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ARTICLE INFO ABSTRACT
Keywords: Among urological cancers, renal cancer has the highest fatality rate. In a previous pan-cancer
METTL7A study of the METTL family, we observed a stronger association between the METTL family

Renal cancer
Prognostic biomarker
Immune infiltration
Methyltransferase

members and the risk of renal cancer compared to other cancers. Among these members, MET-
TL7A, a potential methyltransferase, was identified as a protective factor, although its role and
mechanism in renal cancer remain unclear. In this study, we utilized public databases to examine
the expression of METTL7A in renal cancer tissues and normal tissues and found that METTL7A
expression was much lower in renal cancer tissues. We also noticed a link between low METTL7A
expression and poor prognosis for patients. According to the results of our functional enrichment
analysis, METTL7A may have a role in immunological functions in renal cancer. METTL7A
expression was strongly linked with the degrees of immune cell infiltration and expression of
numerous immunological components. METTL7A had significantly different effects on the sur-
vival times of renal cancer patients with high or low immune infiltration. Our findings suggest
that METTL7A may be used as both a prognostic biomarker and an immunological target for
kidney cancer. In conclusion, our study sheds light on the importance of METTL7A in renal cancer
and emphasizes the potential of targeting METTL7A as a novel therapeutic strategy for kidney
cancer.
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1. Introduction

Renal cancer has the highest fatality rate among all urological cancers [1], with over 40% of patients being unable to achieve tumor
remission due to ineffective medical care [1,2]. Despite numerous immune-targeted investigations, clinical trial results have been
inconclusive [3], highlighting the urgent need to identify novel immune-relevant genes to complement classical targets for kidney
cancer treatment.

Many studies have demonstrated that RNA modification, specifically the N6-methyladenosine (m6A) [4], is crucial to the onset and
progression of cancer [5]. The role of m6A in the clinical diagnosis and treatment prediction of kidney renal clear cell carcinoma
(KIRC) and kidney renal papillary cell carcinoma (KIRP) has garnered considerable attention recently [6,7]. These studies suggest that
targeting m6A methyltransferase could potentially contribute to clinical treatment and prognosis diagnosis for renal cell carcinoma.
The METTL family, including METTL3 and METTL14, have been found to possess m6A RNA methyltransferase activity [8-12]. Our
previous study revealed that the METTL family is closely linked to the risk of kidney cancer (Supplementary Figure S1), indicating a
possible unique function in renal cancer. Interestingly, our research also found a strong negative link between METTL7A and the risk
ratio of KIRC and KIRP, suggesting that it could be a protective factor in these cancers (Supplementary Figure S1). METTL7A also
shows methyltransferase activity and is linked to the m6A methylation of IncRNAs [13]. According to several studies, METTL7A is
down-regulated in tumors and is linked to patients’ bad prognoses for hepatocellular carcinoma (HCC) and lung adenocarcinoma
(LUAD), raising the possibility that METTL7A functions as a tumor suppressor gene or has other beneficial effects in human [14,15]. In
methotrexate-treated cells, METTL7A knockout significantly reduced cell viability, destroyed cloning, and increased cell apoptosis,
while its overexpression promotes cell viability and reduces cell apoptosis [16]. Despite these discoveries, it is yet unknown how
METTL7A contributes to renal cancer.

The purpose of this research is to investigate the functions of METTL7A in renal cancer. Initially, the expression and prognostic
significance of METTL7A were analyzed in various subtypes of kidney cancer using the Cancer Genome Atlas (TCGA) database.
Subsequently, we looked into the molecular mechanisms and pathways associated with METTL7A’s functions and assessed its impact
on the immune microenvironment. Finally, we identified the potential METTL7A transcription factors in renal carcinoma.

2. Materials and method
2.1. UALCAN

UALCAN (http://ualcan.path.uab.edu/) is a database that allows users to mine and analyze data from TCGA, the Clinical Proteomic
Tumor Analysis Consortium (CPTAC), and other public datasets [17]. The UALCAN database was used in this study to look into
METTL7A expression as well as its relationship to various clinical and pathological characteristics of KIRC, including gender, cancer
stage, age, race, cancer subtype, Body Mass Index (BMI), and lymph node metastasis status. Additionally, the protein expression and
phosphorylation levels of chosen genes in tumorous and normal tissues were examined using UALCAN.

2.2. Kaplan-Meier Plotter

The Kaplan-Meier plotter database (http://kmplot.com/analysis/) is based on microarray and RNA-sequencing data sets from the
Gene Expression Omnibus (GEO), European Genome-phenome Archive (EGA), and TCGA [18]. We assessed the impact of METTL7A
mRNA expression on KIRC patients with high or low levels of immune cell infiltration using the Kaplan-Meier Plotter module
“Pan-cancer RNA-seq”.

2.3. Linkedomics

Linkedomics database (http://www.linkedomics.org) provides a visual platform for evaluating multi-omics and clinical data from
TCGA for 32 cancer types [19]. The co-expressed proteins of METTL7A were collected from the Linkedomics database, and the 50
genes that had the most positive and negative correlations with METTL7A were shown in a heat map. Simultaneously, using the
“LinkInterpreter” module, the Gene Set Enrichment Analysis (GSEA) was performed on these METTL7A co-expressed proteins to
discover the biological processes and pathways in which METTL7A was engaged.

2.4. Gene expression profiling interactive analysis (GEPIA)

GEPIA (http://gepia.cancer-pku.cn/index.html) is a website for gene expression analysis, which contains data on 9736 tumors and
8587 normal samples from the TCGA and Genotype-Tissue Expression (GTEx) databases [20]. In this work, the module “Expression
DIY” of GEPIA was used to examine the gene expression correlation between METTL7A and other genes in KIRC and normal neigh-
boring kidney tissue samples. The X-axis is based on METTL7A, and the Y-axis shows different genes. The Spearman method was used
to get the correlation coefficient.

2.5. CIBERSORT

CIBERSORT (https://cibersort.stanford.edu/) is a well-known computational resource for assessing immune cell composition based
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on the validated leukocyte gene signature matrix containing 547 genes and 22 distinct categories of human immune cells. The
CIBERSORT algorithm was utilized to quantify the fraction of infiltrating immune cells within malignancies in our study.

2.6. Statistical analysis

The hazard ratio (HR) of METTL7A expression in renal cancer was calculated using a univariate cox regression model, and in-
dependent prognostic factors were found using multivariate cox regression models. The log-rank test was used for the survival analysis,
and a P value < 0.05 was regarded as statistically significant.

3. Results
3.1. The reduced expression of METTL7A in renal cancer

Using data from TCGA database, we examined the mRNA expression of METTL7A in 33 distinct kinds of human malignancies to
look into its possible involvement in carcinogenesis. Compared with adjacent normal tissues, we discovered that the expression of
METTL7A was significantly downregulated in a variety of tumor tissues (18 out of 33), including bladder urothelial carcinoma (BLCA),
breast invasive carcinoma (BRCA), cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC), cholangio carcinoma
(CHOL), colon carcinoma (COAD), esophageal carcinoma (ESCA), head and neck squamous cell carcinoma (HNSC), kidney chro-
mophobe (KICH), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP), liver hepatocellular carci-
noma (LIHC), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), prostate adenocarcinoma (PRAD), rectum
adenocarcinoma (READ), gastric adenocarcinoma (STAD), thyroid carcinoma (THCA) and uterine corpus endometrial carcinoma
(UCEC) (Fig. 1A). In the other 15 cancers, there was no significant change in the expression of METTL7A or lack of corresponding
normal tissues for comparison. Using the GTEx and TCGA databases, we examined the mRNA expression of METTL7A in human
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Fig. 1. The mRNA expression of METTL7A in multiple cancers. (A) The mRNA expression of METTL7A in multiple cancers as analyzed using the
data sets from TCGA. (B) The mRNA expression of METTL7A in multiple cancers as analyzed using the data sets from TCGA and GTEx. *: p-value
<0.05; **: p-value <0.01; ***: p-value <0.001.
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cancer. Our findings demonstrated that, as compared to normal tissues from the GTEx database, the expression of METTL7A was
considerably down-regulated in malignant tissues of 17 types of cancer from TCGA (Fig. 1B). We found that METTL7A expression was
reduced in both KIRC and KIRP subtypes when we narrowed our focus to renal cancer (as consistent in both figures). Overall, our
findings indicated that METTL7A is down-regulated in most malignancies, suggesting its potential involvement in carcinogenesis.

3.2. METTL7A expression in different subgroups of KIRC patients

We selected KIRC as our model for the current investigation because previous results indicated a decrease in the expression of
METTL7A in KIRC, which is the most prevalent form of kidney cancer. We examined the mRNA expression of METTL7A in different
groups of KIRC patients with various clinical characteristics using the UALCAN database. According to our research, METTL7A
expression drastically reduced with the progression of tumor stage, with stages 3 and 4 displaying lower expression than stage 1 (p <
0.05) (Fig. 2A). In terms of race, Caucasian, African-American and Asian KIRC patients had significantly lower levels of METTL7A
expression in tumorous tissues compared to adjacent normal tissues (Fig. 2B). METTL7A expression was considerably down-regulated
in male and female KIRC samples than in normal control samples, with lower expression observed in males than in females (Fig. 2C). In
kidney cancer tissues from patients of various ages (21-40, 41-60, 61-80, and 81-100), METTL7A expression levels were substantially
lower than in healthy neighboring tissues, and they were significantly lower in patients aged 21-40 than in those aged 41-60 (Fig. 2D).
METTL7A expression was down-regulated in grades 1, 2, 3, and 4 of KIRC patients relative to normal controls. And as tumor grade
increased, METTL7A expression became considerably down-regulated (Fig. 2E). As for molecular subtypes (ccA, ccB), METTL7A
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Fig. 2. METTL7A expression in different patient groups. Analysis was shown for (A) cancer stages, (B) race, (C) sex, (D) age, (E) grade, (F) subtype
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expression was downregulated in the tumor tissues of the two most prevalent KIRC molecular subtypes, with the ccB subtype (greater
malignancy) displaying lower METTL7A expression than the ccA subtype, implying that METTL7A could be linked to KIRC malignancy
(Fig. 2F). The expression of METTL7A in tumor tissues was found to be lower in patients with lymph node metastasis classified as NO
and N1 than in nearby normal tissues. Furthermore, METTL7A expression in N1 was lower than in NO (Fig. 2G). Additionally, we
investigated the protein expression of METTL7A in various patient groups (Supplementary Figure S2). The findings demonstrated that
primary tumor tissue had considerably lower levels of METTL7A protein expression than normal tissues (p < 0.0001). As the stage
progressed, there was a downward trend in METTL7A expression. Our findings demonstrate a correlation between METTL7A
expression and tumor stage, grade, N stage and malignancy, implying that METTL7A may contribute to the growth of renal cancer.

3.3. METTL7A as one potential prognostic indicator for KIRC and KIRP

The relationship between METTL7A and renal cancer survival rates as well as its prognostic significance was then investigated.
Based on Kaplan-Meier Plotter datasets, the overall survival (OS) of KIRC and KIRP patients with reduced METTL7A expression was
poorer (Fig. 3A and B). Univariate and multivariate cox regression analysis of METTL7A expression in KIRC revealed that decreased
METLL7A expression was a risk factor and a potential independent prognostic factor (Fig. 3C and D). The nomogram indicated that
METTL7A could be combined with additional clinical markers to forecast KIRC development and prognosis (Fig. 3E and F). In addition,
decreased METTL7A expression was also found to be a risk factor and possible independent prognostic factor for KIRP (Supplementary
Figure S3A and B). METTL7A could also be used in conjunction with other clinical markers to forecast the course and prognosis of KIRP
(Supplementary Figure S3C and D).

3.4. Possible regulating impact of METTL7A on renal carcinoma’s immunological microenvironment

The function of METTL7A in kidney cancer has been largely unknown. To gain insight into its biological processes and pathways in
KIRC, we screened the co-expressed mRNAs of METTL7A in KIRC using the Linkedomics database. Fig. 4A and B displayed the top 50
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genes that have a positive or negative correlation with the expression of METTL7A in KIRC. Subsequently, we employed GSEA to
investigate the co-expressed genes, and identified the 20 most significant terms for enrichment analysis of cellular component, mo-
lecular function, and biological process. And the top 20 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for METTL7A
were shown (Fig. 4C, D, E, F). We found that the immune-relevant pathways like the NF-xB signaling pathway, chemokine signaling
pathway, TNF signaling pathway and natural killer cell-mediated cytotoxicity were heavily enriched in these co-expressed genes,
indicating that METTL7A may modulate the immune microenvironment of KIRC.

We further investigated the association between the expression of METTL7A and the degree of immune cell infiltration using
CIBERSORT, EPIC and QUANTISEQ algorithms. The expression of METTL7A and regulatory T cells (Tregs) infiltration in KIRC and
KIRP were shown to be significantly inversely correlated by CIBERSORT algorithm (Fig. 5A). In KIRC, KIRP, and KICH, METTL7A
expression and CD4+T cell infiltration were found to be significantly positively correlated by EPIC analysis (Fig. 5B). Additionally,
using the QUANTISEQ algorithm, the expression of METTL7A and the degree of NK cells and CD4+T cells infiltration in KIRC and KIRP
were also found to be significantly positively correlated (Fig. 5C). These findings imply that the modulation function of METTL7A in
the immune microenvironment of renal carcinoma may be mediated by immune cells.

We also examined the expression relationships between METTL7A and various representative immune families, including che-
mokine (Fig. 6A), immunostimulators (Fig. 6B), major histocompatibility complex (MHC) (Fig. 6C) and immune receptors (Fig. 6D) in
530 KIRC patients to gain insight into the function of METTL7A in immune regulation. Their expression is frequently used to identify
various kinds of immune cells, including B cells, T cells, CD8™ T cells, mast cells, monocytes, macrophages, neutrophils, eosinophils
and dendritic cells. The findings revealed that METTL7A was inversely associated with most immune-related genes expression in KIRC,
suggesting that METTL7A may control the immune response in KIRC.

To investigate whether the role of METTL7A in renal carcinoma is associated with its involvement in the immune microenvi-
ronment, we used the Kaplan-Meier plotter database to examine the impact of METTL7A expression on the OS of KIRC and KIRP
patients with high or low immune infiltration. We discovered that patients with high or low immunological infiltration experienced
varied effects of METTL7A expression on overall survival (Fig. 7, Supplementary Figure S4). In KIRC, patients with low levels of type 1
T-helper cells, eosinophils, natural killer T-cells and type 2 T-helper cells had lower overall survival when METTL7A expression
declined, and the effect of high levels of infiltration of these cells on OS was less pronounced than that of low levels (as indicated by the
p-value). In contrast, high levels of basophil and CD8" T cell infiltration were linked to poorer overall survival when METTL7A
expression decreased, whereas the impact of low-level infiltration on overall survival was less pronounced than that of high-level
infiltration (Supplementary Figure S4). Meanwhile, in KIRP, patients with low levels of infiltration of B cells, macrophages, mesen-
chymal stem cells, and regulatory T cells had poorer overall survival when METTL7A expression decreased, while high-level infil-
tration of these cells had no significant effect on overall survival. High levels of CD4" memory T cell infiltration, on the other hand,
were associated with poorer overall survival when METTL7A expression decreased, but low levels of infiltration had no significant
impact on overall survival (Fig. 7). Our findings suggest that METTL7A can regulate immune cell infiltration and alter the prognosis of
KIRC and KIRP patients. The down-regulation of METTL7A expression has different consequences on patients’ overall survival
depending on the levels of immune cell infiltration (Fig. 7, Supplementary Figure S4), and this effect is more pronounced in KIRP than
KIRC.

3.5. Identification of SPI1 as a potential transcription factor for METTL7A in KIRC

It has been demonstrated that transcription factors can influence gene transcription by attaching to the promoters of their target
genes. To investigate the possible reasons for the downregulation of METTL7A in KIRC, we conducted a multi-omic analysis to identify
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Fig. 8. SPI1 as one potential transcription factor for METTL7A in KIRC. (A) Heat maps showing 4 experimentally-confirmed transcription factors of
METTL7A in renal tissue basing on data from the hTFtarget database. (B) SPI1, a possible co-expressed upstream transcription factor, is significantly
associated with METTL7A expression using GEPIA database. (C) Box plots showing the up-regulated protein expression of SPI1 in KIRC tissues
versus normal adjacent tissues.
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the upstream transcription factors of METTL7A. Initially, four experimentally verified transcription factors for METTL7A in renal
tissue were collected, including AR, SUMO2, SPI1 and TRIM28, from the hTFtarget database (Fig. 8A, Supplementary Table S1). It has
been established that the expression of transcription factors is often associated with downstream targeting genes. We then analyzed all
expression-related genes of METTL7A in KIRC (correlation coefficient >0.3 or - 0.3) to identify potential transcription factors using the
GEPIA database (Supplementary Table S2). Among them, SPI1 expression had a negative correlation with METTL7A (correlation value
= —0.3) (Fig. 8B). Additionally, KIRC tissue had a greater degree of SPI1 translation than normal kidney tissue (Fig. 8C). Based on these
findings, SPI1 could be one of the potential transcription factors of METTL7A in KIRC, which might be responsible for the decreased
METTL7A expression.

4. Discussion

Several studies have reported that KIRC is heavily infiltrated by immune cells [21,22]. The immune response has been linked to the
spontaneous regression seen in up to 1% of KIRC patients [23]. Furthermore, KIRC was one of the first cancers to be evaluated for
immunotherapy and has remained one of the most sensitive tumors to date [24-27]. However, current immunotherapy modalities
have not been entirely successful [3], highlighting the need to identify new therapeutic targets. Our study suggests that METTL7A may
regulate the immune microenvironment in renal cancer patients, making it a potential immune target for therapy.

While surgery is often effective in treating early-stage renal cancer, up to one-third of cases may progress to metastasis [28,29].
Early-stage patients do not require high doses of chemotherapy or radiation, which may cause cellular damage. Conversely,
advanced-stage patients have a poor prognosis, and aggressive treatment may weaken their immune systems. Therefore, identifying
prognostic indicators to distinguish high-risk from low-risk patients is important for individualized care. Our research revealed that, in
contrast to normal adjacent tissues, the expression of METTL7A was markedly lower in renal cancer tissues, and low expression was
associated with poor overall survival. As a result, METTL7A could be a predictive factor for renal carcinoma, which could be useful for
developing individualized treatment plans in the future.

METTL7A (methyltransferase like 7A) is a gene that encodes a protein thought to act as a methyltransferase in cells [30]. Previous
studies have found that the downregulation of METTL7A in tumor tissues predicted a poor prognosis in HCC patients [15], and that
inhibiting METTL7A might help choriocarcinoma cells respond to methotrexate (MTX)-based chemotherapy [16]. In the context of
neutrophil degranulation, changes in METTL7A expression may compromise the integrity of the Golgi apparatus, resulting in abnormal
neutrophil secretory granule production and altering the first defense barrier of the innate immune response in chronic schizophrenia
[31]. Another study investigated the role of METTL7A in preserving the integrity of the Golgi, which may be crucial for neutrophil
degranulation [32]. However, there is currently no research on the involvement of METTL7A in renal cancer or its modulation of the
immune microenvironment.

Numerous publications have documented the roles and clinical importance of METTL family members in tumorigenesis. For
example, METTL1 is linked to several human malignancies, including hepatocellular carcinoma and lung cancer [33-35]. METTL3 and
METTL14 have been shown to promote oncogene expression and cancer development by methylating RNAs with m6A in leukemia and
solid tumors [36,37]. METTL13 primarily mediates Ras-driven carcinogenesis of pulmonary and pancreatic epithelial malignancies
[38]. METTL18 is also involved in the transformation of cancer cells, as discovered in a recent study [39]. These findings highlight the
importance of METTLs in cellular processes of tumorigenesis. According to our prior research, the METTL family members have a
closer association with the risk of renal cancer than other cancers, suggesting that METTL family may have unique roles in renal cancer
(Supplementary Figure S1). Among these members, we discovered that METTL7A might function as a protector in kidney cancer, but
its mechanism was uncertain. The impact and putative mechanism of METTL7A in renal cancer, providing a potential target for di-
agnostics and treatment.

T cells, including CD4+T cells and CD8+T cells, are the foundation of “immune surveillance” and are crucial in specifically
inhibiting cancer cells in an antigen-specific manner [40,41]. CD8" T cells and macrophages are known as anti-tumor effector cells,
and CD4" T cells can enhance their anticancer activity [42,43]. Therefore, CD4 + T cells are also directly related to preventing tumor
growth. Tregs are the primary immunosuppressive cells in tumor immunity and can enter the tumor microenvironment (TME) to block
the tumor suppressor immune response [44,45]. The accumulation of Tregs in TME results in an immune microenvironment that
stimulates tumor growth out of control [46,47], promoting immune escape and cancer progression. Additionally, NK cells are
specialized killer cells that support cancer immune surveillance [48,49]. In our study (Fig. 5), we discovered a negative correlation
between Tregs and the expression of METTL7A in renal cancer while a positive correlation between the levels of CD4", CD8*, and NK
cell infiltration and METTL7A expression was found. This suggests that CD4+T cells, CD8+T cells, NK cells and Tregs may be involved
in the mechanism of METTL7A’s functions in tumor progression.

Although this study has advanced knowledge of METTL7A and renal cancer, limitations remain. Firstly, while we have examined
the relationship between METTL7A and immune infiltration in renal carcinoma patients, further analysis of different subgroups would
provide more clarity. Secondly, most of the studies on METTL7A in this paper were conducted at the gene level, and more detailed
analysis at the protein level could strengthen the evidence. Thirdly, while this study has identified a link between METTL7A and
immune cell infiltration levels in renal cancer patients, additional research is required to elucidate its molecular mechanism and its
function in tumor growth and immune escape.

In conclusion, our study illuminates the function and probable mechanisms of METTL7A in carcinogenesis and its application as a
predictive biomarker and immunological target for renal cancer.
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