) 8 × 8 grid, 10 mm IED, over the fronto-temporo-parietal cortex. (F) 4 × 8 grid, 3 mm IED, over the temporo-parietal cortex. (I) 18
electrodes depth array, 3 mm IED, implanted into the occipital cortex. (L) 10 electrodes depth array, 5 mm IED, implanted into the frontal cortex.
For illustration purposes, the SCE surfaces are semi-transparent. IED, inter-electrode distance; SCE, smooth cortical envelope. A, anterior; P,
posterior; R, right; S, superior.

To further characterize electrode artifacts and their noise, we
computed 2D histograms to capture the bivariate distribution
of voxels in terms of intensity and radial distance to
the center. In the real cases (15 grids across 11 patients,
IED 3 and 10 mm; and 77 depth electrodes from 14
patients, IED 3 and 5 mm), we observed a tendency for
intensity to decrease with radius (e.g., Figures 7A–C, right
column), a pattern that was mimicked by the simulations
(e.g., Figures 7D–F, right column). These 2D histograms
allowed us to estimate the noise level that affected the
intensity distribution of voxels in space. For this purpose,
we computed the mean entropy of the 2D cross-correlation
of histograms as a proxy for the noise level in each array.
Supplementary Figure 5 shows examples of low and high noise

arrays and their corresponding average 2D cross-correlation
images.

As expected, incrementing the noise level in the simulations
produced a systematic increase in their average entropy
(Supplementary Figures 6C,D, 7C,D). We also observed that
the entropy measure not only captured the noise level, but
was also affected by the size of the CT artifacts, being higher
for bigger artifacts in real and simulated cases. Therefore,
entropy values were normalized by subtracting each electrode
size group’s mean value to account for the artifact size’s effect on
the entropy measure.

Entropy was also computed for real CT artifacts, allowing
us to compare real and simulated CT artifacts in terms of noise
content (Supplementary Figures 6A,B, 7A,B).
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FIGURE 7

Examples of real and simulated electrode CT artifacts and their 2D intensity-radius histograms. The three top rows show examples of real CT
artifacts obtained from a 10 mm IED grid (A), a 3 mm IED high-density grid (B), and a 3 mm IED depth electrode array (C). The three bottom
rows (D–F) show simulated cases with noise levels that best fit the real ones above (present the highest correlation). The left column plots show
the spatial distribution of the voxels’ artifacts. The middle column shows the same artifacts after all individual electrodes were recentered at the
origin (0,0,0), and their principal axes (orthogonally to the cortical surface for grids) or main axes (connecting outer electrodes for depths)
aligned to the z-axis. For visualization purposes, only half of the electrode voxels are shown. The right column plots show their respective
intensity vs. radius histogram. For illustrative purposes (C,F) middle and right column plots were obtained from 10 depth electrodes in the
corresponding patient, or 10 simulated depth arrays, and not only from the individual arrays shown on the left column.

To validate the modeled noise against the noise present on
real CT artifacts, we correlated the 2D histograms of simulated
artifacts with those of real artifacts (Supplementary Figure 8).

Accordingly, we obtained a “best fit” simulation for each real
case. As expected, low-noise real CT artifacts correlated better
with low-noise simulations and vice versa.
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To obtain an overall perspective of this relationship,
we fitted a linear regression model between the estimated
noise level (i.e., entropy) of the best fit simulations
and the estimated noise level of the real data artifacts.
Consequently, the model real_entropy_normalized = β0 + β1

simulation_entropy_normalized was used to assess their
relationship. We observed a significant linear correlation
between the estimated noise levels of the real CT artifacts
and the estimated noise level of their best-fitting simulation
counterparts (Figure 8; β0 = −0.010, β1 = 0.493, R2 = 0.413,
F(1,92) = 64.409, p = 3.187e-12).

Example I: Evaluation of cluster-based
localization methods

To show the usefulness of our simulation framework, we
evaluated two electrode localization algorithms in ∼3,300 grid
and strip scenarios under 12 different noise level realizations
each (∼40,000 simulations in total). Coordinates were localized
using k-means and k-medoids methods and contrasted with the
ground truth simulated coordinates to evaluate their accuracy
(Supplementary Figure 9 shows two exemplary results).

As expected, the median and maximum localization errors
were affected by noise levels (Figure 9). K-medoids median
localization error was below 15% of the IED when considering

all noise levels and below 5% for medium and low noise levels.
Instead, K-means showed larger median and maximum errors
in all noise levels for IEDs of 3 and 5 mm arrays, and for the three
highest noise levels in 10 mm IED arrays (Wilcoxon signed-rank
test, p< 0.05, FDR corrected).

Large effects (r > 0.5, Cohen, 1992) in the median
localization error were observed across all noise levels in 5 mm
IED grids. Instead, 3 and 10 mm IED arrays showed large effects
for the largest three and the largest noise level, respectively
(Figure 9A, top). Similar effects were observed for the maximum
localization error (Figure 9B, top).

Example II: Interactive simulations in
patient’s native brain space

To further demonstrate the usefulness of our platform, we
tested the algorithms on a patient’s native anatomical brain space
(i.e., unnormalized space). We successfully simulated grids,
strips, and depth electrodes using the dedicated controls in
the GUI. The interactive interface allowed us to define their
locations and orientations precisely. The 2D and 3D views
provided a clear interpretation of the array locations in relation
to the brain’s pial surface and subcortical structures. Moreover,
observing the subject-specific parcellation atlas aided in defining
their anatomical location.

FIGURE 8

Correlation between real and simulated noise. The figure illustrates that real data noise linearly correlates with simulation noise. The entropy of
the cross-correlation between 2D histograms was used as a proxy for noise levels. Individual marks represent a “best fit” simulation – real data
pair. The best fit simulation was determined by the highest correlation between their corresponding 2D intensity-radius histograms (see
Supplementary Figure 8). Entropy values were normalized (mean subtracted) to account for the effect of artifact size.
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FIGURE 9

Localization error is affected by the noise level. Localization errors from k-means and k-medoids clustering algorithms. Localized coordinates
were contrasted with the ground truth simulated coordinates to obtain localization errors. The median (A) and the maximum (B) localization
error increase with the simulated noise level. Grids and strips of 3 and 5 mm IEDs are more likely to be affected by noise than arrays of 10 mm
IED. The top images show the effect size of the difference between k-means and k-medoids methods. Non-significant differences are depicted
with semitransparent colors.

Figure 10 shows multiple electrode arrays simulated over
the pial surface of a single patient. A high-density grid (5 mm
IED) was simulated over the right fronto-temporo-parietal
region, and its fifth row was particularly aligned with the
superior temporal gyrus. Smaller grids were simulated over the
fronto-parietal cortex, and strips were simulated to cover the
anterior lateral frontal and orbitofrontal cortices, and the middle
and inferior temporal gyrus. Note that grid electrodes were not
forced to contact the pial- but the SCE surface.

Discussion

Summary of results

Several automatic or semi-automatic electrode localization
algorithms have been developed in recent years (Arnulfo et al.,
2015; Hamilton et al., 2017; Branco et al., 2018a,b; Granados
et al., 2018; Centracchio et al., 2021). However, given the
lack of ground truth data, the validation of these methods
lacks standardization, imposing a major limitation on one of
the most important benefits of analyzing brain activity from
intracranial recordings, namely its excellent spatial resolution.
Therefore, how can we compare the precision of different
localization methods validated using different, usually small,
datasets? Moreover, how do we know that these datasets
represent important features (e.g., noise) of the data we are
analyzing in a particular study? These questions are not easily

answered, but we expect that simulations can provide a closer
approximation to the ground truth in the attempt to answer
them.

We provide the first modeling platform of intracranial
electrodes to establish a test bench for electrode localization
algorithms. Our simulations covered a wide range of realistic
scenarios that can be useful for testing localization algorithms.
To achieve our aim, we developed novel methods to model
intracranial EEG electrode coordinates and the CT artifacts
typically produced by these. We mimicked realistic scenarios by
simulating implanted arrays of various geometrical dimensions
in a wide range of cortical curvatures. We simulated
grid and strip coordinates by fitting models to the SCE
surface. In addition, we modeled depth electrodes between
anatomical target and entry points and precisely defined their
bending profile.

Then, we simulated the CT artifacts at the electrodes’
coordinates. The signal intensity distribution over space, the
shape of the artifacts, and the orientation of each cluster
of high-intensity voxels were carefully modeled. Moreover,
different noise levels were simulated and validated with
real data.

An extensive database with ∼50,000 cases is freely available
for this purpose (see Data availability statement). We focused
on providing control over those situations where localization
algorithms might fail or encounter difficulties, such as high-
density arrays (grids and depth electrodes), high noise levels,
overlapping grids, or highly curved implants.
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FIGURE 10

Interactive electrode simulations on a patient’s native brain anatomy. Example of electrodes simulated on a native space brain anatomy using
the interactive GUI provided in iElectrodes. The controls (magenta box) are used for displacing and rotating 2D flat grid or strip models over the
SCE surface (similar to Figure 2D). The 3D view is particularly useful for defining the location of the arrays in relation to the lateral pial surfaces,
whereas the 2D views help to identify their relation to sulci and deep structures. When the desired location and orientation are achieved, arrays
are fitted to the SCE surface. For depth electrodes, target and entry points are manually defined in the 2D views. The 2D slices show the
Destrieux atlas (color coded), the T1-weighted MRI image, and the simulated coordinates (green ‘x’), making the anatomical identification of the
arrays easier. Note that electrodes were fitted to the SCE surface, but the pial brain surface is shown for illustrative purposes. SCE, smooth
cortical envelope. GUI, graphical user interface.

Finally, we showed the impact of noise on the accuracy of
two electrode localization algorithms.

Modeling implantation coordinates

From a visual perspective, simulated coordinates in grids,
strips, and depth electrode arrays resemble those of real
data. Grid and strips naturally followed the SCE curvature
with almost uniformly distributed coordinates, whereas
depth electrodes depicted realistically curved trajectories.
Moreover, we modeled overlapping CT artifacts for grids
and strips, controlling the size, orientation, and the number
of overlapping electrodes. These features add realism to the
models not shown before.

To objectively evaluate the accuracy of grid and strip
implantation models, we measured their deformation (i.e.,
changes in the inter-electrode distance). Fitting grids or
strips over the SCE surface introduce deformations since
plane- or line-shaped models must bend to fit the curved
brain envelope surface. Importantly, deformation values were
relatively small (<0.3% of the IED), indicating that the resulting
models are reliable. As an upper bound reference for our
method, we measured the IED deformations in real arrays.
These deformations were one order of magnitude larger,

indicating that our method did not introduce unrealistically
high deformations. In our approach, we discarded simulations
where the individual IED deformations exceeded 5% of the IED,
which might be overly conservative.

As shown in Figure 5A, grid deformations increased with
larger IEDs. We theorized that bigger grids had to deform more
to cover a larger extent of the curved SCE surface, in contrast
to smaller grids that suffer less deformation in the reduced
area they overlay. Similarly, higher levels of curvature produced
larger deformation values (Figure 5B).

Parameter K (Equation 1) controls the deformation
introduced in the fitting procedure. We defined K = 1,000, which
allowed very small deformations (Trotta et al., 2018). However,
for large high-density grids (IED of 3 mm), we had to reduce
the value to K = 100 since the algorithm did not reach feasible
solutions in most scenarios. We suggest using the highest K
value that reaches a feasible solution, therefore introducing the
smallest deformations.

Grid and strip electrodes fitting to the SCE were
constrained by ε, a tolerance distance between these two.
Overall, the resulting distances between electrodes and SCE
were negligible compared to the IEDs, indicating successful
algorithm performance.

Depth electrode arrays, on the other hand, bend during
implantation, mainly due to brain shift.
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Our simulations successfully resulted in deformation values
equivalent to those observed in real data (Supplementary
Figure 3A) and those reported in clinical practice (∼1–
3 mm at the tip; Cardinale et al., 2013; Vakharia et al., 2017;
Granados et al., 2018). Interestingly, the bending pattern was
not symmetrical as expected, and further research is needed to
understand its behavior.

Our approach provides precise bending control by applying
an arc-shaped function that departs from the original straight
linear model. We used a symmetric Lanczos window function
for this purpose. However, the use of other arc-shaped functions
is straightforward.

Our approach does not consider deviations from the
planned implantation trajectory, which can introduce other
errors (Vakharia et al., 2017; Granados et al., 2018).

Besides the simulations on MNI space, we also showed the
feasibility of simulating on individual (real) subject space. This
adds to building even more realistic simulations that could help
map expected localization errors at the individual level.

Simulation of computer tomography
artifacts, noise, and overlapping
electrodes

CT artifacts corresponding to grids and strip electrodes
were placed over the SCE surface, keeping the electrode’s
principal axes orthogonal to the surface. Meanwhile, the ones
corresponding to depth electrode arrays penetrating the brain
were aligned to the arrays’ main axes (Figure 6). From a visual
perspective, simulated artifacts echo those observed in real data.

Previously, models of individual electrode CT artifacts were
done as uniform intensity cylinders without considering the
details examined in the current study (Brang et al., 2016). We
defined ellipsoid-shaped artifacts, with the intensity changing
as a function of the radius. The electrode models produced
a histogram profile resembling real artifacts, i.e., an intensity
decrease with increasing radius (Figure 7).

The introduction of noise played a substantial role in
producing realistic CT artifacts and was captured by the
intensity-radius histograms (Figures 6, 7). Adding correlated
noise introduced realistic shape deformations and was visually
perceived to affect the center of mass of the electrodes. This
feature provides a wider range of difficult scenarios and makes
localization more challenging.

A classical approach for characterizing noise in medical
images is the subtraction of a smoothed mean image. However,
this approach is inappropriate for intensity transitions like those
present in intracranial electrode artifacts (Gravel et al., 2004).
To circumvent this limitation, we used an information theory
approach inspired by techniques quantifying image focus (Bove,
1993; Kristan and Pernu, 2004). In this respect, the measure’s
sensitivity to simulated noise was an important consistency

check (Supplementary Figures 6, 7), which allowed us to show
that noise levels in simulated artifacts mimic those observed in
real data (Figure 8). Note that our model explained∼40% of the
real noise variance, indicating their high similarity.

The relevance of intracranial electrode
models for localization algorithms

Over the last decade, several approaches have been proposed
to localize intracranial electrodes based on CT and MRI
images. The majority used post-implantation CT and pre-
implantation MRI images.

The detection of CT artifacts has typically been a manual
process (Princich et al., 2013), but has recently been approached
by semiautomatic techniques such as clustering voxels of high
intensity (Taimouri et al., 2014; Blenkmann et al., 2015, 2017;
Brang et al., 2016; Qin et al., 2017; Branco et al., 2018a; Granados
et al., 2018), shape analysis (Centracchio et al., 2021), or the
interpolation of coordinates given entry and target points in
depth electrodes (Arnulfo et al., 2015; Li et al., 2020). Moreover,
several approaches have been integrated in novel processing
pipelines (LaPlante et al., 2016; Blenkmann et al., 2017; Groppe
et al., 2017; Stolk et al., 2018; Li et al., 2020; Davis et al., 2021;
Rockhill et al., 2022), providing users several alternatives and
even handling group studies (Deman et al., 2018).

Noise and overlapping electrodes are two well-known
difficulties for localization algorithms, which hamper the success
of automatic methods. For example, Brang et al. (2016) excluded
overlapping electrodes from the analysis, given the resulting
difficulties, while others treated such cases manually (Taimouri
et al., 2014; LaPlante et al., 2016; Branco et al., 2018a;
Centracchio et al., 2021). In the same vein, Narizzano et al.
(2017) observed errors in their depth electrode estimations
associated with other electrodes in close proximity, requiring
manual intervention from the user. Moreover, noise signals
could be mistakenly detected as electrodes (LaPlante et al.,
2016), whereas CT image resolution affects localization accuracy
(Brang et al., 2016). Apart from the studies above, the effect of
SNR on electrode localization algorithms’ accuracy was rarely
discussed, most likely due to the lack of standardized measures
to quantify the noise level. The framework proposed here
provides a controlled simulation of noise levels and overlapping
electrodes, allowing performance evaluation of localization
algorithms.

Recently, Centracchio et al. (2021) proposed a novel
approach to detect electrode artifacts using a Gaussian support
vector machine. Classification accuracy was very high in the
analyzed datasets. However, these were restricted to a small
number of geometries and electrode sizes. Similar results were
obtained by applying deep learning to depth SEEG and DBS
electrodes (Vlasov et al., 2021). Approaches like these could
strongly benefit from large databases, such as the ones offered
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here, making their results generalizable across a wider range of
geometries.

The spatial resolution of grids and depth electrodes has
increased over the last years (Chang, 2015; Erhardt et al.,
2020), and high-density arrays are more informative than low-
density ones in both cognitive (Gupta et al., 2014; Jiang et al.,
2018) and clinical research (Stead et al., 2010). High-density
electrodes require additional spatial precision and can be an
obstacle for many of the frequently used localization algorithms
(Hamilton et al., 2017; Narizzano et al., 2017; Branco et al.,
2018b). Simulations can be a reliable platform for developing
novel localization techniques for high-density electrode arrays.

Importantly, our models introduced deformations on the
order of 1/1,000 of the inter-electrode distance, and distances
between electrodes and the SCE on the order of 1/100 mm,
which ensure precise modeling of the grids and strips. These
errors and deformations were negligible compared to those
observed with previous localization (∼0.2–0.6 mm; Blenkmann
et al., 2017; Narizzano et al., 2017) and brain-shift correction
algorithms (∼2–3 mm; Brang et al., 2016; Branco et al., 2018a,b;
Trotta et al., 2018).

As a proof of concept, we evaluated two electrode
localization algorithms, k-means and k-medoids. Knowing the
ground truth location allowed us to characterize how noise
levels affected their accuracy, and to have strong evidence to
conclude that k-medoids perform better than k-means in most
situations. In a similar way, the current framework has been
used to develop a novel localization algorithm called GridFit,
which is embedded in the iElectrodes toolbox1 (Blenkmann
et al., 2017; more details about the algorithm will be provided
in a forthcoming publication). The simulation platform was
used to define the optimal set of parameters needed to precisely
localize electrodes under controlled levels of noise, overlap,
and curvature. The simulated scenarios helped to identify the
sensitivity of the parameters to these variables independently.
The same achievement would have been impossible using
real data, given the scarce nature of the data and the lack
of control of the variables of interest. It is our intent that
others find the simulation platform useful to develop novel
localization tools.

Assumptions, limitations, and future
directions

Although we provide a substantial number of scenarios and
a good starting point to model implanted electrodes, there are
some limitations in the current models.

First, we took a simple approach to the spatial intensity
distribution of CT artifacts. The simplistic assumption allowed
us to build realistic models of large arrays of electrodes.

1 https://sourceforge.net/projects/ielectrodes/

However, more sophisticated approaches could be
implemented, considering the x-ray interaction with metallic
electrodes (i.e., beam hardening, scatter effects, and Poisson
noise), and the corresponding alteration produced in the image
reconstructions (Boas and Fleischmann, 2011; Katsura et al.,
2018). Developments in this direction could pave the way to
model the artifacts produced by microwires at the tip of depth
electrodes (e.g., Behnke–Fried electrodes, Ad-Tech Medical)
and the design of novel localization algorithms for this specific
and unsolved problem.

Moreover, alterations in the electrode shapes might be
caused by beam hardening (Boas and Fleischmann, 2011;
Centracchio et al., 2021), and in some situations, streak artifacts
can be prominent in CT images, but these are typically
removed by thresholding (LaViolette et al., 2011b). Accordingly,
we modeled electrode artifacts after thresholding, as most
algorithms are applied to this type of data. However, there might
be some cases where thresholding is a fundamental step to assess
(e.g., Davis et al., 2021). CT image augmentation and more
complex models need to be developed for such instances.

Second, the implantation of intracranial grids and strips
is a procedure that results in brain tissue deformation.
Deformations of 10 mm or more can occur on the brain
surface around the electrodes or in deeper brain structures
due to cerebrospinal fluid loss in the ventricles (Studholme
et al., 2001; LaViolette et al., 2011a). Implantation of depth
electrodes might also produce brain deformations, but to a
much lower extent, with a smaller amount of cerebrospinal fluid
loss, if any (Elias et al., 2007). Modeling brain deformations
is a challenging problem, where multiple variables have to be
considered, such as the size and location of the skull opening,
the amount of cerebrospinal fluid loss, and the swelling of soft
tissue, among other factors (Studholme et al., 2001). Given the
complexity of the problem, we assumed non-deformed brains
in our simulations, which precludes their use to evaluate brain-
shift correction algorithms. The use of non-linear finite element
methods can be a successful way to model these more complex
brain deformations (Wittek et al., 2007).

Finally, we should mention that the volume covered by
the target coordinates in the depth electrode simulations is
far from covering the full brain volume. Similarly, we did
not cover the complete lateral cortex with grids and strips.
However, this is possible in the current framework by carefully
selecting the entry and target coordinates, seed points, electrode
sizes, and geometries.

Conclusion

Intracranial EEG recordings allow us to study brain function
with excellent spatial resolution and rely on precisely localizing
the implanted electrodes. Here, we presented the first platform
to model electrode coordinates and CT artifacts of implanted
grids, strips, and depth electrodes.
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Implanted electrodes under realistic scenarios were
successfully modeled with high accuracy, resembling real
cases. These methods enable the systematic and quantitative
evaluation of electrode localization strategies, contributing to
the development of more accurate techniques. The platform
could be a starting point for more sophisticated models, such as
brain tissue deformations or microwires.

The modeling methods and simulation results are freely
available to the research community via open repositories.
Moreover, a graphical user interface implementation is also
available via the open-source iElectrodes toolbox.

Data availability statement

The scripts and simulated datasets presented in this study
can be found in online repositories. The name of the repository
and accession number can be found below: Center for Open
Science (COS) Open Science Framework (OSF), https://osf.
io/9fsm3/, doi.org/doi: 10.17605/OSF.IO/9FSM3. A graphical
interface for the interactive simulation of electrode coordinates
is available within the iElectrodes toolbox at https://sourceforge.
net/projects/ielectrodes/. The patients’ datasets analyzed in this
study are not publicly available due to our ethical approval
conditions that do not permit public archiving of anonymized
study data.

Ethics statement

The studies involving human participants were reviewed
and approved by the Regional Committees for Medical and
Health Research Ethics, Region North Norway (REK 2015/175),
and the Human Subjects Committees at UCSF, UC Irvine, and
UC Berkeley. The patients provided their written informed
consent to participate in this study.

Author contributions

AOB, A-KS, and TE designed this study. AOB coded and
tested the software tools, performed the analyses, and wrote the
manuscript. TE, A-KS, PL, JI, and RK provided the data and
validated the results. All authors revised the manuscript, read,
and approved the final manuscript.

Funding

This work was partly supported by the Research
Council of Norway, project numbers 240389 and 314925,
through its Centres of Excellence scheme, project number
262762, and Intpart, project number 274996, NINDS Grant
R37NS21135, NIMH CONTE Center P50MH109429, and Brain
Initiative U01-NS108916.

Acknowledgments

We are grateful to the patients for kindly participating in our
study. We thank FRONT Neurolab/RITMO members for their
rich discussions and the reviewers for their useful comments and
suggestions that improved the quality of this manuscript. This
study has previously appeared online at https://www.biorxiv.
org/content/10.1101/2021.04.28.441828v1.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be
found online at: https://www.frontiersin.org/articles/10.3389/
fninf.2022.788685/full#supplementary-material

References

Arnulfo, G., Narizzano, M., Cardinale, F., Fato, M. M., and Palva, J. M.
(2015). Automatic segmentation of deep intracerebral electrodes in computed
tomography scans. BMC Bioinformatics 16:99. doi: 10.1186/s12859-015-0511-6

Blenkmann, A., Phillips, H., Princich, J. P., and Kochen, S. (2015). “Grid and
depth intracranial electrodes localization in a normalized space using MRI and CT
images,” in VI Latin American Congress on Biomedical Engineering CLAIB 2014,

Paraná, Argentina 29, 30 & 31 October 2014, A. Braidot., A. Hadad. (eds) (Cham:
Springer) Vol. 64, 413–416. doi: 10.1007/978-3-319-13117-7_106

Blenkmann, H. N., Princich, J. P., Rowe, J. B., Bekinschtein, T. A., et al. (2017).
iElectrodes: A Comprehensive Open-Source Toolbox for Depth and Subdural Grid
Electrode Localization. Front. Neuroinformatics 11:14. doi: 10.3389/fninf.2017.
00014

Frontiers in Neuroinformatics 18 frontiersin.org

https://doi.org/10.3389/fninf.2022.788685
https://osf.io/9fsm3/
https://osf.io/9fsm3/
https://doi.org/doi: 10.17605/OSF.IO/9FSM3
https://sourceforge.net/projects/ielectrodes/
https://sourceforge.net/projects/ielectrodes/
https://www.biorxiv.org/content/10.1101/2021.04.28.441828v1.
https://www.biorxiv.org/content/10.1101/2021.04.28.441828v1.
https://www.frontiersin.org/articles/10.3389/fninf.2022.788685/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fninf.2022.788685/full#supplementary-material
https://doi.org/10.1186/s12859-015-0511-6
https://doi.org/10.1007/978-3-319-13117-7_106
https://doi.org/10.3389/fninf.2017.00014
https://doi.org/10.3389/fninf.2017.00014
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-788685 October 1, 2022 Time: 16:16 # 19

Blenkmann et al. 10.3389/fninf.2022.788685

Blenkmann, O., Collavini, S., Lubell, J., Llorens, A., Funderud, I., et al. (2019).
Auditory deviance detection in the human insula: An intracranial EEG study.
Cortex 121, 189–200. doi: 10.1016/j.cortex.2019.09.002

Boas, F. E., and Fleischmann, D. (2011). Evaluation of two iterative techniques
for reducing metal artifacts in computed tomography. Radiology 259, 894–902.

Bove, V. M. (1993). Entropy-based depth from focus. J. Optical Soc. Am. 10:561.
doi: 10.1364/josaa.10.000561

Branco, M. P., Leibbrand, M., Vansteensel, M. J., Freudenburg, Z. V., and
Ramsey, N. F. (2018b). GridLoc: An automatic and unsupervised localization
method for high-density ECoG grids. NeuroImage 179, 225–234. doi: 10.1016/j.
neuroimage.2018.06.050

Branco, M. P., Gaglianese, A., Glen, D. R., Hermes, D., Saad, Z. S., Petridou, N.,
et al. (2018a). ALICE: A tool for automatic localization of intracranial electrodes
for clinical and high-density grids. J. Neurosci. Methods 301, 43–51. doi: 10.1016/j.
jneumeth.2017.10.022

Brang, D., Dai, Z., Zheng, W., and Towle, V. L. (2016). Registering imaged ECoG
electrodes to human cortex: A geometry-based technique. J. Neurosci. Methods
273, 64–73. doi: 10.1016/j.jneumeth.2016.08.007

Britten, A. J., Crotty, M., Kiremidjian, H., Grundy, A., and Adam, E. J. (2004).
The addition of computer simulated noise to investigate radiation dose and
image quality in images with spatial correlation of statistical noise: An example
application to X-ray CT of the brain. Br. J. Radiol. 77, 323–328. doi: 10.1259/bjr/
78576048

Cardinale, F., Cossu, M., Castana, L., Casaceli, G., Schiariti, M. P., Miserocchi,
A., et al. (2013). Stereoelectroencephalography: Surgical methodology, safety, and
stereotactic application accuracy in 500 procedures. Neurosurgery 72, 353–366.
doi: 10.1227/NEU.0b013e31827d1161

Centracchio, J., Sarno, A., Esposito, D., Andreozzi, E., Pavone, L., Di Gennaro,
G., et al. (2021). Efficient automated localization of ECoG electrodes in CT images
via shape analysis. Int. J. Comput. Assist. Radiol. Surgery 16: 543–554. doi: 10.1007/
s11548-021-02325-0

Chang, E. F. (2015). Towards Large-Scale, Human-Based, Mesoscopic
Neurotechnologies. Neuron 86, 68–78. doi: 10.1016/j.neuron.2015.03.037

Cohen, J. (1992). A power primer. Psychol. Bull. 112, 155–159.

Dale, A. M., Fischl, B., and Sereno, M. I. (1999). Cortical surface-based analysis.
I. Segmentation and surface reconstruction. NeuroImage 9, 179–194. doi: 10.1006/
nimg.1998.0395

Davis, T. S., Caston, R. M., Philip, B., Charlebois, C. M., Anderson, D. N.,
Weaver, K. E., et al. (2021). LeGUI: A Fast and Accurate Graphical User Interface
for Automated Detection and Anatomical Localization of Intracranial Electrodes.
Front. Neurosci. 15:769872. doi: 10.3389/fnins.2021.769872

Deman, P., Bhattacharjee, M., Tadel, F., Job, A. S., Rivière, D., Cointepas, Y.,
et al. (2018). IntrAnat Electrodes: A Free Database and Visualization Software for
Intracranial Electroencephalographic Data Processed for Case and Group Studies.
Front. Neuroinformatics 12:40. doi: 10.3389/fninf.2018.00040

Destrieux, C., Fischl, B., Dale, A., and Halgren, E. (2010). Automatic parcellation
of human cortical gyri and sulci using standard anatomical nomenclature.
NeuroImage 53, 1–15. doi: 10.1016/j.neuroimage.2010.06.010

Dykstra, A. R., Chan, A. M., Quinn, B. T., Zepeda, R., Keller, C. J., Cormier, J.,
et al. (2012). Individualized localization and cortical surface-based registration of
intracranial electrodes. NeuroImage 59, 3563–3570.

Elias, W. J., Fu, K.-M., and Frysinger, R. C. (2007). Cortical and subcortical brain
shift during stereotactic procedures. J. Neurosurg. 107, 983–988.

Erhardt, J. B., Lottner, T., Pasluosta, C. F., Gessner, I., Mathur, S., Schuettler, M.,
et al. (2020). Fabrication and validation of reference structures for the localization
of subdural standard- and micro-electrodes in MRI. J. Neural Eng. 17:046044.

Fang, Q., and Boas, D. A. (2009). “Tetrahedral mesh generation from
volumetric binary and grayscale images,” in 2009 IEEE International Symposium
on Biomedical Imaging: From Nano to Macro, (Piscataway, NJ: IEEE), 1142–1145.

Frauscher, B., von Ellenrieder, N., Zelmann, R., Doležalová, I., Minotti, L.,
Olivier, A., et al. (2018). Atlas of the normal intracranial electroencephalogram:
neurophysiological awake activity in different cortical areas. Brain 141, 1130–1144.
doi: 10.1093/brain/awy035

Granados, A., Vakharia, V., Rodionov, R., Schweiger, M., Vos, S. B., O’Keeffe,
A. G., et al. (2018). Automatic segmentation of stereoelectroencephalography
(SEEG) electrodes post-implantation considering bending. Int. J. Comput. Assist.
Radiol. Surg. 13, 935–946. doi: 10.1007/s11548-018-1740-8

Gravel, P., Beaudoin, G., and DeGuise, J. A. (2004). A Method for Modeling
Noise in Medical Images. IEEE Trans. Med. Imaging 23, 1221–1232. doi: 10.1109/
TMI.2004.832656

Groppe, D. M., Bickel, S., Dykstra, A. R., Wang, X., Mégevand, P., Mercier,
M. R., et al. (2017). iELVis: An open source MATLAB toolbox for localizing and

visualizing human intracranial electrode data. J. Neurosci. Methods 281, 40–48.
doi: 10.1016/j.jneumeth.2017.01.022

Gupta, D., Hill, N. J., Adamo, M. A., Ritaccio, A., and Schalk, G. (2014).
Localizing ECoG electrodes on the cortical anatomy without post-implantation
imaging. NeuroImage 6, 64–76. doi: 10.1016/j.nicl.2014.07.015

Hamilton, L. S., Chang, D. L., Lee, M. B., and Chang, E. F. (2017). Semi-
automated Anatomical Labeling and Inter-subject Warping of High-Density
Intracranial Recording Electrodes in Electrocorticography. Front Neuroinform.
11:62. doi: 10.3389/fninf.2017.00062

Hartigan, J. A., and Wong, M. A. (1979). Algorithm AS 136: A K-Means
Clustering Algorithm. Appl. Statist. 28:100. doi: 10.2307/2346830

Hinds, W. A., Misra, A., Sperling, M. R., Sharan, A., Tracy, J. I., and Moxon,
K. A. (2018). Enhanced co-registration methods to improve intracranial electrode
contact localization. NeuroImage 20, 398–406. doi: 10.1016/j.nicl.2018.07.026

Jiang, T., Liu, S., Pellizzer, G., Aydoseli, A., Karamursel, S., Sabanci, P. A.,
et al. (2018). Characterization of Hand Clenching in Human Sensorimotor Cortex
Using High-, and Ultra-High Frequency Band Modulations of Electrocorticogram.
Front. Neurosci. 12:110. doi: 10.3389/fnins.2018.00110

Katsura, M., Sato, J., Akahane, M., Kunimatsu, A., and Abe, O. (2018). Current
and novel techniques for metal artifact reduction at CT: Practical guide for
radiologists. Radiographics 38, 450–461. doi: 10.1148/rg.2018170102

Kaufman, L., and Rousseeuw, P. J. (1990). Partitioning Around Medoids
(Program PAM). In Finding Groups in Data: An Introduction to Cluster Analysis.
Hoboken, NJ: John Wiley & Sons, Ltd, doi: 10.1002/9780470316801.ch2

Kristan, M., and Pernu, F. (2004). “Entropy based measure of camera focus,” in
Proceedings of the thirteenth electrotechnical and computer science conference ERKI
(Portorož: IEEE), 179–182.

Lachaux, J. P., Rudrauf, D., and Kahane, P. (2003). Intracranial EEG and human
brain mapping. J. Physiol. Paris 97, 613–628. doi: 10.1016/j.jphysparis.2004.01.018

LaPlante, R. A., Tang, W., Peled, N., Vallejo, D. I., Borzello, M., Dougherty,
D. D., et al. (2016). The interactive electrode localization utility: software for
automatic sorting and labeling of intracranial subdural electrodes. Int. J. Comput.
Assist. Radiol. Surg. 12:1829–1837. doi: 10.1007/s11548-016-1504-2

LaViolette, P. S., Rand, S. D., Raghavan, M., Ellingson, B. M., Schmainda, K. M.,
and Mueller, W. (2011b). Three-dimensional visualization of subdural electrodes
for presurgical planning. Neurosurgery 68, 152–161.

LaViolette, P. S., Rand, S. D., Ellingson, B. M., Raghavan, M., Lew, S. M.,
Schmainda, K. M., et al. (2011a). 3D visualization of subdural electrode shift as
measured at craniotomy reopening. Epilepsy Res. 94, 102–109.

Li, G., Jiang, S., Chen, C., Brunner, P., Wu, Z., Schalk, G., et al. (2019). iEEGview:
An open-source multifunction GUI-based Matlab toolbox for localization and
visualization of human intracranial electrodes. J. Neural Eng. 17:016016. doi: 10.
1088/1741-2552/ab51a5

Li, G., Jiang, S., Chen, C., Brunner, P., Wu, Z., Schalk, G., et al. (2020). IEEGview:
An open-source multifunction GUI-based Matlab toolbox for localization and
visualization of human intracranial electrodes. J. Neural Eng. 17:016016.

Martin, S., Iturrate, I., Millán, J., del, R., Knight, R. T., and Pasley, B. N. (2018).
Decoding inner speech using electrocorticography: Progress and challenges
toward a speech prosthesis. Front. Neurosci. 12:422. doi: 10.3389/fnins.2018.00422

Narizzano, M., Arnulfo, G., Ricci, S., Toselli, B., Tisdall, M., Canessa, A., et al.
(2017). SEEG assistant: a 3DSlicer extension to support epilepsy surgery. BMC
Bioinformatics 18:124. doi: 10.1186/s12859-017-1545-8

Pallant, J. (2007). SPSS survival manual: a step by step guide to data analysis using
SPSS for Windows (version 15). 335.

Parvizi, J., and Kastner, S. (2017). Human intracranial EEG: Promises and
Limitations. Nat. Neurosci. 21, 474–483. doi: 10.1038/s41593-018-0108-2

Princich, J. P., Wassermann, D., Latini, F., Oddo, S., Blenkmann, A., Seifer,
G., et al. (2013). Rapid and efficient localization of depth electrodes and
cortical labeling using free and open source medical software in epilepsy surgery
candidates. Front. Neurosci. 7:260. doi: 10.3389/fnins.2013.00260

Qin, C., Tan, Z., Pan, Y., Li, Y., Wang, L., Ren, L., et al. (2017). Automatic and
Precise Localization and Cortical Labeling of Subdural and Depth Intracranial
Electrodes. Front. Neuroinform. 11:10. doi: 10.3389/fninf.2017.00010

Rockhill, A., Larson, E., Stedelin, B., Mantovani, A., Raslan, A., Gramfort, A.,
et al. (2022). Intracranial Electrode Location and Analysis in MNE-Python. J. Open
Sour. Softw. 7:3897. doi: 10.21105/joss.03897

Rosenow, F., and Lüders, H. (2001). Presurgical evaluation of epilepsy. Brain
124, 1683–1700. doi: 10.1093/brain/124.9.1683

Rusinkiewicz, S. (2004). “Estimating curvatures and their derivatives on triangle
meshes,” in Proceedings - 2nd International Symposium on 3D Data Processing,
Visualization, and Transmission. 3DPVT,(Piscataway, NJ) Vol. 2004, 486–493.
doi: 10.1109/TDPVT.2004.1335277

Frontiers in Neuroinformatics 19 frontiersin.org

https://doi.org/10.3389/fninf.2022.788685
https://doi.org/10.1016/j.cortex.2019.09.002
https://doi.org/10.1364/josaa.10.000561
https://doi.org/10.1016/j.neuroimage.2018.06.050
https://doi.org/10.1016/j.neuroimage.2018.06.050
https://doi.org/10.1016/j.jneumeth.2017.10.022
https://doi.org/10.1016/j.jneumeth.2017.10.022
https://doi.org/10.1016/j.jneumeth.2016.08.007
https://doi.org/10.1259/bjr/78576048
https://doi.org/10.1259/bjr/78576048
https://doi.org/10.1227/NEU.0b013e31827d1161
https://doi.org/10.1007/s11548-021-02325-0
https://doi.org/10.1007/s11548-021-02325-0
https://doi.org/10.1016/j.neuron.2015.03.037
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.1006/nimg.1998.0395
https://doi.org/10.3389/fnins.2021.769872
https://doi.org/10.3389/fninf.2018.00040
https://doi.org/10.1016/j.neuroimage.2010.06.010
https://doi.org/10.1093/brain/awy035
https://doi.org/10.1007/s11548-018-1740-8
https://doi.org/10.1109/TMI.2004.832656
https://doi.org/10.1109/TMI.2004.832656
https://doi.org/10.1016/j.jneumeth.2017.01.022
https://doi.org/10.1016/j.nicl.2014.07.015
https://doi.org/10.3389/fninf.2017.00062
https://doi.org/10.2307/2346830
https://doi.org/10.1016/j.nicl.2018.07.026
https://doi.org/10.3389/fnins.2018.00110
https://doi.org/10.1148/rg.2018170102
https://doi.org/10.1002/9780470316801.ch2
https://doi.org/10.1016/j.jphysparis.2004.01.018
https://doi.org/10.1007/s11548-016-1504-2
https://doi.org/10.1088/1741-2552/ab51a5
https://doi.org/10.1088/1741-2552/ab51a5
https://doi.org/10.3389/fnins.2018.00422
https://doi.org/10.1186/s12859-017-1545-8
https://doi.org/10.1038/s41593-018-0108-2
https://doi.org/10.3389/fnins.2013.00260
https://doi.org/10.3389/fninf.2017.00010
https://doi.org/10.21105/joss.03897
https://doi.org/10.1093/brain/124.9.1683
https://doi.org/10.1109/TDPVT.2004.1335277
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/


fninf-16-788685 October 1, 2022 Time: 16:16 # 20

Blenkmann et al. 10.3389/fninf.2022.788685

Stead, M., Bower, M., Brinkmann, B. H., Lee, K., Marsh, W. R., Meyer, F. B., et al.
(2010). Microseizures and the spatiotemporal scales of human partial epilepsy.
Brain 133, 2789–2797. doi: 10.1093/brain/awq190

Stolk, A., Griffin, S., Van Der Meij, R., Dewar, C., Saez, I., Lin, J. J.,
et al. (2018). Integrated analysis of anatomical and electrophysiological
human intracranial data. Nat. Protoc. 13, 1699–1723. doi: 10.1038/s41596-018-
0009-6

Studholme, C., Hill, D. L. G., and Hawkes, D. J. (1999). An overlap invariant
entropy measure of 3D medical image alignment. Pattern Recognit. 32, 71–86.
doi: 10.1016/S0031-3203(98)00091-0

Studholme, C., Novotny, E., Zubal, I. G., and Duncan, J. S. (2001). Estimating
tissue deformation between functional images induced by intracranial electrode
implantation using anatomical MRI. NeuroImage 13, 561–576. doi: 10.1006/nimg.
2000.0692

Taimouri, V., Akhondi-Asl, A., Tomas-Fernandez, X., Peters, J. M., Prabhu,
S. P., Poduri, A., et al. (2014). Electrode localization for planning surgical resection

of the epileptogenic zone in pediatric epilepsy. Int. J. Comput. Assist. Radiol. Surg.
9, 91–105. doi: 10.1007/s11548-013-0915-6

Trotta, M. S., Cocjin, J., Whitehead, E., Damera, S., Wittig, J. H., Saad, Z. S., et al.
(2018). Surface based electrode localization and standardized regions of interest
for intracranial EEG. Hum. Brain Mapp. 39, 709–721. doi: 10.1002/hbm.23876

Vakharia, V. N., Sparks, R., O’Keeffe, A. G., Rodionov, R., Miserocchi, A.,
McEvoy, A., et al. (2017). Accuracy of intracranial electrode placement for
stereoencephalography: A systematic review and meta-analysis. Epilepsia 58, 921–
932. doi: 10.1111/epi.13713

Vlasov, V., Bofferding, M., Marx, L., Zhang, C., Goncalves, J., Husch, A., et al.
(2021). Automated Deep Learning-based Segmentation of Brain, SEEG and DBS
Electrodes on CT Images. Informatik aktuell 92–97. doi: 10.1007/978-3-658-
33198-6_22

Wittek, A., Miller, K., Kikinis, R., and Warfield, S. K. (2007). Patient-specific
model of brain deformation: Application to medical image registration. J. Biomech.
40, 919–929. doi: 10.1016/j.jbiomech.2006.02.021

Frontiers in Neuroinformatics 20 frontiersin.org

https://doi.org/10.3389/fninf.2022.788685
https://doi.org/10.1093/brain/awq190
https://doi.org/10.1038/s41596-018-0009-6
https://doi.org/10.1038/s41596-018-0009-6
https://doi.org/10.1016/S0031-3203(98)00091-0
https://doi.org/10.1006/nimg.2000.0692
https://doi.org/10.1006/nimg.2000.0692
https://doi.org/10.1007/s11548-013-0915-6
https://doi.org/10.1002/hbm.23876
https://doi.org/10.1111/epi.13713
https://doi.org/10.1007/978-3-658-33198-6_22
https://doi.org/10.1007/978-3-658-33198-6_22
https://doi.org/10.1016/j.jbiomech.2006.02.021
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/

	Modeling intracranial electrodes. A simulation platform for the evaluation of localization algorithms
	Introduction
	Materials and methods
	Smooth cortical envelope surface and seed points
	Modeling grid and strip electrode coordinates
	Modeling depth electrode coordinates
	Modeling overlapping grids and strips coordinates
	Modeling electrode computer tomography artifacts and their noise
	Validation
	Patients
	Electrode localization in real cases
	Validation of electrode coordinates
	Validation of computer tomography artifacts

	Example I: Evaluation of cluster-based localization methods
	Example II: Interactive modeling of implanted electrodes in patient's native brain space

	Results
	Simulation and validation of electrode array coordinates
	Simulation and validation of electrode computer tomography artifacts
	Example I: Evaluation of cluster-based localization methods
	Example II: Interactive simulations in patient's native brain space

	Discussion
	Summary of results
	Modeling implantation coordinates
	Simulation of computer tomography artifacts, noise, and overlapping electrodes
	The relevance of intracranial electrode models for localization algorithms
	Assumptions, limitations, and future directions

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	Supplementary material
	References


