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Objective and Impact Statement. This study developed and validated a deep semantic segmentation feature-based radiomics
(DSFR) model based on preoperative contrast-enhanced computed tomography (CECT) combined with clinical information to
predict early recurrence (ER) of single hepatocellular carcinoma (HCC) after curative resection. ER prediction is of great
significance to the therapeutic decision-making and surveillance strategy of HCC. Introduction. ER prediction is important for
HCC. However, it cannot currently be adequately determined. Methods. Totally, 208 patients with single HCC after curative
resection were retrospectively recruited into a model-development cohort (n = 180) and an independent validation cohort
(n = 28). DSFR models based on different CT phases were developed. The optimal DSFR model was incorporated with clinical
information to establish a DSFR-C model. An integrated nomogram based on the Cox regression was established. The DSFR
signature was used to stratify high- and low-risk ER groups. Results. A portal phase-based DSFR model was selected as the
optimal model (area under receiver operating characteristic curve (AUC): development cohort, 0.740; validation cohort, 0.717).
The DSFR-C model achieved AUCs of 0.782 and 0.744 in the development and validation cohorts, respectively. In the
development and validation cohorts, the integrated nomogram achieved C-index of 0.748 and 0.741 and time-dependent AUCs
of 0.823 and 0.822, respectively, for recurrence-free survival (RFS) prediction. The RFS difference between the risk groups was
statistically significant (P < 0:0001 and P = 0:045 in the development and validation cohorts, respectively). Conclusion. CECT-
based DSFR can predict ER in single HCC after curative resection, and its combination with clinical information further
improved the performance for ER prediction.

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most com-
mon cancers and the leading cause of cancer-related death
worldwide, especially in East Asia [1]. Given the limitation
of organ shortage for liver transplantation, hepatic resection
is the main treatment option for patients with single HCC
with well-preserved liver function, as multifocality is associ-
ated with a higher recurrence rate and impaired survival [2,
3]. Patients with early-stage HCC have a favorable prognosis

after resection, with a 5-year survival of 71.1% to 77.2% [4,
5]. However, early-stage HCC resection is still associated
with a 3-year recurrence rate of 40.1% to 43.3%, which is
the main factor contributing to the poor outcome of patients
with HCC [4, 5]. Compared with late recurrence, early
recurrence (ER, <2 years) after resection is mainly related
to the characteristics of the tumor, such as microscopic vas-
cular invasion (MVI) and surgical factors, which account for
more than 70% of the recurrence of HCC [6, 7]. Although
there is currently no widely accepted treatment to reduce
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the recurrence of HCC after resection [8], accurate predic-
tion of ER before resection is of great significance to the
grouping of clinical trials, therapeutic decision-making,
and surveillance strategy of HCC, especially for early-stage
single HCC patients [9, 10]. Unfortunately, the recurrence
of single HCC cannot currently be adequately determined
preoperatively.

Studies have reported some important histopathologic
factors such as tumor differentiation, MVI, and microsatel-
lite nodules for ER prediction after HCC resection [8, 11].
Genetic or molecular signatures have also been investigated
for predicting HCC recurrence [2, 12]. Nevertheless, these
factors and signatures are obtained through invasive surgery
or biopsy, and controversy still exists regarding the predic-
tion performance of these signatures [12]. Moreover,
because of the spatial and temporal heterogeneous nature
of tumors, genetic or molecular signatures identified from
small local tissue do not allow for real-time and comprehen-
sive characterization of the tumors [12, 13].

As a noninvasive method, medical imaging has been
widely used in the surveillance, diagnosis, staging, and prog-
nosis of HCC [8]. Recently, radiomics has become a rapidly
developing machine learning-based image analysis method:
by extracting high-throughput quantitative features from
images, data can be mined and analyzed to retrieve valuable
diagnostic and prognostic information for clinical decision-
making [14, 15]. Several studies have applied radiomics to
predict HCC recurrence and have shown promising out-
comes [9, 16]; however, the traditional radiomics approach
includes segmentation, feature extraction, and modeling,
which is time-consuming and labor-intensive, and feature
extraction is limited by the human-defined nature, which
may not be adequately representative [14, 17]. Deep learning
is another subtype of machine learning based on a neural
network structure which extracts and learns the abstract fea-
tures directly in a data-driven manner [18]. A few studies
have applied deep learning in medical image analysis to pre-
dict the recurrence of HCC [19–21]. Wang et al. [19]
adopted the ResNet network based on computed tomogra-
phy to predict ER after HCC resection. However, their study
included the patients of intermediate and advanced-stage
HCC for whom resection is not recommended as the first-
line treatment. Deep learning strategy for HCC recurrence
risk assessment after liver transplantation based on magnetic
resonance imaging [20], or after radiofrequency ablation and
surgical resection based on contrast-enhanced ultrasound
[21], has been reported and shown hopeful results. However,
external validation was not performed in all these studies.

Huang et al. [22] recently proposed a novel and effective
deep semantic segmentation feature-based radiomics (DSFR)
method, which uses the segmentation network to automati-
cally extract effective features. This method improves tumor
characterization and proposes a feature selection module to
achieve effective information integration. This novel
approach overcomes the shortcomings of deep learning-
(DL-) based classification networks that struggle to capture
representative features of lesion regions and are easy to overfit
and the shortcomings of traditional radiomics mentioned
above. Huang et al. demonstrated that the proposed DSFR

method consistently outperforms DL and radiomics in differ-
ent tasks [22].

In this study, we aimed to develop and validate a DSFR
model based on preoperative contrast-enhanced computed
tomography (CECT) combined with clinical information to
predict ER (<2 years) of single HCC after curative resection.
We hypothesized that the features automatically extracted
by the DL segmentation network would be effective for ER
prediction. Since studies showed that clinical information
complements radiomics features in predictive models [9,
23], we further hypothesized that the semantic segmentation
radiomics features combined with clinical information
would improve the performance of ER prediction of HCC.

2. Results

2.1. Baseline Characteristics. Detailed baseline characteristics
of all 208 patients are shown in Table 1. There was no signif-
icant difference in the recurrence rate and median
recurrence-free survival (RFS) between the development
and validation cohorts (median RFS: development cohort,
14.8 months; validation cohort, 17.7 months, P = 0:978).
The demographic, laboratory parameters, and visual analysis
features had no significant difference between the two
cohorts (P > 0:05).

2.2. Prediction Performance of DSFR, DSFR-C Models, and
the Model by Visual Features. The Dice similarity coefficient
(DSC) of the segmentation model was 0.640 for the model
based on arterial phase (AP) and 0.717 for the model based
on portal phase (PP). The performances of DSFR models
based on AP, PP, and dual-phase (DP, using both AP and
PP images) were compared, and that based on PP showed
the best performance (area under receiver operating charac-
teristic curve (AUC): development cohort, 0.740; validation
cohort, 0.717) (Table 2, Figure 1) which was selected as the
final DSFR model. The details of the prediction performance
of DSFR based on different phases are presented in Supple-
mentary Materials (section 3 of Supplementary Materials).
Then, the DSFR-C model incorporating deep features of
the DSFR model based on PP and clinical information was
established. In the development cohort, the DSFR-C model
achieved the highest AUC of 0.782, while the DSFR model
and model by visual features only achieved AUCs of 0.740
and 0.657, respectively. In the independent validation
cohort, AUCs decreased slightly in the performance to pre-
dict ER of HCC and were consistent with the performance
of the development cohort. The detailed results are summa-
rized in Table 2 (Figure 1).

2.3. Visualization of Deep Segmentation Features of the DSFR
Model. To improve the understanding of the functional
mechanism of the DSFR model and to verify our hypothesis,
we created visualized deep feature maps. We found that the
top six features with the highest weights in the DSFR model
were all focused on the peritumoral area, tumor region, or
both (Figure 2).

2.4. RFS Prediction by DSFR Signature and Integrated
Nomogram. The Kaplan-Meier curves showed a significant
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Table 1: Baseline characteristics of patients in different cohorts.

Variable
Development cohort

(n = 180)
Validation cohort

(n = 20) Statistical test P value

Patient demographics

Gender, n (%) Pearson’s chi-square test 0.293

Male 146 (81.1) 25 (89.3)

Female 34 (18.9) 3 (10.7)

Age, years, mean (SD) 40.7 (5.1) 51.9 (13.6) Student’s t-test 0.947

Laboratory parameters

HBsAg, n (%) Pearson’s chi-square test 0.100

Negative 19 (10.6) 6 (21.4)

Positive 161 (89.4) 22 (78.6)

HBV-DNA, IU/μL, n (%) Pearson’s chi-square test 0.925

<100 53 (29.4) 8 (28.6)

≥100 127 (70.6) 20 (71.4)

AFP, μg/L, n (%) Pearson’s chi-square test 0.627

<400 107 (59.4) 18 (64.3)

≥400 73 (40.6) 10 (25.7)

Child grade, n (%)
Fisher’s exact probability

test
0.665

A 176 (97.8) 27 (96.4)

B 4 (2.2) 1 (3.6)

TB, μmol/L, median (IQR) 13.7 (10.8, 17.0) 13.0 (9.7, 16.9) Mann–Whitney U test 0.424

ALB, g/L, n (%) 0.090

≥35 163 (90.6) 28 (100.0)

<35 17 (9.4) 0 (0.0)

ALT, U/L, median (IQR) 33.0 (23.0, 51.0) 35.9 (25.0, 48.4) Mann–Whitney U test 0.988

GGT, U/L, median (IQR) 49.0 (29.0, 87.8) 60.3 (29.3, 133.1) Mann–Whitney U test 0.333

Visual features

Tumor diameter, mm, median (IQR) 47.0 (32.3, 68.0) 46.5 (35.8, 88.3) Mann–Whitney U test 0.688

Attenuation of tumor on nonenhanced CT,
n (%)

Pearson’s chi-square test 0.746

Homogeneous 65 (36.1) 11 (39.3)

Nonhomogeneous 115 (63.9) 17 (60.7)

Vessels in tumor, n (%) Pearson’s chi-square test 0.077

Absent 71 (39.4) 16 (57.1)

Present 109 (60.6) 12 (42.9)

Irregular rim-like enhancement, n (%) Pearson’s chi-square test 0.952

Absent 147 (81.7) 23 (82.1)

Present 33 (18.3) 5 (17.9)

Capsule appearance, n (%) Pearson’s chi-square test 0.423

Incomplete 150 (83.3) 25 (89.3)

Complete 30 (16.7) 3 (10.7)

Tumor margin, n (%) Pearson’s chi-square test 0.381

Smooth 127 (70.6) 22 (78.6)

Nonsmooth 53 (29.4) 6 (21.4)

Peritumoral arterial enhancement, n (%) Pearson’s chi-square test 0.637

Absent 154 (85.6) 23 (82.1)

Present 26 (14.4) 5 (17.9)

Cirrhosis, n (%) Pearson’s chi-square test 0.235

Absent 136 (75.6) 24 (85.7)
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difference in RFS between low-risk and high-risk subgroups
in the development and validation cohorts. The median RFS
of the low-risk subgroup was significantly longer than that of
the high-risk subgroup in both cohorts (P < 0:05) (Figure 3).

Six variables, including DSFR signature-predicted ER
according to the univariable Cox regression analysis

(Table S1). The multivariable Cox regression analysis
identified DSFR signature (P < 0:0001), HBsAg (P = 0:013),
AFP (P = 0:001), and GGT (P < 0:0001) as independent
predictors for ER of HCC, and the DSFR signature was the
highest weighted parameter (Table 3). Based on these
predictors, an integrated preoperative predictive model for

Table 1: Continued.

Variable
Development cohort

(n = 180)
Validation cohort

(n = 20) Statistical test P value

Present 44 (24.4) 4 (14.3)

Clinical outcome

No. of recurrences, n (%) 114 (63.3) 18 (64.3) Pearson’s chi-square test 0.922

Median RFS, months (95% CI) 14.8 (9.5, 20.1) 17.7 (0.6, 34.8) Log-rank test 0.978

SD: standard deviation; HBsAg: hepatitis B surface antigen; HBV: hepatitis B virus; AFP: alpha-fetoprotein; TB: total bilirubin; ALB: albumin; ALT: alanine
aminotransferase; GGT: gamma-glutamyl transferase; IQR: interquartile range; CT: computed tomography; RFS: recurrence-free survival.

Table 2: The performances of different models for the prediction of ER of HCC.

Development cohort Validation cohort
AUC (95% CI) ACC SEN SPEC P value∗ AUC (95% CI) ACC SEN SPEC P value∗

DSFR 0.740 (0.652, 0.816) 0.733 0.750 0.708 Ref 0.717 (0.516, 0.869) 0.750 0.778 0.700 Ref

DSFR-C 0.782 (0.698, 0.853) 0.725 0.667 0.812 0.042 0.744 (0.545, 0.889) 0.750 0.722 0.800 0.028

Model with visual features 0.657 (0.565, 0.742) 0.617 0.486 0.813 0.149 0.583 (0.383, 0.765) 0.572 0.389 0.900 0.287
∗DeLong’s test. ER: early recurrence; HCC: hepatocellular carcinoma; AUC: area under the curve; ACC: accuracy; SEN: sensitivity; SPEC: specificity; DSFR:
deep semantic segmentation feature-based radiomics; Ref: reference; DSFR-C: deep semantic segmentation feature-based radiomics with clinical information.
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Figure 1: Comparison of ROC curves among different models for predicting ER of HCC ((a) development cohort; (b) validation cohort).
ROC: receiver operating characteristic; ER: early recurrence; HCC: hepatocellular carcinoma; DSFR: deep semantic segmentation feature-
based radiomics; DSFR-C: deep semantic segmentation feature-based radiomics with clinical information.
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Figure 2: Example of visualization of the deep segmentation features of the DSFR model. (a–f) Saliency maps of the top six features with the
highest weights in the DSFR model. The highlighted red and blue areas represent the regions where the deep segmentation features are
extracted, while the red regions indicated higher weights for prediction. As shown, the top six features with the highest weights in the
DSFR model focused on (a, d, c) the peritumoral area, (e) tumor region, (b, f) or both, respectively. Such focused regions contained
information significantly associated with recurrence, such as tumor size, peripheral enhancement, nonsmooth margin, and capsule
appearance. DSFR: deep semantic segmentation feature-based radiomics.
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Figure 3: The Kaplan-Meier survival curves of RFS in the (a) development and (b) validation cohorts. RFS: recurrence-free survival.

Table 3: Multivariable Cox regression analysis of predictors of ER in the development cohort.

Hazard ratio (95% CI) β (95% CI) P value

DSFR signature 7.283 (3.207, 16.539) 1.985 (1.165, 2.806) <0.0001
HBsAg

Negative Ref Ref

Positive 3.647 (1.310, 10.149) 1.294 (0.270, 2.317) 0.013

AFP, μg/L

<400 Ref Ref

≥400 2.359 (1.455, 3.825) 0.858 (0.375, 1.342) 0.001

GGT 1.006 (1.004, 1.009) 0.006 (0.004, 0.009) <0.0001
ER: early recurrence; CI: confidence interval; DSFR: deep semantic segmentation feature-based radiomics; HBsAg: hepatitis B surface antigen; Ref: reference;
AFP: alpha-fetoprotein; GGT: gamma-glutamyl transferase.
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ER of HCC was developed and presented as a nomogram
(Figure 4(a)).

The C-index of the integrated nomogram for ER predic-
tion of HCC in the development and validation cohorts was
0.748 (95% confidence interval (CI): 0.72, 0.82) and 0.741
(95%CI: 0.72, 0.84), respectively. The predictive performance
of the integrated nomogram was superior to that of using
DSFR signature alone, in both study cohorts (C-index in the
development cohort: 0.664, validation cohort: 0.630)
(Table 4). Using a time-dependent ROC analysis, we found
that the integrated nomogram achieved time-dependent
AUC (tdAUC) of 0.822 for 2-year RFS prediction in the vali-

dation cohort and improved the prediction of HCC recur-
rence compared with the DSFR signature model at various
time points, in both study cohorts (Figure S1). Complete
details of the tdAUC for each model are reported in Table 4.
The calibration curves of the nomogram demonstrated good
agreement between the prediction results and the
observations in both cohorts (Figures 4(b) and 4(c)). The
decision curve analysis graphically demonstrated that the
integrated nomogram provided more net benefits across the
range of reasonable threshold probabilities compared with
the Cox regression model using the DSFR signature alone, in
both study cohorts (Figures 4(d) and 4(e)).

0 10 20 30 40 50 60 70 80 90 100

0 100 200 300 400 500 600 700 800

0 20 40 60 80 100 120 140 160

RFS nomogram

(a)

Points

HBsAg

GGT

AFP

DSFR signature

Total points

Probability of 24-month RFS
0.9 0.8 0.7 0.6 0.50.40.30.2 0.1

0 0.2 0.4 0.6 0.8 1

Positive

Negative

< 400
≥ 400

1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0
Integrated nomogram predicted 2-year RFS

O
bs

er
ve

d 
2-

ye
ar

 R
FS

Ideal
Observed
Optimism corrected

Development cohort
1.0

0.8

0.6

0.4

0.2

0.0

1.00.80.60.40.20.0
Integrated nomogram predicted 2-year RFS

(b) (c)

O
bs

er
ve

d 
2-

ye
ar

 R
FS

Ideal
Observed
Optimism corrected

Validation cohort

0.0

0.0
0.1

N
et

 b
en

efi
t

0.2
0.3
0.4
0.5
0.6

0.2 0.4 0.6
High risk threshold

Development cohort

Integrated nomogram
DSFR signature

All
None

0.8 1.0

0.0

0.2

0.4

0.6

N
et

 b
en

efi
t

Integrated nomogram
DSFR signature

All
None

Validation cohort

High risk threshold
(d) (e)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4: (a) Nomogram to evaluate individualized 24-month RFS for single HCC after curative resection, (b, c) along with calibration,
(d, e) and decision curves (d, e). RFS: recurrence-free survival; HCC: hepatocellular carcinoma; AUC: area under the curve; HBsAg: hepatitis B
surface antigen; AFP: alpha-fetoprotein; GGT: gamma-glutamyl transferase; DSFR: deep semantic segmentation feature-based radiomics.
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3. Discussion

We conducted a dual-center study to develop and validate a
DSFR model to predict ER of single HCC after curative
resection. This method showed better performance than
the model based on traditional visual features, especially in
combination with clinical information. Survival analysis
showed that the established DSFR signature was an indepen-
dent risk factor and could accurately stratify the ER risk of
patients with a single HCC. The nomogram-integrating
DSFR signature and clinical information could accurately
predict ER of single HCC after resection and showed supe-
rior predictive performances to the model with DSFR signa-
ture alone.

The recently proposed DSFR method [22] has been
designed to automatically extract representative features
from the segmentation model, focusing on the target and
characterizing the tumor region. To improve our grasp on
the mechanism of the DSFR model to predict ER and vali-
date our hypothesis, we created visualized deep feature maps
using the Grad-CAM method [24]. The saliency maps
showed that the six features with the top highest weights in
DSFR model building were all derived from the peritumoral
area, tumor region, or both. Studies have shown that peritu-
moral changes, as well as tumor features, of HCC include
massive information and play an important role in predict-
ing HCC recurrence, either in traditional radiomics [16,
25] or traditional visual features analysis [26, 27]. Therefore,
we suppose that the features extracted by the segmentation
network in the DSFR model represent the characteristics of
peritumoral area and tumor region, and these features con-
tain effective information for predicting early recurrence of
HCC. Compared with the traditional radiomics approach,
the DSFR method alleviates the time-consuming and
labor-intensive workload regarding lesion segmentation
and automatically extracts the effective features. Our study
also showed that the predictive performance of the DSFR
model was superior to the model by visual features, though
the difference was not statistically significant. Compared
with the visual features, the DSFR method extracts deep fea-
tures that are less affected by experience and fatigue. All
these reasons may explain the more powerful predicting per-
formance of deep segmentation features in our study.

The results of this study showed that the DSFR model
based on AP had unsatisfactory prediction performance
(with an AUC of 0.646 in the development cohort). This
may be affected by the poor segmentation performance
based on AP images, with an average DSC of 0.640, which
was lower than that of PP (0.717). A previous study which

utilized DL for HCC lesion segmentation based on CT also
showed that the segmentation performance of the model
based on PP was better than that based on AP [28]. The poor
segmentation performance based on AP may be due to cer-
tain features of tumoral margins in AP (such as the peritu-
moral arterial enhancement) leading to an unclear outline
of the lesions, compared to that in PP in which the lesions
presented as washout. In addition, in this study, the scan
time of the AP and PP adopted a fixed delay time; thus, some
patients may have insufficient enhancement in the AP scan
with fixed delay time.

The fusion of the dual-phase features generated worse
results than the one based on PP. We conducted the correla-
tion analysis to attempt to explain this (shown in section 3 of
Supplementary Materials, Table S3 and Table S4). The
results showed that the features from the two phases
cannot be considered completely complementary or
substantially redundant. Thus, we considered that the
unsatisfactory performance of the dual-phase DSFR model
may be due to the unrepresentative features from AP.
Another reason may be the simple strategy of feature
fusion used in our study, which may not fully utilize the
complementary information within these two phases.

Wang et al. [19] applied the ResNet classification net-
work based on CECT to predict ER (<1 year) after HCC
resection and achieved an AUC of 0.723. However, the study
included the patients of BCLC stages B and C, for which
resection is not recommended as the first-line treatment,
and patients have different prognoses. External validation
was not performed either [19]. Our study not only achieved
higher performance by using the DSFR method but also
selected patients with BCLC stage 0-A single HCC, for
whom the ER prediction is more important in the choice
of treatment strategies.

Our study showed that the DSFR signature could accu-
rately stratify the patients with different risks of ER in both
the development and validation cohorts. The multivariate
Cox regression analysis demonstrated that the DSFR signa-
ture was an independent risk factor for ER and made the
largest contribution to prediction in the Cox proportional
hazard model. Moreover, the results of our study showed
that incorporating DSFR signature and clinical information
could further improve the predictive performance for ER,
both in the DSFR method and nomogram. The nomogram
model integrating the DSFR signature and clinical informa-
tion improved the 2-year RFS prediction tdAUC at various
time points in both study cohorts, compared with using
the DSFR signature alone. The decision curve analysis also
demonstrated that the integrated nomogram provided more

Table 4: Prognostic performance of integrated nomogram compared with that using deep learning signature alone.

Integrated nomogram (95% CI) P value DSFR signature (95% CI) P value

Harrell’ s C-index
Development cohort 0.748 (0.691, 0.805) Ref 0.664 (0.604, 0.726) <0.001
Validation cohort 0.741 (0.669, 0.813) Ref 0.630 (0.504, 0.755) 0.015

tdAUC (2 years)
Development cohort 0.823 (0.750, 0.895) Ref 0.742 (0.651, 0.833) 0.019

Validation cohort 0.822 (0.664, 0.981) Ref 0.717 (0.504, 0.930) 0.328

CI: confidence interval; Ref: reference; tdAUC: time-dependent area under the curve.
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net benefit. Similar results have been reported in the litera-
ture [16, 23, 29]. The reason may be that laboratory tests
can provide additional predictive information independent
of imaging, such as the function of tumors to secrete AFP,
liver function, or tumor function information reflected
by GGT.

This study has some limitations. First, it was a retrospec-
tive study, and there might be bias in patient’s inclusion.
However, we showed that there was no significant difference
in the baseline characteristics between the two cohorts, and
external validation was conducted to justify the robustness
of the model. Second, the sample size was relatively small,
and studies with a larger sample size remain necessary to
further validate the performance of our model in the future.
Third, the prediction performance (AUC) of the DSFR
model based on AP was unsatisfactory. Improving the seg-
mentation accuracy of the AP images and combining the
AP and PP features may further improve the prediction
performance.

In conclusion, our study showed that radiomics features
based on the deep segmentation network and CECT can pre-
dict ER in single HCC after curative resection. The DSFR
signature was an independent risk factor of ER and could
accurately stratify the patients for ER risk with single HCC.
The combination of semantic segmentation radiomics fea-
tures with clinical information further improved the perfor-
mance of ER prediction of HCC.

4. Materials and Methods

We first developed DSFR models based on CECT and clini-
cal information for ER prediction in single HCC patients
after curative resection. We subsequently conducted a multi-
variate Cox regression analysis and built nomograms by
incorporating the DSFR signature, clinical information,
and survival data. Both the DSFR and Cox regression models
were validated in an independent cohort.

The institutional review boards of both participating
institutions (Institution 1, the First Affiliated Hospital of
Sun Yat-sen University, Guangzhou, China; Institution 2,
Sun Yat-sen University Cancer Center, Guangzhou, China)
approved this retrospective study, and written informed
consent was obtained from all patients in the study. The
study was conducted in accordance with the Declaration of
Helsinki. Figure 5 shows the overall scheme of our study.

4.1. Patients. Consecutive adult patients (≥18 years) after
curative resection for HCC were confirmed pathologically
and recruited in the study. The inclusion criteria were (1)
preoperative CT or MRI showing a single HCC without sat-
ellite nodules or infiltrative HCCs with obscure borders, (2)
no macrovascular invasions or extrahepatic metastasis, (3)
preoperative CECT within 1 month before surgery, (4) no
pretreatment history before resection (including liver trans-
plantation, ablation, TACE, radiotherapy, or chemotherapy),
and (5) a Child-Pugh grade of A or B, and a performance
status score of 0 or 1. These criteria met the Barcelona clin-
ical liver cancer (BCLC) stage 0 or A [11]. Patients were
excluded from the study if (1) there were artifacts in the pre-

operative CT images, (2) postoperative imaging showed only
extrahepatic metastasis without intrahepatic recurrence, (3)
comorbidity with other primary malignancies was present,
(4) the HCCs ruptured before surgery, or (5) imaging, clini-
cal, or follow-up data were incomplete or not available.
Figure S2 shows the patient recruitment workflow.

Overall, 208 patients were enrolled in this study from
two tertiary hospitals, with 180 recruited between January
2011 and December 2016 from Institution 1 used to develop
and cross-validate the models of preoperative prediction of
ER. Twenty-eight patients, recruited between January 2014
and December 2016 from Institution 2, were used to exter-
nally validate these models. Student’s t-test and Mann–
Whitney’s U test were used for continuous variables; χ2 or
Fisher’s exact tests were used for categorical variables to
evaluate the difference between the development and valida-
tion cohorts.

4.2. CT Scanning, Clinical Information, and Recurrence. Pre-
operative CECT scans were performed, and both the arterial
phase (AP) and portal phase (PP) were obtained. CT scan-
ners from two manufacturers (Canon Medical System, Ota-
wara, Japan, for Institution 1; and Philips Medical Systems,
Best, Netherlands, for Institution 2) were used. All CT scans
were performed with a tube voltage of 120 kVp. For the tube
current, an automatic tube current modulation technique or
fixed 250mAs was used. The enhanced scanning time of
both the AP and PP adopted a fixed delay time. The recon-
struction slice thickness was 1mm for both scanners. The
details of the CT scan parameters of the two institutions
are presented in Table S2. For the DSFR model
development, CT images were set with a window level and
width of 70HU and 150HU for AP, and 100HU and
200HU for PP, respectively.

The candidate demographic and laboratory parameters
were retrieved from the clinical database, including age,
sex, hepatitis B surface antigen (HBsAg) level (negative or
positive), hepatitis B virus- (HBV-) DNA (IU/μL, <100 or
≥100), alpha-fetoprotein (AFP) level (ng/mL, <400 or
≥400), serum total bilirubin (TB, μmol/L), serum albumin
(ALB, g/L, <35; ≥35), serum alanine aminotransferase
(ALT, U/L), gamma-glutamyl transpeptidase (GGT, U/L),
and Child-Pugh grade. The statistical analysis of all these
parameters adopted the same method mentioned above.

CECT or contrast-enhanced MRI, serum AFP level, and
liver function tests were performed every 3-6 months for two
years after surgery. The observation endpoint was HCC
intrahepatic recurrence, which was determined by CECT
or MRI. The cases without recurrence were followed up for
at least two years. Recurrence-free survival (RFS) was
defined as the interval between the date of resection and
the date of detection of the recurrence on imaging. The cases
without recurrence within 2 years after surgery were cen-
sored. RFS < 2 years was defined as ER [6].

4.3. Development and Validation of DSFR and DSFR-C
Models. In this study, we built a deep learning-based seg-
mentation model of HCC to generate high-dimensional
semantic features from preoperative CECT. AP and PP
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images of CECT were downloaded in a Digital Imaging and
Communications in Medicine format. The CT images of all
patients were input into the ITK-SNAP software (version
3.6, http://www.itksnap.org). Sixty cases were randomly
extracted from the 180 patients from Institution 1 and were
used to train a deep learning-based segmentation model of
the U-Net network. Manual segmentation of tumor lesions
in preoperative AP and PP images of the extracted cases
was performed by two radiologists with 10 years of experi-
ence, confirmed by a radiologist with 21 years of experience,
and used as the ground truth for training the segmentation
model. For training and testing of the deep learning model,
images were processed in the same format as the input of
the segmentation network. First, a fixed window center and
window width were applied for the original CT images. Then
normalization was performed. Finally, the processed images
were resized to 256 × 256.

The Dice similarity coefficient (DSC) was adopted to
select and obtain the optimal segmentation model, which
was then implemented to extract the semantic segmentation
features. Due to different tumor sizes, the number of seman-
tic features generated from each case varied. Therefore, the
average value of the features from the same case was calcu-
lated, which was regarded as the final segmentation feature
of the case. The architecture of the segmentation network
is shown in Figure S3. Details of deep learning-based
segmentation model construction and deep feature
extraction are provided in supplementary materials.

All patients were grouped to ER or non-ER, if they
encountered recurrence or not within two years, respec-
tively. ER prediction models were built based on those
extracted deep semantic features (DSFR models). Specifi-
cally, logistic regression was chosen as the classifier to build
the prediction model. The parameters of the classifier were

determined by the grid search strategy, and the range of grid
optimization parameters was as follows: (1) regularization
strength: 0.01, 0.05, 0.1, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, and 1.2;
(2) maximum number of iterations: 100, 150, 200, 400, and
500; and (3) conditions for stopping iteration optimization:
1E-5, 1E-4, 1E-3, and 1E-2. Cross-validation was adopted
to search for the best hyperparameters setting. In this study,
DSFR models based on AP, PP, and dual-phase (DP, using
both AP and PP images) images were developed and vali-
dated in internal cross-validation and the independent exter-
nal cohort and compared to obtain the one with the best
performance, which was defined as the final DSFR model.

Visualization of the deep semantic segmentation features
of the best model was performed by using the Grad-CAM
method [24] to interpret how the DSFR model worked for
ER prediction. We chose the top six features with higher
weights in the classifier. Then, according to the distribution
of the gradient in the segmentation model, we generated a
heatmap for each selected feature. The red region in the
heatmap indicated the high gradient and illustrated the sig-
nificant elements in the image for the selected feature.
Through the heatmaps, what the feature pays attention to
was observed in the image.

Clinical information was further added to establish an
integrated model (DSFR-C model), to test whether the com-
bination of clinical information with deep segmentation fea-
tures could improve the prediction performance of ER in
HCC. Similarly, logistic regression was chosen as the classi-
fier, and strategies were employed to train the model, includ-
ing grid search for the hyperparameters setting and cross-
validation.

Receiver operating characteristic (ROC) curves were
drawn, and the performances of the ER prediction models
were evaluated by the area under the curve (AUC) value,

Validation cohortDevelopment cohort

Imaging data

Clinical
information

Survival data

Imaging data

Clinical
information

Survival data

DSFR-C model

DSFR model

DSFR-signature
cox model

Integrated cox model

Development
Validation

Figure 5: Flow diagram of study design. DSFR-C: deep semantic segmentation feature-based radiomics with clinical information; DSFR:
deep semantic segmentation feature-based radiomics.
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sensitivity, specificity, and accuracy in the development
and independent validation cohorts. The difference
between AUCs among different models was compared by
DeLong’s test.

4.4. Development and Validation of the Model with the
Imaging Features by Visual Analysis. The preoperative CT
images were visually interpreted by two radiologists with
more than 10 years of experience, to evaluate the following
traditional visual imaging features (Figure S4): (1) the size
of the tumor; (2) attenuation of the tumor on nonenhanced
CT images (heterogeneous or nonheterogeneous); (3)
vessels in the tumor (absent or present); (4) peritumoral
arterial enhancement (absent or present); (5) irregular rim-
like enhancement in the AP (absent or present); (6) the
tumor margin (smooth or nonsmooth); (7) capsule
appearance (complete or incomplete); and (8) cirrhosis
manifestations (absent or present). Both radiologists were
blind to the recurrence outcome and clinical information of
the patients from both cohorts. Disagreements between the
readers were discussed to obtain a final consensus and
minimize interpretation bias.

An ER prediction model based on the traditional visual
features was developed (the model by visual features). Logis-
tic regression was chosen as the classifier to train the model,
based on the eight traditional visual features. Then, the grid
search strategy with the same range of grid optimization
parameters was employed as above. The model with the best
performance was subsequently selected for comparison with
DSFR and DSFR-C models. AUC, sensitivity, specificity, and
accuracy were also evaluated. The difference between AUCs
among different models was also evaluated by DeLong’s test.

4.5. Survival Analysis and Nomogram Development for RFS
Prediction. Both the development and validation cohorts
were stratified into low-risk and high-risk subgroups, in
accordance with the prediction results of non-ER or ER by
the DSFR model with best performance. RFS was assessed
by the Kaplan-Meier method, and differences in survival dis-
tributions between the stratified subgroups were compared
by using log-rank tests.

The probability value predicted by the DSFR model with
the best performance for ER prediction was defined as the
DSFR signature. The clinical features and the DSFR signa-
ture were applied as the candidate predictive factors and
tested by the univariate Cox regression analysis to select
the factors which were significantly correlated to RFS.

The multivariate Cox regression analysis was performed
with the features with a P value < 0.2 in the univariate Cox
regression analysis, to identify if the DSFR signature was
the independent predictor for RFS. Then, the selected pre-
dictive factors in the multivariate Cox regression analysis
were used to obtain an integrated nomogram by a stepwise
feature selection algorithm. For comparison, a Cox regres-
sion model was also built with the DSFR signature alone.

The performance of the constructed nomogram to
predict RFS was measured by Harrell’s concordance index
(C-index) and time-dependent AUC (tdAUC). The con-
cordance was explored graphically by calibration curves,

using the rms Package of R software (version 3.4.4, R Project
for Statistical Computing, http://www.r-project.org). Addi-
tionally, a decision curve analysis was performed to assess
the clinical usefulness and net benefits of the nomogram.
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