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A B S T R A C T

Parkinson's Disease (PD) is associated with decreased ability to perform habitual tasks, relying instead on goal-
directed behaviour subserved by different cortical/subcortical circuits, including parts of the putamen. We ex-
plored the functional subunits in the putamen in PD using novel dynamic connectivity features derived from
resting state fMRI recorded from thirty PD subjects and twenty-eight age-matched healthy controls (HC).
Dynamic functional segmentation of the putamina was obtained by determining the correlation between each
voxel in each putamen along a moving window and applying a joint temporal clustering algorithm to establish
cluster membership of each voxel at each window. Contiguous voxels that had consistent cluster membership
across all windows were then considered to be part of a homogeneous functional subunit. As PD subjects robustly
had two homogenous clusters in the putamina, we also segmented the putamina in HC into two dynamic clusters
for a fair comparison. We then estimated the dynamic connectivity using sliding windowed correlation between
the mean signal from the identified homogenous subunits and 56 other predefined cortical and subcortical ROIs.
Specifically, the mean dynamic connectivity strength and connectivity deviation were then compared to evaluate
subregional differences.

HC subjects had significant differences in mean dynamic connectivity and connectivity deviation between the
two putaminal subunits. The posterior subunit connected strongly to sensorimotor areas, the cerebellum, as well
as the middle frontal gyrus. The anterior subunit had strong mean dynamic connectivity to the nucleus ac-
cumbens, hippocampus, amygdala, caudate and cingulate. In contrast, PD subjects had fewer differences in mean
dynamic connectivity between subunits, indicating a degradation of subregional specificity. Overall UPDRS III
and MoCA scores could be predicted using mean dynamic connectivity strength and connectivity deviation. Side
of onset of the disease was also jointly related with functional connectivity features.

Our results suggest a robust loss of specificity of mean dynamic connectivity and connectivity deviation in
putaminal subunits in PD that is sensitive to disease severity. In addition, altered mean dynamic connectivity and
connectivity deviation features in PD suggest that looking at connectivity dynamics offers an additional di-
mension for assessment of neurodegenerative disorders.

1. Introduction

Corticostriatal connections are important for the cognitive and
motivational aspects of goal directed motor behaviours. Traditionally,
the ventral striatum, which includes the nucleus accumbens, medial
and ventral aspects of the caudate and putamen, part of the olfactory

tubercle, and anterior perforated substance, has been associated with
reward processing. The dorsal striatum consists of the majority of the
caudate and the putamen, and has been implicated in cognitive func-
tion (particularly working memory (Provost et al., 2010)), and sen-
sorimotor processing (Haber, 2016) respectively. However, it is be-
coming increasingly clear that such delineations of reward, cognitive
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and motor processing being directly attributed to the ventral striatum,
caudate and putamen respectively is an oversimplification, as there is
considerable overlap in function between these basal ganglia structures
(Cardinal et al., 2002; Haber, 2016; Postuma and Dagher, 2006;
Robbins, 2007).

Motor-related striatal areas such as the putamen subserve different
motor functions with dorsomedial regions important for goal-directed
control, and more laterally located sensorimotor regions important for
habitual movements (Gruber and McDonald, 2012; Redgrave et al.,
2010). Goal-directed learning is usually slow, continuous and learning
on purpose. In contrast, in habitual learning, motor behavior is based
on the default stimulus-response, and is fast, unconditioned and spon-
taneous (Dolan and Dayan, 2013). When a new motor task is repeatedly
performed, it becomes more habitual and requires less goal-directed
effort. The ventrolateral substantia nigra projecting to the caudolateral
sensorimotor putamen may be particularly susceptible to degeneration
early on in PD (Pavese and Brooks, 2009) affecting habitual motor
control.

Elucidating the role of cortical striatal communications in PD is
facilitated by non-invasive brain imaging methods such as functional
MRI (fMRI). In addition to the local activity changes seen in fMRI, prior
studies have demonstrated altered motor-related fMRI connectivity
patterns in PD. A reduced overall connectivity of the left putamen
during resting state is seen in drug-naive PD subjects, which is relatively
restored with L-dopa medication (Wu et al., 2009). By contrasting
early-stage PD subjects with healthy controls, (Luo et al., 2014) de-
monstrated decreased putaminal connectivity with mesolimbic regions,
and especially reduced connectivity between the posterior putamen and
sensorimotor cortex. Other studies have found remapping of striatal
connectivity in PD at rest, with reduced spatial segregation between
different cortico-striatal loops (Hacker et al., 2012; Helmich et al.,
2010), and even accurately predicting whether PD subjects would de-
velop dyskinesia (Herz et al., 2016). Task-based alterations in striatal
connectivity in PD have also been investigated (Palmer et al., 2009; Wu
et al., 2011a, 2011b). For instance, during a self-initiated right hand
tapping task, connectivity between the putamen and M1, PMC, SMA
and cerebellum were found to be decreased in PD patients (Wu et al.,
2011a, 2011b). Therefore, striatal connectivity profiles associated with
PD are important in understanding the pathophysiology of disease and
may potentially provide an additional biomarker for PD.

Connectivity studies are often performed at the ROI (Region-of-
Interest) level, as opposed to the individual voxel level as this is com-
putational efficient, robust against noise, and eases neurological inter-
pretation. However, parcellation of brain regions into biologically-
meaningful ROIs is challenging. Conventionally, ROIs have been de-
fined using atlases based on cytoarchitecture or anatomical structure
(Tzourio-Mazoyer et al., 2002; Zilles and Amunts, 2009), although this
requires the fairly strong assumption that functional activity closely
follows anatomical divisions across all individuals. However, a single
anatomical ROI, such as the putamen or amygdala, may in fact en-
compass distinct functional subdivisions (Mishra et al., 2014; Zhang
et al., 2016), leading to inaccurate connectivity estimation. Thus a
compromise between voxel-level connectivity and ROI-level con-
nectivity studies is to parcellate an anatomically-derived given ROI into
functionally homogeneous subregions. This may have particular clinical
applications with respect to e.g., deep brain stimulation electrode pla-
cement.

A number of data-driven approaches have thus been proposed to
parcellate brain regions based on functional connectivity. In clustering
methods, features derived from the connectivity patterns between
voxels are computed, then different clustering approaches can be used,
including K-means clustering (Jung et al., 2014), hierarchical clustering
(Blumensath et al., 2013), self-organized mapping (Mishra et al., 2014),
spectral clustering (Shen et al., 2013) and region growing techniques
(Lu et al., 2003). Another category of methods for connectivity based
parcellation is based on modularity detection, where the voxels are

considered as the nodes in a graph and it separates the graph into
distinct modules (Barnes et al., 2010).

However, most methods for functional parcellation have not con-
sidered connectivity dynamics, neglecting the possibility that spatial
patterns of functional homogeneous coactivations may change over
time. Estimating dynamic changes provides another dimension in
which to investigate brain alterations (Calhoun et al., 2014; Hutchison
et al., 2013; Liu et al., 2016). Rajtmajer et al. proposed to define the
temporal consensus of brain subdivisions by first estimating the par-
cellation using modularity at different time points and then aggregating
the parcellations based on label propagation (Rajtmajer et al., 2015). To
account for temporal dynamics, Instantaneous Correlation Parcellation
(ICP) can be used to transform the original fMRI signals into an in-
stantaneous correlation map, and selected features across sliding win-
dows can be used to create a detailed parcellation of the thalamus (Ji
et al., 2016; van Oort et al., 2018).

A number of studies have proposed to investigate the subdivisions in
the striatum and its subregions based on their connectivity patterns in
both health and disease (Bohanna et al., 2011; Choi et al., 2012; Cohen
et al., 2009; de Wit et al., 2012; Helmich et al., 2010; Horga et al., 2015;
Janssen et al., 2015; Jung et al., 2014). The putamina and caudate have
been segmented into seven subregions according to their white matter
connections to cortical areas in Huntington's disease (Bohanna et al.,
2011). Using functional connectivity features, the striatum has been
divided into functional subregions and coupled to cortical association
networks by assigning each voxel in the striatum to its most strongly
correlated cortical network (Choi et al., 2012). In (Jung et al., 2014),
the authors parcellated the human striatum based on resting state
connectivity using K-means clustering and reported multiple parallel
corticostriatal loops with distinct connectivity maps. A reinforcement
learning study suggested that the functional connections between the
sensorimotor cortex and the posterior putamina strengthened progres-
sively during learning (Horga et al., 2015). However, those studies did
not consider the dynamic connectivity features, nor focused on the
functional subdivisions associated with habitual learning, as would be
relevant for PD.

Here we aim to estimate the functionally homogenous subunits in
the putamina to reveal the altered functional connectivity in PD. We
take account the voxel-wise connectivity dynamics into the functional
region definition and study their subregional mean dynamic con-
nectivity and connectivity deviation patterns.

2. Materials and methods

2.1. Subjects

Thirty PD subjects (11 females; age: 57.77 ± 9.85; UPDRS III:
32.53 ± 15.93; Hoehn and Yahr scale: 1.95 ± 0.62) and twenty-eight
age-matched healthy controls (HC, 14 females; age: 58.39 ± 7.64)
participated in this study. The demographical data is summarized in
Table 1. All participants were recruited from the Movement Disorders
Clinic of Xuanwu Hospital of Capital Medical University, and provided

Table 1
Demographical data.

Variables PD (n=30) NC (n=28) P-values

Gender (female/male) 11/19 14/14 0.305
Age (years) 57.77 ± 9.85 58.39 ± 7.64 0.787
Disease duration (years) 5.07 ± 3.19 (1−13) – –
Onset side (B/R/L) 3/17/10 – –
H-Y stage 1.95 ± 0.62 (1–3) – –
MDS-UPDRS III (off) 32.53 ± 15.93 (13–73) – –
LEDD (mg/d) 395.75 ± 285.29 – –
MMSE 27.93 ± 1.68 28.46 ± 1.45 0.202
MoCA 25.20 ± 3.55 26.00 ± 3.60 0.3980
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written, informed consent prior to participation. All studies were ap-
proved by the Institutional Review Board of Xuanwu Hospital of Capital
Medical University, Beijing, China.

2.2. fMRI data

Resting state imaging data were collected on a SIEMENS Trio 3 T
scanner equipped with a head-coil. During scanning, all the participants
were instructed to lie awake with eyes closed. Earplugs were used to
minimize machine noise. PD subjects were scanned in the off-medica-
tion state (after a 12-h period of medication withdrawal).

High-resolution T1 weighted anatomical images were acquired
using a sagittal, magnetization prepared rapid gradient echo three-di-
mensional T1-weighted sequence with a repetition time of 1970ms,
echo time of 3.9 ms, inversion time of 1100ms and flip angle of 15°. A
radiologist assessed the images of all participants to exclude those with
space-occupying lesions and extensive cerebrovascular disease. Blood
oxygenation level-dependent (BOLD) contrast echo-planar (EPI) T2*-
weighted images were acquired with the following specifications: re-
petition time of 2000ms, echo time of 30ms, flip angle of 90°, field of
view of 256mm×256mm, matrix size of 64× 64, voxel size of
3.0 mm×3.0mm×4.0mm, axial slices of 33 layers and the scanning
time of 8 mins.

2.3. Imaging Preprocessing

A custom designed pipeline based on AFNI (http://afni.nimh.nih.
gov/afni), FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) and FSL
(http://www.fmrib.ox.ac.uk/fsl) was utilized to preprocess imaging
data in subject's native space. Despiking was first performed on the
voxel-wise basis to remove the potential artefacts. The remaining
images were then corrected for slice timing in order to eliminate the
slice intensity differences due to interleaved acquisition, and further
resliced to 3mm isotropic voxels. Motion correction for any major head
movements during the scan was performed using rigid body alignment.
Standard brain parcellation was done on T1-weighted images in
FreeSurfer. Functional data and parcellated structural images were co-
registered with the functions from FSL as FSL performs well without too
much computational demand. Since we were interested in the putamina
in elderly population, who might be sensitive to misregistration, all
analysis was done in the individual subject's native space, as opposed to
spatially registering to a common template.

Sources of spurious variance, along with their temporal derivatives,
were voxel-wise regressed from processed data including six parameters
obtained by motion correction for rigid body head motion, the white-
matter signal and the CSF signal. In the next step, fMRI signals were
detrended by removing any linear or quadratic trends. The fMRI data
were then spatially smoothed by a 6×6×6 FWHM (Full Width at Half
Maximum) Gaussian kernel to further improve its SNR (Signal to noise
ratio) in the subsequent analysis. The temporal bandpass filter was fi-
nally applied at 0.01 Hz to 0.08 Hz as suggested in previous studies.

2.4. Joint temporal parcellation

To incorporate the connectivity properties into the voxel selection,
the Normalized Cut (NC), a graph-based spectral clustering algorithm,
was used (Shi and Malik, 2000). Suppose the number of voxels in a
target brain region is N, we construct a graph G={V,E}, where the
vertex set V represents all N voxels, and E is the edge set. Let W denotes
the weight matrix between vertices, and W(i, j) is defined as a function
of correlation between nodes i and j. To divide the graph into two
disjoint sets A and B, we try to minimize the connections between two
sets while maximizing the connections within each set, and the objec-
tive function of NC is defined as,

= +NC A B cut A B
assoc A V

cut A B
assoc B V

( , ) ( , )
( , )

( , )
( , )

where = ∑ ∈ ∈cut A B W i j( , ) ( , )i A j B, is the sum of weighted connections
between sets A and B, and = ∑ ∈ ∈assoc A V W i j( , ) ( , )i A j V, is the total
weights of connections from nodes in A to all other nodes in the graph.

The NC algorithm can be further extended to a K-way partition (Yu
and Shi, 2003). Let D be an N ∗N diagonal matrix with

= = ∑ =D i i d w i j( , ) ( , )i j
N

1 , and indicator matrix Y∈ {0,1}N∗K represents
the partition of graph G. Then if node i belongs to partition set j, Y
(i, j)= 1, otherwise, Y(i, j)= 0. This optimization problem can be effi-
ciently solved as a generalized eigenvalue problem,

= − ′ − −( )( )NC K Tr Z D WD Z
1
2

1
2

where Z′Z= IK and IK is the identity vector with length K. The solution
of Z is the matrix with the k eigenvectors associated with the first K
eigenvalues of matrix − −D WD1

2
1
2 . Z can be considered as the new set of

coordinates for the graph and we further apply the K-means to obtain
the cluster indicator matrix Y.

Here, we extend the NC approach into a time varying setting. Under
the assumption that brain activity recorded by fMRI changes relatively
slowly over time, a sliding window framework is utilized. Assume that
the window length is L and t∈ {1,2,…,T} is the index of time windows.
We could construct the graph Gt=(Vt,Et) at each time window re-
spectively. For convenience, we use the subscript t to represent the time
index.

Suppose Zt∈ RN∗K is the new set of coordinates obtained at each
time point by solving the optimization problem

⎜ ⎟= − ⎛
⎝

′ ⎛
⎝

⎞
⎠

⎞
⎠

− −NC K Tr Z D W D Zt t t t t t
1
2

1
2 , Yt is the cluster indicator matrix at

time window t, and Ycom is the common cluster indicator matrix for the
samples at all the time epochs. Similar to the multiple graph clustering
formulation (Shen et al., 2013), the cost function of this joint temporal
clustering problem could be formulated as,

∑= − −J Tr Y Z R Y Z R(( ) ( ))
t

com t t
T

com t t

where Rt
′Rt= IK is the generalized rotation matrix of Zt. It tries to rotate

individual coordinates to create a joint parcellation Ycom as well as
obtaining the time dependent parcellation Yt by the rounding procedure
of ZtRt. This optimization estimates the clustering membership jointly
for all time windows by iteratively updating Rt and Ycom until they
converge. We thus finally obtain the joint time dependent ROI parcel-
lation. The performance of multiple graph clustering approach has been
sufficiently validated in a group parcellation scenario (Shen et al.,
2013).

2.5. Homogeneous subunits parcellation of the putamen

To apply the joint temporal parcellation approach, we first con-
structed the dynamic connectivity networks within the right and left
putamina across time using a sliding window framework. The window
length was chosen to be 60 s (= 30 samples) as suggested in previous
studies, which is long enough to overcome the random fluctuations
while still capable of detecting the underlying dynamics in the con-
nectivity (Zalesky and Breakspear, 2015). The window moved 2 time
points (4 s) forward at each Pearson's pairwise correlation, which re-
sulted in 101 windowed connectivity matrices of regional networks
involving the bilateral putamina. Because the significance of negative
correlations is still unclear, and we were interested in spatially con-
fluent parcellations, correlations between spatially discontinuous
voxels or negative correlations were removed from the network, re-
sulting in the symmetric, positive and spatially continuous time-de-
pendent similarity matrices.

The joint temporal parcellation approach would simultaneously
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segment the target ROI at each time point into functional subunits.
Voxels that were consistently assigned to the same cluster over time, i.e.
the homogeneous subunits, were further investigated. We found that
dividing each putamen into three or more subunits in the PD group
resulted in some subjects having clusters that did not have any voxels
with consistent cluster membership over time. We therefore restricted
ourselves to parcellating the putamina into two clusters. For a fair
comparison, we also parcelleated the putamina in the HC group using
two clusters. The overview of the framework is demonstrated in Fig. 1.

2.6. Functional connectivity maps of the subunits

Once the parcellation had been computed, the average signal of the
voxels within each consistent cluster was used in subsequent dynamic
connectivity analysis with other ROIs by windowed Pearson's pairwise
correlation. The window length was 60 s and moved forward 4 s each
window. In addition to the bilateral putamina, 56 ROIs were selected as
shown in Table 2. These included representative ROIs from visual,
motor, sensory, attentional, cerebellar and basal ganglia regions. The
homogeneous subunits' connectivity to ROIs were then compared be-
tween HC and PD groups. Specifically, the mean and standard deviation
of the dynamic connectivity strength between each putaminal homo-
genous subunits and all other ROIs were computed.

2.7. Disease severity prediction using functional connectivity features

We examined the relationship between the derived connectivity
features and the Unified Parkinson's Disease Rating Scale III (UPDRS III)
by correlation analysis. A False Discovery Rate (FDR) multiple com-
parison correction was performed and the significance level was set to
be 0.05. In addition, we further examined the capability of connectivity
features for disease severity prediction and identified potential

biomarkers for PD. Prior to analysis, we excluded the effects of age,
disease duration and LEDD by first standardising these variables and
then regressing them from the UPDRS III scores. Considering that the
number of connectivity features with the bilateral putaminal subunits
was large (e.g., 228 pairs of connections), we first applied a LASSO
(Least absolute shrinkage and selection operator) regression model to
choose the most related features in order to narrow down the features
pool (Tibshirani, 1996). Suppose we have N subjects, leaving one
subject out in each run, we chose a sparse set of features using LASSO
with N− 1 subjects. The LASSO model was applied (with 5-fold cross
validation to avoid overfitting), and the optimal tuning parameter was
determined based on the minimal mean square error in each run. As a
result, we obtained the frequency of the selected features over all runs.
According to the frequency of selected features, we chose the subset of
features that produced the highest prediction accuracy using a leave
one subject out regression model. More specifically, we gradually in-
creased the number of features according to their frequency. With fixed
number of features, the leave one subject out simple regression was
applied where N− 1 subjects were used as the training set and one
subject was used for prediction. We reported the set of features ob-
taining the highest prediction accuracy. The prediction accuracy was
estimated by the correlation of the predicted UPDRS III against the
measured true UPDRS III.

2.8. Associating the cognitive profiles with functional connectivity features

To assess the multivariate association between cognitive profiles
and functional connectivity features, we estimated the maximized
correlations between MoCA (Montreal Cognitive Assessment) subscores
and subregional connectivity features using Canonical Correlation
Analysis (CCA) (Chen et al., 2016; Chen et al., 2018; Hardoon et al.,
2004). The effects of age, disease duration and LEDD were first

Fig. 1. Framework for studying the homogeneous subregions in the putamen. (a). Estimate the connectivity network at each time point for the target region. (b).
Apply joint temporal clustering model to simultaneously segment the target region over time. (c). Based on the temporal clustering results, define the dynamic
homogeneous subregions. (d). Extract the average time courses of homogenous subunits for subsequent dynamic connectivity analysis.
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excluded by first standardising these variables and then regressing them
out from the MoCA subscores. Let X∈ RS∗N and Y∈ RS∗M represent
normalized connectivity features and cognitive profiles, respectively.
CCA aims to estimate the projections of X and Y which achieve the
maximum correlation between the projected variables. It can be for-
mulated as,

′ ′max w X Yv
w,v

′ ′ = ′ ′ =s t w X Xw v Y Yv. . 1, 1

where w and v are the weight vectors, and Xw and Yv are the projected
canonical variables. CCA sequentially seeks each pair of canonical
variables with maximized correlation between them, and each pair is
uncorrelated with the other pairs of canonical variables. Due to the
possible collinearity of cognitive scores and connectivity features, in-
stead of using projection weights, the loadings were utilized to infer the
contribution of each feature to the canonical variables. The loading is
defined as the correlation between each measurement with the esti-
mated canonical variable. A permutation test was then used to estimate
the significance of canonical correlation coefficients. Briefly, the sam-
ples were randomized, and canonical correlation coefficients were es-
timated with the permuted signals. Suppose this procedure is repeated
K times, and L is the number of permuted results that are greater than
the estimated coefficients without permutation, then significance level
of the coefficients could be estimated by Pval= L/K. Here we set
K=500. To robustly assess the loadings for each measurement, a leave-
one-subject-out procedure was utilized in our analysis and the sig-
nificance of the loadings was then evaluated by the one sample t-test.
Prior to analysis, to avoid the collinearity, we first applied Principal
Component Analysis (PCA) to reduce the dimensionality of the con-
nectivity features before applying CCA, retaining enough components
to capture> 90% of the variance (in this case, 21 components).

Finally, we also examined the capability of connectivity features for
MoCA total score prediction in PD. The same procedure was performed
as described for UPDRS III prediction, the LASSO model was used for
evaluating the importance of features and then leave one subject out
simple regression was utilized for prediction. The set of features ob-
taining the highest prediction accuracy was reported.

3. Results

3.1. Homogeneous subunits identification in putamen

In this study, we applied a joint temporal parcellation model to si-
multaneously parcellate the bilateral putamina into two functional
subclusters at each time epoch. Two homogeneous subunits of the bi-
lateral putamina were thus obtained by taking into account the regional
variations.

One typical example of the parcellation on left and right putamina
in a HC subject is demonstrated in Fig. 2. With the proposed approach,
parcellations appeared to create a predominantly anterior/posterior

Table 2
58 ROIs (including Left and Right Putamen) used in the dynamic connectivity
analysis.

Index Name Index Name

1 L-Putamen 30 R-Putamen
2 L-Cerebellum-Ctx 31 R-Cerebellum-Ctx
3 L-Thalamus 32 R-Thalamus
4 L-Caudate 33 R-Caudate
5 L-Pallidum 34 R-Pallidum
6 L-Hippocampus 35 R-Hippocampus
7 L-Amygdala 36 R-Amygdala
8 L-Accumbens-area 37 R-Accumbens-area
9 L-Caudal-Anterior-Cingulate-

Ctx
38 R-Caudal-Anterior-Cingulate-

Ctx
10 L-Caudal-Middle-Frontal-Ctx 39 R-Caudal-Middle-Frontal-Ctx
11 L-Cuneus 40 R-Cuneus
12 L-Entorhinal 41 R-Entorhinal
13 L-Inferior-Parietal-Ctx 42 R-Inferior-Parietal-Ctx
14 L-Inferior-Temporal-Ctx 43 R-Inferior-Temporal-Ctx
15 L-Lateral-Orbitofrontal-Ctx 44 R-Lateral-Orbitofrontal-Ctx
16 L-Medial-Orbitofrontal-Ctx 45 R-Medial-Orbitofrontal-Ctx
17 L-Middle-Temporal-Ctx 46 R-Middle-Temporal-Ctx
18 L-Parahippocampal–Ctx 47 R-Parahippocampal-Ctx
19 L-Paracentral-Ctx 48 R-Paracentral-Ctx
20 L-Postcentral-Ctx 49 R-Postcentral-Ctx
21 L-Posterior-Cingulate-Ctx 50 R-Posterior-Cingulate-Ctx
22 L-Precentral-Ctx 51 R-Precentral-Ctx
23 L-Precuneus 52 R-Precuneus
24 L-Rostral-Anterior-Cingulate-

Ctx
53 R-Rostral-Anterior-Cingulate-

Ctx
25 L-Rostral-Middle-Frontal-Ctx 54 R-Rostral-Middle-Frontal-Ctx
26 L-Superior-Frontal-Ctx 55 R-Superior-Frontal-Ctx
27 L-Superior-Parietal-Ctx 56 R-Superior-Parietal-Ctx
28 L-Superior-Temporal-Ctx 57 R-Superior-Temporal-Ctx
29 L-insula 58 R-Insula

L and R represent left and right hemisphere respectively, and Ctx represents the
cortex.

Fig. 2. Example of the parcellation results on bilateral putamen of one HC subject. Green color represents the posterior subunit and the red color represents the
anterior subunit.
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division. The ratio of the voxels with changing cluster memberships to
the total number of voxels in the left putamen was 0.17 ± 0.083
(mean ± std) in the HC group and 0.206 ± 0.124 in the PD group. In
the right putamen, it was 0.176 ± 0.079 and 0.167 ± 0.088 in the HC
and PD groups respectively, which was not significantly different.

We further examined the posterior and anterior homogenous sub-
regional volumes in both HC and PD groups. In the right putamen, the
sizes (defined as the number of voxels) of posterior and anterior sub-
regions were 78.71 ± 18.78 and 68.04 ± 18.09 respectively in the
HC group, and 77.5 ± 21.18 and 67.76 ± 13.26 in the PD group. Both
groups had significant differences in the sizes of the two subregions
(Student's t-test, p < .05). In the left putamen, the size of posterior
subregion (75.68 ± 17.80) was significantly larger than that of ante-
rior subregion (66.03 ± 16.26) in the HC group (p < .05). No sig-
nificant difference in subregional sizes was found in the PD group in the
left putamen.

3.2. Functional connectivity maps with homogeneous subunits in each
putamen

In the functional connectivity analysis, we investigated the dynamic
connectivity between homogeneous putaminal subunits and all other
ROIs using sliding windowed correlation. The differences of mean dy-
namic connectivity strength between the two homogenous clusters in
the left and right putamen were compared in HC group in Fig. 3. Only
the significant different mean dynamic connectivity between the two
subclusters with other ROIs were reported (FDR corrected p value<
.05). Cluster 1, located in the posterior putamen, demonstrated
stronger mean dynamic connections with cortical areas and the cere-
bellar cortex, while cluster 2, which was located more anteriorly,
connected strongly with the hippocampus, amygdala and other sub-
cortical areas such as the caudate and the nucleus accumbens.

Differences in the subregional mean dynamic connectivity between the
clusters were more obvious in the left putamen in HC.

In the PD group, the posterior subunit in the left putamen exhibited
stronger mean dynamic connections with the left caudal middle frontal
cortex as the mean dynamic connectivity difference between two
homogenous clusters was positive, while the anterior subunit in the left
putamen showed stronger mean dynamic connections with the right
putamen and insula (Fig. 4a). The mean dynamic connectivity between
clusters in the right putamen and other regions is shown in Fig. 4b.
Similar to the observations in the HC group, the posterior subunit in the
right putamen had stronger mean dynamic connections with cortical
areas, whilst the anterior subunit showed stronger mean dynamic
connectivity to the right caudate, accumbens area and anterior cingu-
late cortex. Note that the subregional specificity is decreased in the PD
group.

The standard deviation of the dynamic connectivity between the
two homogenous subunits and other ROIs was also investigated
(Supplementary Figs. S1 and S2). In both PD and HC groups, the pos-
terior subunit demonstrated lower connectivity variability with cortical
areas, while the anterior subunit demonstrated lower variations with
subcortical areas (and the hippocampus in PD). However, compared to
HC, the reduced difference between the two subunits in PD was also
observed in the connectivity variations.

We compared the subregional connections of the two putaminal
subunits between HC and PD groups. Only the mean dynamic connec-
tions associated with the posterior subunit was found to be significantly
different between groups (< 0.05, FDR corrected) (Fig. 5). We found
that the mean dynamic connections between the posterior subunit in
the left putamen and the following ROIs were decreased in PD: the left
superior frontal gyrus, right putamen and the right precentral gyrus
(Fig. 5(a)). With the right homogenous posterior putamen, the left and
right pallidum showed decreased mean dynamic connectivity strength

Fig. 3. The comparisons of mean dynamic connectivity (MDC) of homogeneous subclusters in HC group. (a). The significant differences in MDC between homo-
genous left posterior and anterior putamen. (b). The significant differences in MDC between homogenous right posterior and anterior putamen. The significance level
is 0.05 (FDR corrected). For ROI names, L and R represent left hemisphere and right hemisphere respectively. Ctx represents cortex.
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in PD (Fig. 5(b)).

3.3. Linking the connectivity features with disease severity

Further analysis was performed to determine the relation of the
subregional connectivity features and each subject's UPDRS III score.
Significant linear associations were found between mean dynamic
connectivity of the right posterior putamen and the right caudate and
UPDRS III (correlation coefficient=−0.6641, FDR corrected q
value=0.0039), mean dynamic connectivity between the right ante-
rior putamen and the left rostral anterior cingulate cortex and UPDRS
III (correlation coefficient=−0.5455, q= 0.0443), mean dynamic
connectivity of right anterior putamen and right amygdala and UPDRS
III (correlation coefficient=−0.5375, q= 0.0443), mean dynamic
connectivity of right anterior putamen and right hippocampus and
UPDRS III (correlation coefficient=−0.588, q= 0.0394) as shown in
Fig. 6. Significant anti-correlations were also found between age and
right putaminal subregional dynamic connectivity with the left caudal
middle frontal cortex, the left rostral middle frontal gyrus, and the right
paracentral gyrus (Supplementary Fig. S3). No significant correlations
were found between the putaminal homogeneous subregional mean
dynamic connectivity/connectivity deviation and other demographical

features.
With a sparse set of connectivity features selected by LASSO, we

accurately predicted UPDRS III scores. Two mean dynamic connectivity
features and six connectivity deviation features jointly demonstrated the
best ability to predict disease severity (R=0.8876). As demonstrated in
Fig. 7, mean dynamic connectivity features included: the right posterior
putamen and right caudate, and the right anterior putamen and right
amygdala. Six connectivity deviation features included the following
pairs: left anterior putamen and right rostral middle frontal cortex, right
posterior putamen and left postcentral gyrus, right posterior putamen
and right postcentral gyrus, right posterior putamen and right pre-
cuneus, right anterior putamen and right precuneus, and right anterior
putamen and right insula.

3.4. Associating the cognitive functions with connectivity features

We also evaluated the associations between a set of cognitive pro-
files (MoCA subscores) and a set of connectivity features using CCA
analysis.

One CCA component was identified to be significant (R=0.746,
P < .05). Four MoCA subscores, Executive, Attention, Memory and
Orientation were identified significantly correlated with the

Fig. 4. The comparisons of mean dynamic connectivity (MDC) of homogenous subclusters in PD group. (a). The significant differences in MDC between homogenous
left posterior and anterior putamen. (b). The significant differences in MDC between homogenous right posterior and anterior putamen. The significance level is 0.05
(FDR corrected). For ROI names, L and R represent left hemisphere and right hemisphere respectively. Ctx represents cortex.

Fig. 5. The group comparison of mean dynamic connectivity (MDC) of (a). homogenous left posterior putamen and (b). homogenous right posterior putamen. The
significance level is 0.05 (FDR corrected). Red color represents HC group, and gray color represents PD group. For ROI names, L and R represent left hemisphere and
right hemisphere respectively. Ctx represents cortex.
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connectivity features as shown in Fig. 8(b). For all 228 connectivity
features, we noticed that the signs of the significant loadings were re-
latively consistent within each subregion for each type of feature.
Therefore, we used averaged loadings for significant mean dynamic
connectivity and connectivity deviation features of each subregion to
evaluate the overall subregional associations between connectivity
profiles and cognitive performances as demonstrated in Fig. 8(a).
Overall mean dynamic connectivity of bilateral posterior putamen was
positively correlated with the orientation MoCA subscore. Overall mean
dynamic connectivity of anterior right putamen and connectivity de-
viation of right posterior putamen were positively correlated with Ex-
ecutive, Attention and Memory MoCA subscores.

We further explored the relation between connectivity features and
MoCA total score. With the LASSO model and leave-one-subject-out
simple regression, a sparse set of features including five mean dynamic

connectivity features and four connectivity deviation features were chosen
with prediction accuracy at 0.7571. As demonstrated in Fig. 9, the
mean dynamic connectivity features included the left anterior putamen
and left lateral orbitofrontal cortex, left anterior putamen and left
postcentral gyrus, left anterior putamen and left precuneus, right
anterior putamen and left cuneus, and right anterior putamen and right
superior temporal cortex. The four connectivity deviation features se-
lected included: the left posterior putamen and right pallidum, left
anterior putamen and right accumbens area, right anterior putamen
and right lateral orbitofrontal cortex, and right anterior putamen and
right insula. Note that majority of selected features involved the ante-
rior putamen.

Finally, we examined the side of onset of the disease with dynamic
connectivity features. The mean dynamic connectivity features from left
posterior putamen–right putamen, right posterior putamen–right

Fig. 6. The significant negative correlations between homogenous subcluster mean dynamic connectivity (MDC) and UPDRS III. Those dynamic connections include
(a) right caudate and homogenous right posterior putamen, (b) left anterior cingulate cortex and homogenous right anterior putamen, (c) right amygdala and
homogenous right anterior putamen, and (d) right hippocampus and homogenous right anterior putamen. The significance level is 0.05 (FDR corrected). For ROI
names, L and R represent left hemisphere and right hemisphere respectively. Ctx represents cortex.
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caudal anterior cingulate, and right anterior putamen–right superior
temporal were able to identify onset of disease with joint p value as
0.0384 using Hotelling t2 test. With connectivity deviation features, left
posterior putamen connectivity–right medial orbitofrontal, left pos-
terior putamen–right posterior cingulate, left anterior putamen–left
thalamus, left anterior putamen–left amygdala, left anterior putamen-
right putamen and right anterior putamen–right superior temporal were
jointly related with side of onset (p= .0012).

4. Discussion

In this paper, we were able to parcellate the putamina into finer
functionally-homogeneous spatial subunits based on regional dynamics
of fMRI connectivity. Overall, the posterior putaminal subunit demon-
strated stronger mean dynamic connectivity and lower connectivity
variations to cortical areas. This subunit connected mostly to

sensorimotor (including cerebellar) regions and fronto-parietal regions.
The other subunit mainly occupied the very anterior part of putamen
and showed stronger mean dynamic connectivity and lower con-
nectivity variations to the anterior cingulate cortex and mostly sub-
cortical regions, including the amygdala, nucleus accumbens, and
caudate.

Our results are partly consistent with what has been previously
described, albeit using static connectivity features in individuals with
and without PD. In healthy individuals, a limbic-related subdivision
localized to the ventral striatum, an associative-related subdivision lo-
calized to the anterior caudate and putamen, and a motor-related
subdivision localized to the posterior putamen (Choi et al., 2012). K-
means clustering has also been applied to putaminal parcellation in
healthy adults, and two, three and six clusters were examined (Jung
et al., 2014). Subsequent connectivity analysis demonstrated that the
anterior putamen clusters were positively connected to affective and

Fig. 7. Prediction of UPDRS III using selected mean dynamic connectivity (MDC) and connectivity deviation (CD) as features. (a). The frequency of selected features
using leave one subject out LASSO. (b). The prediction of UPDRS III with two mean dynamic connectivity features and six dynamic deviation features using leave one
subject out simple regression. LP and RP represent the left putamen and right putamen respectively. For ROI names, L and R represent left hemisphere and right
hemisphere respectively. Ctx represents cortex. rMDS-UPDRS-III means the effects of age, disease duration and LEDD have been regressed out from UPDRS III score.

Fig. 8. The significantly correlated cognitive profiles with overall subregional connectivity features estimated by CCA (R=0.746, P < .05). (a). Loadings of overall
subregional connectivity features. (b). Loadings of MoCA subscores. MDC and CD denote mean dynamic connectivity and connectivity deviation respectively. LP and
RP represent left putamen and right putamen respectively. * indicates the significance level (p value) smaller than 0.05.
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cognitive control areas, whereas the posterior putamen clusters were
positively connected to the motor control areas, similar to what has
been described here. Changes in connectivity in the posterior putamen
have also been described in healthy individuals during reinforcement
learning (Horga et al., 2015). Similar to what we found, PD subjects
have shown decreased static coupling between the posterior putamen
and the inferior parietal cortex (Helmich et al., 2010). Dynamic cou-
pling in PD is starting to be explored both from the theoretical per-
spective in response to DBS (Saenger et al., 2017) and with respect to
PD subjects with Mild Cognitive Impairment (MCI), although at the
network level as opposed to the subROI level (Díez-Cirarda et al.,
2018).

We found that the distinct connectivity patterns of homogenous
subunits were clearly different between PD and HC. The connectivity
differences between the two subunits, quite prominent in HC, became
less apparent in PD. The exception was the caudal middle frontal gyrus
(MFG) (Figs. 3 & 4), which plays a particular role in working memory
(Boisgueheneuc et al., 2006) and orienting attention between exo-
genous and endogenous stimuli (Japee et al., 2015). This region con-
sistently demonstrated significant regional mean dynamic connectivity
differences in both HC and PD, implying that these putaminal con-
nections were relatively intact in our non-demented cohort of PD sub-
jects.

We found relative differences in connectivity between the right in-
sula and the left anterior/posterior putamen in PD that was not seen in
controls (Fig. 4). Normally, the ventral striatopallidum receives specific
afferents from the insular cortices (Reynolds and Zahm, 2005). In PD,
the insula has decreased connectivity with the pre-SMA (Wu et al.,
2011a, 2011b) and directional influence from the substantia nigra (Wu
et al., 2012). Our results further refine these prior results by suggesting
that the posterior putaminal subunit selectively loses mean dynamic
insular connectivity in PD.

We tested the ability of subregional connectivity features to dis-
tinguish PD and HC (Fig. 5). As expected, given the early degeneration
of the caudolateral sensorimotor putamen, mean dynamic connectivity
strengths of the posterior putaminal subunit was significantly different
between the two groups. A number of mean dynamic connectivity
strengths were negatively correlated with the UPDRS III score (Fig. 6).
It may seem paradoxical that the anterior putaminal subunit con-
nectivity was more closely related with disease severity than the more

severely affected posterior subunit. Our interpretation is that the pos-
terior subunit must already have sufficiently reduced connectivity for
the disease to become apparent; worsening disease may then result in
connectivity changes spreading to the anterior subunit. The con-
nectivity features that collectively predicted UPDRS III included the
precuneus (Fig. 7), a prominent part of the default mode network
(DFM). Dynamics in the default mode network are being increasingly
recognized as being important for task performance (Lin et al., 2017)
which is also affected early on in cognitive impairment (Lee et al.,
2016).

Relating subregional functional connectivity in the putamen to the
cognitive performance measured with MoCA in a multivariate fashion,
two patterns were discovered (Fig. 8). First, higher mean dynamic
connectivity strength in bilateral posterior putaminal connectivity was
associated with higher scores of orientation test, suggesting that
stronger mean dynamic connectivity strength in the posterior putamen
was associated with better ability of orienting themselves in terms of
time and location. The significance of the association between altered
connectivity in the posterior putamen and orientation in the MoCA is
unclear, as the posterior putamen is affected early, and normally related
to motor dysfunctions. A recent study found that higher education in PD
is associated with significantly higher cognitive scores, but also lower
DAT binding to the posterior putamen than lower education PD subjects
with similar disease duration (Sunwoo et al., 2016). This may suggest a
blurring between traditionally considered “cognitive” and “motor”
putaminal subdivisions in PD.

In addition, the other CCA pattern demonstrated that 1) mean
connectivity strength in the right anterior putamen and 2) connectivity
variation of the right posterior putamen were associated with better
performance in executive, attention, and memory domains. This is
partly consistent with prior studies: a decrease in [11C] raclopride
binding in the right anterior putamen is seen during a screen for ex-
ecutive function, namely the Montreal Card Sorting Task (Monchi et al.,
2006). The ‘cognitive’ corticostriatal loop involves the prefrontal cortex
that projects to the anterior putamen (Alexander et al., 1986). Dopa-
mine transporter (DAT) availability in the anterior putamen is directly
associated with attention/working memory, frontal/executive, and vi-
suospatial functions in de novo Parkinson's' disease (Chung et al.,
2018). The connectivity-behaviour relation that we observed was that
better cognitive function was not only related to stronger connectivity

Fig. 9. Prediction of total MoCA score using selected mean dynamic connectivity (MDC) and connectivity deviation (CD) as features. (a). The frequency of selected
features using leave one subject out LASSO. (b). The prediction of total MoCA score with five mean dynamic connectivity features and four dynamic deviation
features using leave one subject out simple regression. LP and RP represent the left putamen and right putamen respectively. For ROI names, L and R represent left
hemisphere and right hemisphere respectively. Ctx represents cortex. rMoCA means the effects of age, disease duration and LEDD have been regressed out from total
MoCA score.
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strength but also connectivity variation (i.e. how different the con-
nections are across time). Executive functioning has been shown to
require dynamic functional connectivity (Mattar et al., 2015; Nomi
et al., 2017) and modulate performance of memory retrieval in elderly
subjects (Angel et al., 2016), which partially explained the associations
between connectivity deviation and executive/memory performance in
our results. Moreover, decreased functional connectivity in subcortical
regions, including the putamen, has been observed in children with
attention deficits (Cao et al., 2009), implying that attention may require
putaminal functional connectivity. Taken together, our results demon-
strated that connectivity variation and mean dynamic connectivity
strength in the right putamen were associated with better cognitive
performance.

Finally, we also demonstrated that these connectivity features were
able to predict overall MoCA score (Fig. 9). Interestingly, the con-
nectivity deviation of short-range connections (including subcortico-
subcortical) and the mean dynamic connectivity strength of cortico-
subcortical connections were required to predict MoCA scores. The
results implied that dynamic connectivity in short-range connections is
a key factor to support overall cognition; while in cortico-subcortical
connections, connectivity strength might be more important. To con-
clude, our findings of connectivity-behaviour associations illustrates
that different aspects of resting-state functional connectivity were all
required for overall cognitive functioning but served different effects in
specific cognitive domains.

Our results are also partly consistent with previous studies.
Recently, Hanakawa et al. performed a task-based fMRI and diffusion
tractography study to explore the relationship of the identified basal
ganglia-thalamo-cortical circuit dysfunctions with the motor and cog-
nitive slowing in PD patients (Hanakawa et al., 2017). They demon-
strated that motor slowing in PD patients is associated with the im-
paired motor basal ganglia-thalamo-cortical circuits, while the
cognitive slowing is ascribed to the dysfunctions of the premotor and
language basal ganglia-thalamo-cortical circuits. Consistent with their
findings, we also found that the connectivity of posterior putamen,
which is part of the motor basal ganglia-thalamo-cortical circuits, is
correlated with UPDRS III scores; and connectivity of the anterior pu-
tamen, which is part of the language basal ganglia-thalamo-cortical
circuits, is correlated with MoCA scores.

There are several limitations. In this study, we only identified two
temporal homogenous subunits in the putamina, inspired by the con-
ceptualization of two different motor control circuits and study their
connectivity with other brain areas. Dividing putamen into two sub-
units by simple anatomical criteria, such as using the anterior com-
missure, has been previously reported in a number of studies in PD
(Hacker et al., 2012; Helmich et al., 2010; Luo et al., 2014). However,
an anatomical separation doesn't take into account the functionality of
voxels and neglects inter-subject variability. Based on static con-
nectivity features, the putamen has been segmented into finer struc-
tures with variable number of subregions. However, more subunits may
represent finer subsets of the main two subregions described here (Jung
et al., 2014). While we did not allow overlap between our subunits,
other studies have relaxed this criterion (Marquand et al., 2017). When
we attempted to divide each putamen into three or more subunits, this
resulted in some subjects having clusters that did not have any voxels
with consistent cluster membership over time. Collectively, we thus
restricted ourselves to parcellate the putamina into two clusters. To
achieve a finer parcellation using the temporal dynamics, fMRI with
higher spatial resolution using multi-band techniques would allow for
connectivity dynamics at a finer scale and therefore overcome the
limitation of nonstable/noncontiguous regional dynamics. Instead of
assigning the voxels with stable cluster memberships as homogenous
subunits, a statistical probability model where the weighted signals
represent the subunits in a fuzzy clustering framework could be ex-
plored in future work.

In addition, we note that we performed all analysis in the subjects'

native space to prevent errors of misregistration, but with increasing
number of clusters, the correspondence of a large number of clusters
between differently-shaped putamina from different subjects may prove
difficult. It was also hard to quantitatively describe the spatial locations
of the subclusters as there was no common space. A more sophisticated
group model would be potential in our future work.

We have utilized the sliding windowed correlation to examine the
subregional dynamics in the putamen in this study. With the increased
complexity of estimated time varying connectivity networks, a set of
connectivity features such as mean, variance and state properties of
functional connectivity have been generally adopted to study the tem-
poral dynamics (Allen et al., 2014; Chiang et al., 2018; Hutchison et al.,
2013; Liu et al., 2016; Liu et al., 2017). For instance, the dynamic
connectivity mean strength, the stability and variability have been used
to quantitatively describe the temporal variations of functional con-
nectivity for characterizing an individual “fingerprint” of brain (Liu
et al., 2017). Mean connectivity strength has been used in our previous
study to reveal the regional dynamic differences between PD and HC
groups (Liu et al., 2016), and more recently the mean and variance of
dynamic functional connectivity have been used to discriminate be-
tween people with temporal lobe epilepsy and normal controls (Chiang
et al., 2018). However, the interpretation of temporal variations in
dynamic connectivity is still challenging. The mean dynamic con-
nectivity strength may be closely related to the static functional con-
nectivity, and the connectivity deviation represents the second order
statistics of temporal variations. These two measures are limited in
capturing the comprehensive information contained in dynamic con-
nectivity patterns. Other connectivity measures such as spectral prop-
erties and range of the connectivity strength may also provide the
meaningful characterizations. For example, we found that the correla-
tion range of the right accumbens area and left posterior putamen was
significantly correlated with disease severity in our cohort (Fig. Error!
Reference source not found.). Finally examining concomitant beha-
vioural data from task-based paradigms instead of utilizing resting state
fMRI may guide which dynamic features may be post important.

5. Conclusion

In this paper, we employed a data-driven joint temporal parcellation
method to identify spatially contiguous subunits in the putamina. In
HC, there were distinct differences in the connectivity between the
subunits, that was largely lost in PD. PD subjects had overall decreased
connectivity in the posterior subunit, distinguishing them from con-
trols. Interestingly, changes in the anterior subunit's mean dynamic
connectivity were associated with overall disease severity, presumably
as the disease progress to involve more anterior structures. Overall
UPDRS III, MoCA scores could be predicted with putaminal con-
nectivity features suggesting a role for static and dynamic putaminal
connectivity as part of an imaging biomarker for PD.
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