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Classification of unlabeled online 
media
Sakthi Kumar Arul Prakash1 & Conrad Tucker1,2,3,4,5* 

This work investigates the ability to classify misinformation in online social media networks in a 
manner that avoids the need for ground truth labels. Rather than approach the classification problem 
as a task for humans or machine learning algorithms, this work leverages user–user and user–media 
(i.e.,media likes) interactions to infer the type of information (fake vs. authentic) being spread, 
without needing to know the actual details of the information itself. To study the inception and 
evolution of user–user and user–media interactions over time, we create an experimental platform 
that mimics the functionality of real-world social media networks. We develop a graphical model that 
considers the evolution of this network topology to model the uncertainty (entropy) propagation 
when fake and authentic media disseminates across the network. The creation of a real-world social 
media network enables a wide range of hypotheses to be tested pertaining to users, their interactions 
with other users, and with media content. The discovery that the entropy of user–user and user–media 
interactions approximate fake and authentic media likes, enables us to classify fake media in an 
unsupervised learning manner.

The idea that people may not be suitable to assess the authenticity of information without the aid of additional 
tools is widely explored by the forensics community1,2. Information sharing in social media is highly dependent 
on data modality, the behavior of fellow networkers, the habit of using online services, and the widespread pres-
ence of opinion leaders in posts and comments3,4. In some cases, information is doctored using deep fakes5, or 
manipulated by spreading misinformation relating to health outbreaks such as COVID-196,7. Beyond affecting 
the conduit of social media networks, much of algorithmic fake news detection2,8 or recommender systems9 
rely on data type identification and data labeling. Such information is typically manually compiled by content 
moderators in social media companies who may undergo post-traumatic stress disorder as a result of viewing 
disturbing media10,11. Data-driven supervised methods benefit from superior classification accuracy due to the 
availability of labels but may fail to generalize to unseen data and often rely on manual human labeling. Alter-
natively, unsupervised methods do not rely on labels to classify data and address the trade-off in accuracy with 
the help of additional features, feature representation techniques, or complex models. Thus, there is a necessity 
to shift towards unsupervised approaches for content discovery or fake media discovery12–14.

In this study, we consider (1) work that seeks to understand why misinformation spreads and (2) work 
that seeks to prevent the spread of misinformation through classification. Current literature has improved our 
understanding of truth and falsity diffusion through quantitative analyses on the spread of rumors such as the 
discovery of the Higgs boson15, and the spread of anti-vaccine campaigns that led to decreases in vaccination rates 
against measles16,17. Other studies have investigated rumor diffusion modeling18, credibility evaluation19,20 and 
intervention strategies to curtail the spread of rumors21. Similar analyses have been conducted in social media 
networks such as Facebook, where Del Vicario et al.22 analyze the diffusion of science and conspiracy-theory 
stories, and in Twitter where Bovet and Kakse23 study the influence of fake news during the 2016 presidential 
election, and Vosoughi et al.24 study the characteristics of fact-checked rumors.

The spread of information, authentic or fake, is however significantly impacted by the credibility of the users 
in the network and their connections25. In a social media network such as Twitter, users form opinions and 
beliefs26 based on outside influences23,27, and use these opinions to test if information adheres to or opposes their 
beliefs28. Though the most direct measure of user credibility involves asking the other users29, such a measure 
is often subjective. Additionally, a subjective measure does not apply to sources or users previously unknown 
to a user30. However, such occasions are likely to occur during times of disasters such as COVID-197, or during 
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measles outbreaks16,17 where authentic information was provided by those physically attending the event30. Hence, 
we are interested in understanding how fake information spreads in a controlled social media network where 
users respond to unknown users with the help of an objective credibility measure.

Node-edge homogeneity and the homogeneous sharing paths created by social media users during the evolu-
tion of a social media network, play a critical role in the spread of fake information22,31,32. It has been shown that 
users’ opinions on media and their engagement behaviors on social media networks can be utilized to distinguish 
between authentic and fake information8,33,34. However, such work8,33,34 typically makes use of supervised learning 
techniques to detect fake information, requiring a labeled dataset. Though these supervised methods have shown 
promising results, they suffer from a critical limitation of requiring a pre-annotated dataset to train a classification 
model. Further, Chu et al.35 and Wang33 have released Facebook and Twitter datasets that include user activity 
and interactions pertaining to a specific time period, thereby not capturing the organic growth of user–user con-
nections from the time users join the network. In order to address the limitations of requiring human-annotated 
datasets to train supervised models, crowd-sourcing approaches make use of platforms such as Amazon Mechani-
cal Turk to recruit workers as users or as data labelers to take part in social media experiments. Crowd-sourcing 
techniques typically leverage cost-effective workers to obtain annotations, hence alleviating the burden of expert 
checking36. Long et al.37 and Rodrigues et al.38 propose a Bayesian probabilistic approach coupled with active 
learning, wherein they use crowd-sourced data to estimate both the data authenticity as well as the credibility of 
each individual data labeler/user. Recent studies39,40 have proposed replacing the Expectation-Maximization (EM) 
algorithm which is typically used for parameter estimation and inference with a deep generative model such as a 
variational auto-encoder (VAE). By replacing the EM algorithm with neural networks, the additional computa-
tional overhead can be avoided, which allows the models to generalize beyond classification settings40. Rodrigues 
et al.40 introduce an additional layer (crowd layer) in their CNN such that the typical softmax output layer is 
transformed into a bottleneck layer while allowing the crowd layer to handle data labeler/user reliability and 
labeling noise. While deep neural networks have been shown to improve the classification/labeling accuracy of 
unsupervised probabilistic models that use EM, the notion of explainability is replaced by a black-box approach. 
A study by Yang et al.14 proposes an unsupervised approach for detecting misinformation in online social media 
networks such as Twitter and Facebook using yet another probabilistic graphical approach. In their approach, 
Yang et al. consider the credibility of users as a latent random variable in addition to user opinions and use an 
efficient Gibbs sampling approach to estimate news authenticity. While supervised approaches such as8,33,34 have 
leveraged user–user interactions, these unsupervised probabilistic approaches14,38–40 explicitly assume that each 
user’s opinion is independent of other users. Hence, they do not consider user–user interactions, which can be 
an influential source of recommendation in Twitter and Facebook41–43, especially if users know one another. 
Further, prior work14,38–40 considers news features39 as a latent random variable in addition to considering the 
authenticity of news/data and the credibility of the data labelers/users37,40 as latent random variables.

When presented with uncertainty, human behavior in social media networks tends to react differently, 
employing unconventional social heuristics44. Hence, regardless of whether users know one another, there exists 
uncertainty in what a user likes and who they follow or befriend. The use of information-theoretic measures, 
such as entropy, avoids making assumptions about human behavior, thus allowing statistical characterization 
of uncertainty45 in social media networks. Shannon’s entropy has been used as a statistical feature in detecting 
rumors in social media46, abnormal activities or anomalies in IoT devices and sensor networks47–49. In addition to 
detecting anomalies, entropy has also been used in determining the credibility of machines in a machine-machine 
communications network in order to distinguish malicious nodes from honest nodes by iteratively updating the 
credibility value of each node for every message passed between the nodes50. Similarly, entropy has also been 
used to estimate the veracity of topics from tweets, such a measure has been reported to categorize tweets in the 
veracity spectrum in a consistent manner51.

Since it is evident that users in social media networks adhere to a notion of credibility before following a 
user and liking media, we derive a relationship between an objective credibility measure, user opinions (media 
likes), and the probability of following or establishing a connection with a user. We show that such a relationship 
helps understand the connection between user opinions and the credibility of users, and how they affect the 
probability of users making new connections. To that end, unlike prior approaches14,38–40, in our work, we do 
not consider the authenticity/label of the data as a latent variable, but instead only consider user opinions as a 
latent variable. This avoids the assumption that users like and share media on the basis of truth when users could 
intentionally like or share media on the basis of satire52. Additionally, the derived proportionality between user 
credibility and user opinion allows us to use one in place of another, thereby decreasing the number of latent 
variables considered. Then, we compute the entropy of user–user connections given user opinions in order to 
map user interactions to a quantifiable value that expresses the uncertainty contributed to the network by each 
user. Further, by exploiting the principle of entropy, we select users based on a threshold entropy to take part 
in a majority voting in order to distinguish fake information from authentic information. This allows utilizing 
users and their interactions as features to detect misinformation while decoupling the estimation of credibility 
or opinion and classification of data.

The paper is presented as follows. First, we annotate the controlled experiment conducted to collect real-time 
social network data. Then, we derive a relationship between user credibility, media likes, and the probability of 
establishing a connection with a user, followed by a comprehensive analysis that shows how entropy explains 
the spread of fake information. Finally, we propose an unsupervised model that uses entropy to select users to 
classify information as fake or authentic.
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Methods
Data collection.  We conduct a real-life social experiment, wherein participants are recruited from the 
crowd-sourcing platform Amazon MTurk (AMT) to participate in the study. The study was conducted with the 
approval of and in accordance with the relevant guidelines and regulations of The Pennsylvania State Univer-
sity’s Institutional Review Board (IRB). Prior to the conduct of the study, informed consent was obtained from all 
participants for participation in the study. Only human subjects of age 18 or above were included in the study. 
We created a mock online social media platform that replicates the functionality of Twitter as shown in Fig. 1 and 
follows their directional model of interactions. We restrict users from posting their own media and from unfol-
lowing a followed user to conduct a controlled real-time, real-world social experiment. This web application is 
released for public use to replicate or conduct similar online social experiments. The focus of the data collec-
tion is to organically acquire the interactions between unknown users rather than from known users within the 
network in order to gain a fundamental understanding of how fake information can be classified using random 
user opinions. We populate the social network with authentic and fake videos from the FaceForensics data set53 
and verified fake YouTube videos. The users were monetarily incentivized to spend at least 45 min per Human 
Intelligence Task (HIT). To ensure that the human subjects are reliable in staying throughout the study and with 
a provision for new users to join, we only recruited subjects who had a HIT’ (Human Intelligence Task) approval 
rate of greater than 90% in all requesters’ HITs. A user was allowed to participate in any number of HITs over 
the period of study, ensuring that the same user population could log into the network and continue accruing 
credibility and followers. We chose to use 40 random videos, with 20 being authentic and the other 20 fake. The 
total number of enrolled users in the study was 620, which falls within the range of participants recruited for 
other social science experiments that utilize AMT54,55.

To simulate a real-world scenario in Twitter where users follow users or are followed by users thereby form-
ing explicit connections56, we introduce the notion of user credibility. According to Resnick et al.57, reputation 
mechanisms provide an incentive for honest behavior and help users make decisions involving trust. In this 
study, we develop an approach to compute user credibility using trust modeling. Specifically, we use the Beta 
Reputation System (BRS)58 used in e-commerce to calculate the credibility of users. We select this method as it is 
grounded in probability theory and uses expectations on probability distributions to derive the predicted benefit 
of trust to help users form explicit connections in a participatory media setting. The credibility of user i is Ci and 
we assume the prior probability of Ct

i  at time t to be generated from a Beta distribution with parameters at (prior 
authentic media category counts) and bt (prior fake media category counts) such that Ct

i  ∼ Beta(at , bt ). We use 
the uniform distribution as prior to the Beta distribution such that every new user is assigned a credibility score 
of 0.1. As the user continues to form new links within the network, and like media, the credibility score gets 
updated. We use a Bayesian update rule to update the credibility score of the user at each timestamp. We state 
the credibility update rule for user i such that the parameter at is updated as at+1

i ← ati + aδti  and bt is updated 
as bt+1

i ← bti + bδti  such that,

Figure 1.   The user interface of the designed experimental platform that replicates the functionality of Twitter 
social media network.
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where δt is 20 min. To understand the relationship between credibility and follower count, we fit a regression 
model between follower counts and user credibility as shown in Fig. 2 and find the co-efficient of determina-
tion (R2 ) as 0.56. This shows that there is a positive correlation between follower count and credibility score. 
Additionally, we also compute and illustrate the final credibility score distribution of the social media network 
at the last timestamp as shown in Fig. 3. We find that the distribution closely fits the Beta distribution given the 
uniform prior with E[C] = 0.1 . We also provide a monetary incentive to the top three users who earn the highest 
credibility score and get the highest user following by the end of the 2-day experiment.

Preliminaries and definitions.  The social network under study is a directed network having links 
specifying the followers  (in-degree) and the following  (out-degree). A social network G (t) := {V ,E } is 
an order 2 Tensor such that G t ∈ R

N×N where N represents the number of users or V such that V ∈ R
N , 

E := {(i, j)|i, j ∈ V , i �= j,E ⊆ V ×V } is the set of all pairs of distinct nodes, called edges and t ∈ T 
denotes timestamp index when all network information is saved in the database. Let the degree matrix D of 
G = diag(d(1), . . . , d(N)) and A denote the adjacency matrix such that Aij = 1 if and only if i follows j in case 
of out-degree network (Gout ) or j is followed by i in case of in-degree network (Gin ). The media liked by node i 
is denoted as Zi which is a one-hot vector, where Zi = [Z1,Z2, . . . ,ZL] and Zl denotes the user i liking category l 
such that Zl = 0 indicates no like and Zl = 1 indicates media like.

Relating entropy to user credibility.  We assume that users recruited in our social network are not 
known to each other and by showing every user the credibility of all users, we assume that users tend to follow 
or be followed by other users on the basis of credibility. We observe a positive linear correlation between the 
number of links connected to a user (in-degree) and credibility as shown in Fig. 2, consistent with findings from 
other works30. However, in reality, such a credibility measure is often network-dependent, or may not be read-

(1)C
(t+1)
i =

ati + aδti
ati + aδti + bti + bδti

Figure 2.   Fitted regression curve to follower counts against credibility score.

Figure 3.   Credibility score distribution.
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ily available. Hence, we use links and media likes to approximate user credibility. We define a similarity metric, 
Media Node-Edge Homogeneity, which computes similarity as a function of common media liked by any two 
users, which have an edge connection at time t. We denote the media node-edge homogeneity (MNEH) metric 
as Mt

ij , where,

In Eq. (2), Mt
ij between any two users i and j at time (t), is bounded between the interval [0, 1], where, 0 ≤ Mij ≤ 1 

expresses the magnitude of similarity in media likes between any two users i and j. The node-edge homogeneity 
interval [0, 1] is discretized with a resolution of 0.01. The MNEH matrix (Mt ) is a sum of matrices as shown in 
Eq. (3) with varying γ , such that γ̃ = γ /100 , Mt

ij,γ = 1 if and only if the similarity in media liked by users i and 
j is γ%.

Given At and Mt from the in-degree and out-degree networks, we assess the Directed Acyclic Graph (DAG) con-
necting i, j and Mt . We assume liking media and forming links with other users to be conditionally independent 
events since j = 1 is observed thereby breaking the dependence between the events. Hence, we compute the 
probability of a link between user i and j for each instant in time t as shown in Eq. (4).

where p(j = 1|i) = Ptij is a conditional probability which represents the probability of a link formed with user j 
given user i at time t such that Ptij is an element of the transition matrix (Pt ) which is algebraically computed 
as (AD−1)t , and 

p(j=1,Mt
γ̃
)

p(Mt
γ̃
)

= Ptij,γ̃ is computed as follows,

where DAMγ̃
 is a diagonal matrix such that DAMγ̃ ,ii =

∑

j∈N (A ◦ M)ij,γ̃ , DMγ̃
 is a diagonal matrix such that 

DMγ̃ ,ii =
∑

j∈N Mij,γ̃ and ( ◦ ) denotes Hadamard product operation between matrices. For each media cat-
egory l ∈ L , Zt

jl is generated from a Bernoulli distribution with parameter Ct
j  such that Zt

jl ∼ Bernoulli(Ct
j  ) and Ct

j  
is the probability of user j liking l. Hence, we assume the prior probability of Ct

j  to also be the assumed credibility 
of a user j and sampled from a Beta distribution with parameters at (prior authentic media category counts) and 
bt (prior fake media category counts) such that Ct

j  ∼ Beta(at , bt ). In a similar manner as Eq. (4), we compute the 
probability of a link between user i and j given the media matrix (Zt

j  ) for each instant in time t as shown inEq. (6)

(2)Mt
ij =

|Zt
i ∩ Z

t
j |

|Zt
i ∪ Z

t
j |

(3)M
t =

100
∑

γ=1

γ̃Mt
γ̃

(4)

p(j = 1|Mt
γ̃ , i) = p(j = 1|i).p(j = 1|Mt

γ̃ )

= (AD−1)
t
ij .
p(j = 1,Mt

γ̃
)

p(Mt
γ̃
)

= (AD−1)
t
ij .(Mγ̃D

−1
Mγ̃

)
t

ij

= ((A ◦Mγ̃ )D
−1
AMγ̃

)tij

= Ptij .P
t
ij,γ̃

(5)

p(j = 1,Mt
γ̃
)

p(Mt
γ̃
)

=
1 {Mt

ij,γ̃ = 1}
∑

j∈N 1 {Mt
ij,γ̃ = 1}

= (Mγ̃D
−1
Mγ̃

)
t

ij

= Ptij,γ̃

(6)

p(j = 1|Zt
j , i) = p(j = 1|i).p(j = 1|Zt

j )

= Ptij .

∫

p(j = 1,Ct
j |Z

t
j )dC

t
j

= Ptij .

∫

p(j = 1|Ct
j ).p(C

t
j |Z

t
j )dC

t
j

=
Ptij

B(at , bt)

∫

C
Zt
jl+at−1

j .(1− Ct
j )
(1−Zt

jl)+bt−1
dCt

j

= Ptij .
B(Zt

jl + at ,Zt
jl + bt)

B(at , bt)

= Pt
ij .

(

at

at + bt

)

= Pt
ij .C

t
j
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where B(.) is the Beta function and normalizes the expression in Eq. (6). Let p(j = 1|Zt
j ) be denoted by �(Z) 

and p(j = 1|Mt
j ) be denoted by F (�(Z)) since Mt

j is a function of Zt
j  . Using the results from Eqs. (4) and (6), 

we derive the proportionality between Ct
j  and Ptij,γ̃ given γ̃ for every timestamp as shown by Eq. (7).

Hence, from Eq. (4), it is evident that we are indeed computing a weighted transition probability with the weight 
being proportional to the user’s credibility. Using these results, we now compute the Shannon’s Information 
Entropy (joint entropy) generated by all users (i, j, k, ..., n) as the sum of entropy generated by each user at time t.

Results and discussion
Objective.  The objective of this study is to use the entropy response of media node-edge homogeneity over 
time to perform unsupervised classification of fake media. We present a visual overview of our entropy compu-
tation approach as shown in Fig. 4, along with an algorithm box (Algorithm 1). We have organized this section 
to discuss hypotheses, hypotheses testing, and how the tests inform the selection of users that separate fake 
and authentic media in a majority voting classifier to classify fake media. Hereafter, the notations H0,H0∗ and 
Ha,Ha∗ refer to null-hypothesis and alternate hypothesis respectively.

(7)

p(j = 1|i).p(j = 1|Zt
j )

Ct
j

=
p(j = 1|i).p(j = 1|Mt

γ̃
)

Ptij,γ̃

p(j = 1|i).�(Z)

Ct
j

=
p(j = 1|i).F (�(Z))

Ptij,γ̃

Ptij,γ̃ ∝ Ct
j

(8)Ht
i,j,k,...,n,γ̃ = −

N
∑

i

N
∑

j

(Ptij .P
t
ij,γ̃ ) log2(P

t
ij .P

t
ij,γ̃ )

Figure 4.   Social media network at time t. The figure presents a visual overview of the steps involved in 
computing the MNEH matrix (Mt

γ̃
 ) when γ̃ varies between 0.01 and 1.00, then computing the probability of 

forming a connection with user j given user i, and the entropy contribution of target nodes (colored red).
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Entropy of media node‑edge homogeneity.  We compute the joint information entropy of the matrix 
for each value of γ̃ and for each t using Eq. (7). The social media network is directional as it has an in-degree or 
followee network and an out-degree or follower network. Hence, we hypothesize that the entropy generated by a 
random variable (X ) representing social network users in the in-degree and the out-degree network is sampled 
from the same underlying node-edge distribution, formally stated as follows:

H0 : H(X)in = H(X)out.
Ha : H(X)in  = H(X)out.

where H(X)in and H(X)out denotes entropy distribution in in-degree and out-degree network respectively. 
We use H0 and Ha to denote the null hypothesis and alternate hypothesis following conventional notation. We 
perform a Kolmogorov–Smirnov (KS) test between the in-degree entropy distribution and out-degree entropy 
distribution to test our hypothesis. For all hypothesis tests, we use a significance level (α ) of 0.05. We find no 
statistically significant difference between the in-degree entropy distribution and out-degree entropy distribu-
tion with a KS statistic = 0.09 and p value = 0.81, thereby failing to reject the null hypothesis. Figure 5 illustrates 
entropy response and media likes distribution against varying media node-edge homogeneity for the in-degree 
network across all timestamps such that each timestamp is overlaid against the other. The comparison draws 
attention to the correlation between media distribution and entropy distribution in the in-degree network. To 
check for correlation, we compute the Pearson’s correlation coefficient between Mt and Ht , where Ht represents 
network entropy distribution at time t while Mt represents media node-edge homogeneity of the network at 
time t. We compute the correlation for all t ∈ T and for all users in the in-degree and out-degree network. The 
average correlation across all timestamps is ρ = 0.82 , suggesting that entropy and media likes distribution are 
strongly positively correlated. Hence we hypothesize that the entropy in either network is sampled from the 
same distribution as the fake and authentic media distribution. Formally, we state our hypotheses as follows:

H01 : H(X) = T(Z) and H02 : H(X) = F(Z)
Ha1 : H(X)  = T(Z) and Ha2 : H(X)  = F(Z)

where T(Z) and F(Z) denotes the authentic and fake media distribution of the random variable (Z) respectively. 
We find no statistically significant difference between entropy distribution and authentic media distribution (H01 ) 
with a KS Statistic = 0.14 and p value = 0.28, thereby failing to reject the null hypothesis H01 . We also find no sta-
tistically significant difference between entropy distribution and fake media distribution (H02 ) with a KS statistic 
= 0.12, p value = 0.46, thereby failing to reject the null hypothesis H02 . Thus, we observe that entropy response of 
media node-edge homogeneity and media likes distribution are strongly positively correlated. Though entropy 
response is individually correlated with authentic and fake media distribution, we hypothesize that it character-
izes the superposition of both the media distributions. We assume and also empirically show (see Fig. 6a–c) that 
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the underlying media likes distribution, as well as entropy distribution, are sampled from a Gaussian distribu-
tion such that media likes distribution is approximated as a linear combination of Gaussians, one describing 
the spread of fake media likes and the other describing the spread of authentic media likes as shown in Fig. 6d.

Based on our hypothesis, we assume that H ∼ N(µ, σ 2) is decomposable as a mixture of Gaussians such 
that Hauthentic +Hfake ∼ N(µauthentic + µfake , σ

2
authentic + σ 2

fake) , where each Gaussian component represents the 
underlying authentic and fake media likes distribution. Then we compute the Jensen–Shannon divergence (JSD)59 
between the actual joint entropy distribution (H ) and Gaussian approximated entropy distributions (HA and 
HB ) as follows,

Hence, we formulate another pair of hypotheses:

H01 : I(H;N(µauthentic , σ
2
authentic)) = I(H;N(µfake , σ

2
fake))

H02 : I(A) = I(B).

Ha1 : I(H;N(µauthentic , σ
2
authentic)) �= I(H;N(µfake , σ

2
fake))

Ha2 : I(A) �= I(B).

To test our hypotheses, we use the Expectation-Maximization algorithm to estimate the Gaussian parameters 
and fit the data to the Gaussian components found using Gaussian mixture modeling. We perform a KS test 
between the information gain from authentic and fake media distribution as well as from the approximated 
Gaussian components. We reject the null hypothesis (H01 ) that authentic media likes distribution is statistically 
significantly different from that of the fake media likes distribution with KS statistic = 1.0, p value = 9.99e−16 
and the null hypothesis (H02 ) that approximated authentic media likes distribution is statistically significantly 
different from that of the approximated fake media distribution with KS statistic = 1.0, p value = 8.61e−83 for 
the in-degree network.

Now, we describe how our model uses the results from the hypotheses tests to select user opinions as features 
for the media classifier. Once we compute the joint entropy response of the network to media node-edge homo-
geneity for varying γ , we approximate joint entropy as a mixture of Gaussians. We then compute the information 
gain from actual entropy and either of the Gaussian approximated media distributions and select the distribu-
tion with the maximum information gain (Q ). Then, we define threshold (η ) as a percentage of maximum user 
entropy in the network such that Q is the set of all users above η . Since the maximum entropy generated by a 
user is 4.0 bits, >25% refers to all users who have generated greater than 1.0 bit of entropy. We then compute an 
aggregated histogram of media likes per category from all users above the threshold. This enables us to aggre-
gate all the media opinions of users in Q who have been selected as features for the media classifier. Finally, we 
compute the average media likes per category and predict media categories with media likes above that of the 

(9)
I(A) = JSD(H||HÃN(µA, σ

2
A))

I(B) = JSD(H||HB̃N(µB, σ
2
B))

Figure 5.   Normalized entropy response and normalized likes distribution against media node-edge 
homogeneity in the in-degree network.
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average media likes per category as authentic media, else fake. Algorithm box 2 depicts the media classification 
process in a step-by-step manner.

Since it has been shown that there exists a positive correlation between users and credibility, we test our model 
on the users from only the in-degree network. Apart from selecting users based on our model, we validate our 
work by benchmarking against (1) all users from the network as a classifier and (2) Durall et al. method60 which 
is a state-of-the-art unsupervised media classifier. From Table 1, we observe that using the combined human 
decision is similar to a random coin flip. Since we assume that media likes refers to user authentication14, other 
evaluation metrics such as F1 score, precision and recall, cannot be calculated from just media likes. In replicat-
ing Durall’s method, we compute feature embeddings for all media used in this experiment and consider this 

Figure 6.   (a) Gaussian KDE of in-degree users who have only liked authentic media, (b) Gaussian KDE 
of in-degree users who have only liked fake media, (c) Gaussian KDE of all in-degree users who have liked 
authentic and fake media, (d) GMM approximation of information gain from authentic and fake media.
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the test set. We use the convolutional neural network (CNN) architecture proposed by Durall et al. to generate 
media embeddings for the test set, which we use as input to the k-means clustering method with k = 2 . We find 
the F1 score of the unsupervised classifier to be outperformed by our model, as shown in Table 1. We find that 
selectively filtering users on the basis of a network independent measure such as entropy is sufficient to classify 
fake media with an accuracy higher than random chance and unsupervised state-of-the-art model. In a net-
work where users are initially unknown to one another, we find that it is possible to approximate the underlying 
objective credibility using user opinions. Further, by computing the entropy response of the in-degree users 
using media node-edge homogeneity, we compute the entropy within the network. We approximate entropy as 
a superposition of fake and authentic media likes distribution. Since the distribution of fake media is different 
from authentic media, we are able to use the Gaussian approximated cluster with the highest information gain 
to utilize user opinions as features to classify fake media.

Time invariance of the proposed model.  To study if our model is time-invariant to information classifi-
cation, we perform an empirical experiment by introducing a sliding window parameter h. In Fig. 7, we illustrate 
the average performance of the classifier across all timestamps for every sliding window parameter in the range 
[2,50] and a stride parameter s = 3 which corresponds to the movement of the time window across time. We 
find that varying the time window varies the F1 score of the classifier with increasing time windows leading to 
increased F1, precision, recall and accuracy scores. When the sliding window parameter is increased by a value 
of 1 from 3 to 50, we approach the highest media classification accuracy and F1 score as shown in Table. 1. Since 
a time window of 2 corresponds to a period of 40 min in our study, a period of 17 h is required to achieve an F1 
score of 0.68 which is comparable to the performance of the state-of-the-art unsupervised media classifier. Since 
social media networks have been operational for hundreds of thousands of hours, accessing prior time should 
not be an issue. In comparison, the state-of-the-art unsupervised approach proposed by Durall et al. requires 
neural network fine-tuning as new media is uploaded to the network or in the worst case, re-training, given the 
development of new media doctoring tools. Hence, while our model is not time-invariant, we show that it is 
possible for user–user and user–media interactions of a network over a period of time to be able to quantify the 
entropy needed to filter fake media.

Further, if we consider the relationship between time and entropy, we find that user activity in different times-
tamps often differs as a result of varying interaction with media (some network interactions happen at various 
timestamps with huge period of inactivity), causing entropy distribution of individuals to fluctuate with high 
uncertainty. However, when we consider 50 timestamps as shown in Fig. 7, the uncertainty due to user entropy 
fluctuations across different timestamps averages out, yielding consistent metric scores. This further highlights 
the dependence between time and the evolution of entropy.

Conclusions
In this study, we design and conduct a controlled social media experiment with unknown human subjects in a 
network similar to Twitter. To characterize fake media using a network independent metric, we propose using 
media polarity and node-edge homogeneity, which are well-known detriments affecting the spread of fake media 
as a metric to compute the similarity between users in the network. In social media networks, interactions such 
as liking and sharing media, and forming/removing connections with other users, lead to the fluctuation of 
entropy over time. The entropy response of the in-degree users is captured using media node-edge homogeneity 
to compute the entropy within the network. In this paper, we compute entropy as a function of media polarized 
node-edge homogeneity to characterize the spread of fake and authentic media. Using our findings, we describe 
a majority voting classifier to classify online media using selective user opinions. However, our model is limited 
by the size of the moving window with the moving window size equal to that of the whole study improving the 
F1 score of the classifier. This shows that new users who join the network at different times are valuable for media 
classification. As future work, selective user opinions can be filtered using approaches such as active learning 
and combined with unsupervised media classifiers to further improve fake media classification in social media 
networks.

Apart from our findings, we highlight some of our assumptions that can possibly be grounded in theory 
using existing work or addressed as future work. We assume that no user knows each other prior to joining the 
network (random user network), media likes equal validation of authenticity, our 2-day study linearly maps to 
a longer-term study. Finally, future work may consider exploring the generalizability to other media types such 
as text and audio.

Table 1.   Comparison of evaluation metrics.

Method η Precision Recall Accuracy F1 score

Social network users – – – 0.50 –

CNN & k-means (k=2)60 – 0.67 0.69 0.67 0.68

Ours (> 0)% 0.83 0.50 0.50 0.63

Ours (> 25)% 0.86 0.60 0.58 0.71

Ours (> 50)% 0.88 0.70 0.67 0.78

Ours (> 75)% 1.00 0.60 0.67 0.75



11

Vol.:(0123456789)

Scientific Reports |         (2021) 11:6908  | https://doi.org/10.1038/s41598-021-85608-5

www.nature.com/scientificreports/

Data availability
The data along with the social media platform that was developed to collect the data as well as the corresponding 
algorithm have all been made available at the following repository: https://​github.​com/​AiPEX-​Lab/​Social-​Netwo​
rk-​Analy​sis.
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