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Purpose: Precision pain medicine focuses on employing methods to assess each patient 
individually, identify their risk profile for disproportionate pain and/or the development of 
chronic pain, and optimize therapeutic strategies to target specific pathological processes 
underlying chronic pain. This review aims to provide a concise summary of the current body 
of knowledge regarding psychological, physiological, and genetic determinants of chronic 
pain related to precision pain medicine.
Methods: Following the Scale for the Assessment of Narrative Review Articles (SANRA) 
criteria, we employed PubMed/Medline to identify relevant articles using primary database 
search terms to query articles such as: precision medicine, non-modifiable factors, pain, 
anesthesiology, quantitative sensory testing, genetics, pain medicine, and psychological.
Results: Precision pain medicine provides an opportunity to identify populations at risk, 
develop personalized treatment strategies, and reduce side effects and cost through elimina-
tion of ineffective treatment strategies. As in other complex chronic health conditions, there 
are two broad categories that contribute to chronic pain risk: modifiable and non-modifiable 
patient factors. This review focuses on three primary determinants of health, representing 
both modifiable and non-modifiable factors, that may contribute to a patient’s profile for risk 
of developing pain and most effective management strategies: psychological, physiological, 
and genetic factors.
Conclusion: Consideration of these three domains is already being integrated into patient 
care in other specialties, but by understanding the role they play in development and 
maintenance of chronic pain, we can begin to implement both precision and personalized 
treatment regimens.
Keywords: pharmacogenetics, pharmacogenomics, phenotyping, neuroimaging, chronic 
pain, precision medicine, pain medicine

Introduction
The overarching definition of precision pain medicine is that diagnosis and treat-
ment can be customized to an individual’s specific risk profile.1,2 At its most basic, 
the ideology is based on using all available patient-level data to target therapies for 
that individual with regard to prediction, prevention, diagnosis, and treatment of 
disease, with the aim of improving symptoms and quality of life. By incorporating 
a given patient’s individual profile of biological (molecular disease pathway(s), 
genetic, proteomic, metabolomic), psychological, and environmental context vari-
ables along with comorbid conditions, personal/cultural preferences, and other 
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characterizing data, we should be able to improve efficacy 
and lessen treatment side effects while decreasing resource 
waste and improving cost effectiveness.1

In 2015, the United States launched the Precision 
Medicine Initiative which committed to fund and support 
research in the area of precision medicine in order to 
improve patient care and treatment outcomes.3 There is 
considerable overlap, yet subtle differences, between the 
terms “precision medicine” and “personalized medicine” 
and historically these terms have been used interchange-
ably. Personalized medicine is an older term, defined as 
individualized care that is customized for individual 
patients based on their characteristics, which may include 
genetics, disease biomarkers, treatment history, and other 
factors, but typically is based on a specific patient’s 
symptoms.4 The goal of precision medicine is to maximize 
the accuracy by which patients are treated with existing 
treatment regimens and is informed through an under-
standing of the interrelation of an individual’s profile of 
characteristics, including genetics, environment, and life-
style, with specific inclusion of phenotypes and biological 
markers. These two approaches both explicitly depend on 
evidence-based medicine by incorporating problem- 
solving, application of research findings, clinical expertise, 
and patient preferences, values, and perspectives into the 
healthcare decision-making process.

However, in line with a report from the National 
Research Council in 2011,5 we prefer to use the term 
precision pain medicine as it incorporates stratifying indi-
viduals into subgroups using a broader spectrum of patient 
characteristics (psychological, physiological, and genetic/ 
molecular). This then allows clinicians to recommend 
treatments with the greatest probability of effectiveness 
based on these stratifications. Eventually, this approach 
may lead to development of new therapeutic strategies 
that can be tailored to the biological mechanisms at work 
in a specific patient, thus crossing over into personalized 
pain management; however, there is still more work to be 
done.

We will focus the present review of precision pain 
medicine on psychological, physiological, and genetic 
factors, each of which represents multiple contributing 
subcategories. The relative contribution of each of 
these factor determinants will vary between patients, 
but it is their cumulative impact that increases or 
decreases a patient’s risk for developing chronic pain 
and shapes the response to standard treatment strate-
gies. The goal of this review is to provide a concise 

summary of the current body of knowledge regarding 
the three determinants of chronic pain related to preci-
sion pain medicine. By understanding all three domains 
and the role they play in the development and main-
tenance of chronic pain, we can begin to develop and 
implement both precise and personalized treatment 
regimens.

Methodology
The Scale for the Assessment of Narrative Review Articles 
(SANRA) criteria guided this review.6 We employed 
PubMed/Medline to identify relevant articles using the pri-
mary database search terms (used in combinations as illu-
strated in Table 1 to query PubMed indexed articles): 
precision medicine, non-modifiable factors, pain, anesthe-
siology, quantitative sensory testing, genetics, pain medicine, 
psychological, pharmacogenetics/pharmacogenomics, bio-
marker, and next-generation sequencing. After reviewing 
the literature, we narrowed our focus to two broad categories 

Table 1 Search Terms and Results of PubMed/Medline Search for 
Articles Published from 1990 to 2021

Combination Search Terms Number of Articles 
Identified

Precision medicine and genetics 23,097
Precision medicine and genomics 14,648

Pain medicine and genetics 58,807

Pain medicine and genomics 12,128
Precision medicine and pain 1,557

Anesthesiology and precision medicine 1,014

Anesthesiology and psychological 3,343
Pain medicine and psychological 17,849

Quantitative sensory testing and 

psychological

297

Precision medicine and non-modifiable 

factors

7

Non-modifiable factors and pain 50
Precision medicine and non-modifiable 

factors and pain

0

Precision pain medicine and quantitative 
sensory testing

18

Precision medicine and pain and 

biomarker

145

Anesthesiology and pain and biomarker 1,185

Pain medicine and pharmacogenetics 1,289

Pain medicine and pharmacogenomics 1,538
Pain medicine and next generation 

sequencing

445

Precision medicine and next generation 
sequencing

2,854

Notes: Restricted search to 1990–2021. Search date: 7/21/2021.
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of health determining factors that should be considered in 
any patient profile of risk, those that are modifiable (eg, those 
that can be changed; psychological function, physiological/ 
sensory function, lifestyle factors) and those that are non- 
modifiable (eg, those that cannot be changed; age, sex, race, 
genetics) (Figure 1). Of these, we have identified three 
exemplar determinants of health representing both modifi-
able and non-modifiable factors based on their potential 
contribution to patients’ risk profiles for developing chronic 
pain and/or their response to pain management strategies. 
While these examples are not intended to be exhaustive of all 
variables relevant to a patient profile of risk, a growing body 
of evidence supports their novel relevance to the practice of 
precision pain medicine.

Psychological Factors
Psychological factors of pain encompass an expansive 
category of factors including mood, maladaptive pain cop-
ing styles such as pain catastrophizing, poor self-efficacy, 
kinesiophobia, injustice, and sleep-related impairments. 
These psychological constructs can be assessed using 
comprehensive pain phenotyping, which allows the cate-
gorization of patients based on a set of characteristics 
(both subjective and objective) in order to predict risk 
for developing chronic pain and treatment response. 
Phenotyping is typically performed by assessing 
these psychological factors and maladaptive coping 
styles using a variety of validated patient-reported 
questionnaires.

Figure 1 The evolution of precision pain medicine depends on identification of the risk factors and modulating variables that contribute to acute pain burden and the risk for 
transition to chronic pain. We highlight the contributions of two broad categories of factors, modifiable and non-modifiable, that contribute to risk for transition from acute 
to chronic pain. The combination of factors may provide insight into a patient’s individual profile of risk for transitioning to chronic pain and point to novel pain therapeutic 
strategies designed to target individual mechanisms of risk. Anesthesia/analgesia can control acute pain (a primary risk factor for the development of chronic pain) and may 
also be used to treat chronic pain; however, efficacy can be affected by genetic factors and these should be integrated into any precision pain medicine approach. Created 
with BioRender.com.
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It is well known that anxiety and depression are two of 
the strongest predictors for the transition from acute to 
chronic pain.7 There is also evidence that high levels of 
anxiety and stress can reduce a patient’s analgesic 
response to opioids.7 This has been well studied in rheu-
matological diseases, where it was found that pain cata-
strophizing along with depression played a larger role in 
a patient’s subjective pain score than did objective radio-
graphic evidence of disease.7 Phenotyping can be useful 
for risk stratification of poor perioperative outcomes. 
Patients with higher pre-surgical anxiety scores have 
been found to have worse analgesic outcomes following 
total knee or total hip replacements.8 One of the well- 
validated questionnaires recommended to determine the 
presence of depression and anxiety is the Hospital 
Anxiety and Depression (HADS) scale.9 There is evidence 
that patients with higher HADS scores not only show 
a poorer response to opioids but also possess a greater 
incidence of opioid misuse.10,11 Besides mood problems, 
having a positive or negative affect can influence chronic 
pain experiences and outcomes. Positive affect refers to 
a feeling state where pleasant moods and emotions pro-
mote positive approach-oriented behaviors and impart 
a sense of relaxation and contentment. Multiple studies 
have shown correlations between the presence of or 
interventions to promote a positive affect and improved 
outcomes for patients with chronic pain.12–14 Multiple 
well-validated questionnaires are used to assess positive 
and negative affect including the Patient-Reported 
Outcomes Measurement Information System (PROMIS) 
pain interference questionnaire and the Positive and 
Negative Affect Schedule.15 Multiple studies have shown 
a correlation between negative affect and a poor analgesic 
response to epidural steroid injections in the treatment of 
low back pain, which highlights that assessing this con-
struct may help predict outcomes for pain interventional 
procedures.16,17

Pain catastrophizing is another phenotypic maladaptive 
coping trait that has shown correlation to the development 
of chronic pain and influences response to pain treatments. 
Pain catastrophizing involves magnification, rumination, 
and helplessness. There is a large body of evidence that 
the presence of pain catastrophizing, which can be 
assessed by the Pain Catastrophizing Scale, plays 
a pivotal role in musculoskeletal pain.18 If present, it is 
a strong pre-surgical predictor of a poor outcome.19 

Catastrophizing has also been shown to limit the response 
to standard therapies like cortisone, acetaminophen, and 

tramadol.20 A recent meta-analysis by Schutze et al indi-
cated the 3 best treatment tools for the management of 
pain catastrophizing to be cognitive behavioral therapy, 
acceptance and commitment therapy, and physical 
therapy.21 When examining the correlations between psy-
chological factors and the development and/or mainte-
nance of chronic pain, it is easy to understand why this 
knowledge would be extremely useful when managing 
patients. This understanding would make it possible to 
optimize patients’ psychological conditions prior to under-
going surgery and develop an opioid-sparing multi-modal 
analgesic plan in the preoperative setting. Other maladap-
tive coping traits to chronic pain that have been associated 
with negative chronic pain outcomes include kinesiopho-
bia (fear of movement),22,23 poor self-efficacy,24–26 and 
injustice.27,28 However, phenotyping and predictive tools 
to identify these psychosocial indicators in addition to 
interventions aimed at treating pain and modulating these 
characteristics have been shown to provide improved out-
comes for chronic pain patients.29–36

The presence of sleep disturbances is another important 
psychological determinant of health. It is well known that 
sleep disturbances and chronic pain frequently coexist. 
A large percentage of patients with chronic pain experi-
ence some form of sleep disorder. This relationship creates 
a paradoxical problem because, as a patient becomes more 
fatigued, their pain intensity rises and their ability to 
reduce pain is suppressed.37,38 Alsaadi et al found that 
the probability of developing a sleep disorder increased 
by 10% for each point increase on the Visual Analog Scale 
(VAS).39 As chronic pain and sleep disturbances work in 
tandem, this relationship should be utilized as a marker for 
health in order to provide a risk assessment for the devel-
opment of pain. First, it is important to identify if the 
patient expresses any signs or symptoms of sleep distur-
bances with the use of questionnaires, including the vali-
dated Pittsburgh Sleep Quality Index (PSQI) score40 and 
the Insomnia Sleep Index.41 Karaman et al discovered that 
the presence of chronic pain was associated with signifi-
cantly higher PSQI scores versus those without chronic 
pain.42 These scores were also noted to be even higher in 
males versus females.42 There is also evidence that 
patients suffering from sleep deprivation have a better 
response to the medication pregabalin than opioid medica-
tions like codeine.43 Having access to this information 
provides alternative targets like sleep hygiene and may 
aid in drug selection like pregabalin. Table 2 shows 
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validated instruments that can be used to screen for psy-
chological factors affecting pain.

Social Factors
The paradigm of chronic pain also includes social factors 
in addition to psychological factors as described above. 
Social factors that are routinely studied in relation to 
chronic pain include: social support, social isolation, satis-
faction with social roles, and social responses to pain 
behaviors.44 Social support, and even perceived social 
support, has been positively correlated with better pain 
outcomes such as pain severity and improved overall 
functioning.44–47 In a recent study of older adults with 
chronic pain, perceived social support was found to mod-
erate the association between pain intensity and depressive 
symptoms.48 In another study, perceived co-worker and 
supervisor support was predictive of a clinically relevant 
and functional recovery in army workers with non-acute 
and non-specific low back pain.49 Social isolation is 
another construct that has been found to influence chronic 
pain and its downstream outcomes. In a study by Leung 
et al, social isolation was determined to be an important 
factor in not only the evolution of chronic pain in elderly 
individuals but was also associated with its onset.50 It is 
also important to understand how the nature of other 
important social interactions, such as those surrounding 
employment, may influence chronic pain and chronic 
pain outcomes. Dissatisfaction with co-workers and lack 
of social support at work are among the predictors for 
pain-related work disability.51,52 The social environment 
can also be utilized for adaptive purposes. Social support 
in the form of encouragement to complete tasks was nega-
tively associated with pain-related disability.53 

Furthermore, educating and training loved ones and 

spouses in assisting with pain-related coping skills has 
been shown to improve functioning and self-efficacy in 
managing pain symptoms.54,55 To assess social constructs 
for patient pain phenotyping, multiple validated tools are 
available including the PROMIS Social Health profile 
which includes 7 domains: instrumental social support, 
emotional social support, informational social support, 
companionship, satisfaction in participation in social 
roles, social isolation, and self-perceived ability to partici-
pate in social roles and activities.

Physiological Factors
Physiological factors include phenotypic indicators (eg, 
pain intensity, severity, location, and descriptors) as well 
as functional biomarkers of pain/sensory function assessed 
using quantitative sensory testing (QST), neuroimaging, and 
conditioned pain modulation (CPM). A biomarker is any 
characteristic that is objectively measured and evaluated as 
an indicator of normal biological processes, pathogenic 
processes, or pharmacologic response to a therapeutic 
intervention.56 While no single “pain biomarker” has been 
identified, a panel of measures may allow for 
a comprehensive assessment of risk for chronic pain devel-
opment and/or help predict treatment response.57 QST, neu-
roimaging, and CPM may serve as biomarkers by offering 
insights into the neurobiological processing changes that 
support the transition from acute to chronic pain as well 
as the efficacy of treatments designed to prevent this 
transition.

Baseline pain has classically been examined by having 
patients fill out questionnaires at set intervals of time, 
which relies on recall over a period of days, weeks, and 
months. Newer and possibly more accurate ways to iden-
tify baseline pain variability include patient journaling or 

Table 2 Validated Instruments to Screen for Psychological Factors Affecting Pain

Psychological 
Factors

Validated Test Pain-Related Findings Response to Patients Screening Positive 
for Psychological Factors

Anxiety/ 

Depression

Hospital, Anxiety and 

Depression Scale (HADS) 

Depression, Anxiety and 
Stress scale (DASS)

Decreased opioid response, reduced response 

to epidural steroid injections

Cognitive Behavioral Therapy

Catastrophizing Pain Catastrophizing Scale Predicts poor surgery outcome CBT/Acceptance and Commitment therapy, 
Physical Therapy

Sleep 

disturbance

Pittsburgh Sleep Quality 

Index (PSQI) 

Insomnia Sleep Index

Worsens pain score, reduced response to 

opioids

Cognitive Behavioral Therapy Insomnia (CBT- 

I)
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diaries. This allows patients to write down or electroni-
cally submit changes to their pain score in real time, 
eliminating the need to recall which can potentially lead 
to errors. Extensive effort has been placed in the develop-
ment of electronic diaries for real-time symptom docu-
mentation. While there has been no difference seen in 
the ease of use between paper and electronic diaries, 
some studies have indicated patient preference and will-
ingness to continue using electronic diaries over paper.58 

Handheld applications that could be downloaded to 
a smartphone or tablet could easily be taken with patients 
wherever they go, whereas they may be less likely to bring 
a written pain diary with them. The other advantage elec-
tronic diaries provide is the ability to present real-time 
data to the provider in order to make more frequent adjust-
ments and recommendations regarding activity level and/ 
or medication doses/changes. So far, there is no research 
showing improvement in pain management from the use of 
electronic pain trackers and their ability to make frequent 
adjustments to care; however, this should be an area of 
focus in the future.

For mechanistic characterization of pain, question-
naires like the Short Form McGill Pain Questionnaire,59 

Pain Quality Assessment Scale,60 and PainDETECT61 can 
be useful. These questionnaires allow patients to describe 
the type of pain they are having. Examples of pain descrip-
tors include burning, heavy, paroxysmal, lightning, and 
sharp. There is evidence of improved response to prega-
balin than placebo when pain was described as deep, 
electrical, or burning.62 Neuropathic pain as a whole has 
a potential of being utilized as a phenotypic predictor. 
After determining that a patient has neuropathic pain, 
one can assess the sensory abnormality they are experien-
cing as a result by using the Neuropathic Pain Symptom 
Inventory (NPSI).63 Patients with high NPSI scores 
showed equal responses to duloxetine and pregabalin, 
however those with lower NPSI scores had a large varia-
tion between the two drugs.63

QST is a collection of methods designed to measure 
patient response to various stimulation (eg, mechanical, 
thermal, cold, pressure) in order to evaluate somatosensory 
function as well as identify the nature/presence of hyper-
algesia and allodynia.64,65 It is most commonly utilized to 
evaluate neuropathic pain conditions. The protocol with 
the best validation is the German Research Network on 
Neuropathic Pain (DFNS) battery, which can help deter-
mine detection and pain thresholds to both mechanical and 
thermal stimulation in addition to assessing for wind up 

pain.66,67 Following completion of this protocol, patients 
can be assigned a profile. Previous research in this area has 
shown that QST profiles can have tremendous overlap 
between different neuropathic conditions, indicating that 
the profile is not pain syndrome-specific but patient- 
specific, thus hopefully allowing for individualized treat-
ment regimens.68–70 This was modeled by Demant et al 
when they showed improved treatment of neuropathic pain 
with hyperalgesia (sensory gain) using the sodium channel 
blocker oxcarbazepine vs minimal benefit in patients with 
neuropathic pain and sensory loss.71 There has been 
a variety of research released within the past few years 
on the use of QST. One study found a correlation between 
the treatment response to botulinum toxin and thermal 
sensation in post-herpetic neuralgia, such that patients 
received greater benefit from botulinum toxin if they 
were found to have intact thermal sensation on QST 
prior to treatment.72 Another study examined patients 
with pain following spinal cord injury. Results showed 
increased response to pregabalin if thermal sensation was 
intact and minimal benefit when thermal sensation was 
lost.73 With these studies in mind, QST could form 
a critical pillar in the development of treatment regimens. 
With that said, time will need to be addressed as a primary 
limiting factor for implementation in the clinical setting, as 
the DFNS-QST is a rather lengthy test that averages 1–3 
hours per patient.74 Attempts at simplifying QST batteries 
for administration in the clinical setting have been reported 
and have shown that a variety of simple bedside tools (ice 
cubes, pinprick, cotton swabs) can reliably be used to 
quantify numerous QST parameters.75–79 Further research 
is warranted via large multi-center trials in order to inves-
tigate whether bedside QST batteries can predict response 
to and improve pharmacologically directed therapies.

CPM and temporal summation are two other categories 
of sensory testing that may serve as specific phenotypic 
markers of centralized pain conditions. CPM describes the 
body’s ability to use one noxious stimulus to inhibit or 
reduce the response to another.80 This phenomenon is 
referred to as diffuse noxious inhibitor control.81 It is 
believed to involve opioid, serotonergic, and noradrenergic 
pathways.82 The effectiveness of CPM can be tested by 
applying a noxious stimulus alone and in the presence of 
sustained stimulation. If CPM is functioning effectively, 
the pain from the original noxious stimulus should be 
reduced in the presence of a coexisting tonic stimulus.83 

This was studied by Yarnitsky et al, who found that 
patients with a poorly functioning CPM had a much better 
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response to duloxetine in the treatment of diabetic periph-
eral neuropathy than those with properly functioning 
CPM.84 Temporal summation, which is the increased per-
ception of pain when an identical noxious stimulus is 
repeated, is also being studied. Patients with chronic pain 
conditions often exhibit higher levels of temporal 
summation.82 While there have been few large multi- 
center studies conducted on this phenomenon, it is 
believed that it can be utilized as a predictor of the devel-
opment of chronic pain following surgery.85

Neuroimaging is another physiological assessment tool 
being utilized by researchers to identify neurobiologic 
mechanisms underlying chronic pain. As neuroimaging 
has advanced over the years, we have come to understand 
that pain perception and modulation is an extremely com-
plex pathway involving multiple structures in the central 
nervous system (CNS). Multiple chronic pain states includ-
ing fibromyalgia, chronic low back pain, osteoarthritis 
(OA), and complex regional pain syndrome (CRPS) have 
been studied utilizing neuroimaging modalities. The most 
commonly utilized modality is functional magnetic reso-
nance imaging (fMRI), which can assess the activity and 
connectivity of different regions of the brain by detecting 
blood oxygen levels.86 This can be done while the patient is 
at rest (resting state fMRI), performing a task, or with an 
evoked painful stimulus. Researchers have utilized func-
tional neuroimaging to study changes in connectivity in 
multiple structures throughout the CNS including the pri-
mary somatosensory cortex, posterior insular cortex, thala-
mus, amygdala, hippocampus, and basal ganglia. 
Alterations consistent with increases in pro-nociceptive con-
nectivity and decreases in anti-nociceptive connectivity 
have been found.87–93 Few studies have been performed to 
investigate how interventions affect neuroimaging signa-
tures pre- and post-intervention, but these and future studies 
may lead to findings that allow for the use of this modality 
to influence precision pain medicine.94–100

Two other imaging modalities used are proton mag-
netic resonance spectroscopy (H-MRS) and positron emis-
sion tomography (PET). H-MRS can be used in order to 
determine the changes of pain-regulating neurotransmitters 
like GABA and glutamate. Clinical studies have shown an 
increased level of glutamate on H-MRS scans in patients 
with fibromyalgia compared to healthy controls.101 PET 
scans are currently being utilized to evaluate opioid recep-
tor density and binding capacity which may influence 
a patient’s response to opioid medications. These types 
of imaging modalities show great promise for influencing 

precision medicine.101 This evidence further supports the 
complexity of chronic pain and the drastic alterations it 
can cause to the CNS. By utilizing neuroimaging to iden-
tify which CNS structures are altered, patients can be 
further categorized beyond a chronic pain or fibromyalgia 
diagnosis, and mechanisms-based research can be per-
formed in the hope that it may direct more targeted treat-
ment regimens and direct appropriate drug dosing.102,103 

Understanding CNS alterations will also help select 
patients for appropriate clinical trials in order to further 
advance the future study of precision medicine.

Genetic Factors
Individual differences in the DNA sequence (genetics) and 
the structure of the genome (epigenetics) are estimated to 
account for up to 70% of the individual differences in pain 
sensitivity and susceptibility to chronic pain conditions104–108 

in addition to affecting the response to pain-relieving treat-
ments (eg, pharmacogenetics). Individual differences in the 
DNA sequence are now being used in various subspecialties 
to assess risk for disease, disease progression, and other 
relevant health outcomes.109,110 Incorporating genetics and 
epigenetic analysis into practice provides physicians the 
opportunity to tailor treatment regimens to specific disease 
processes, maximize drug efficacy, and minimize unneces-
sary adverse reactions without trial and error.109

Single nucleotide polymorphisms (SNPs) are the most 
common variants and represent differences in the nucleic 
acid sequence at a given genomic location (ie, alleles) 
between individuals. The major allele is present in most 
of the population, and the less common (ie, minor) allele 
frequency varies but occurs in greater than 1% of the 
population.111,112 This type of genetic variation occurs 
approximately every 1000th nucleotide, so it is estimated 
that there are roughly 4–5 million SNPs in the human 
genome contributing to the significant phenotypic varia-
tion across the population. Copy number variation (CNV), 
on the other hand, is a variation in the number of gene 
copies an individual carries relative to the baseline of two 
copies, one on each chromosome. While the role of SNPs 
and CNVs in pain susceptibility and/or painful disease 
progression still remains to be fully understood, there are 
well-known associations between these variations and 
treatment response that are already driving precision med-
icine approaches in other fields including cardiovascular 
medicine,113,114 rheumatology,115 and oncology.116 While 
not explicitly related to precision pain management, 
genetic analysis is beginning to be applied by 
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anesthesiologists, most often to predict the risk for rela-
tively rare conditions that can develop during anesthesia 
exposure. One application that has become more common 
is the use of genetic analysis for prediction and treatment 
of prolonged paralysis/apnea following succinylcholine 
administration in patients with genetic variations in 
BCHE, the gene encoding butyrylcholinesterase (BCHE). 
More than 60 genetic variations have been identified in 
BCHE, affecting the quantity and quality (eg, enzymatic 
effectiveness) of the BCHE produced.117 Currently, BCHE 
genetic testing is typically ordered only after a patient or 
close genetic relative has reported an episode of extended 
paralysis following succinylcholine. In addition, the 
Clinical Pharmacogenetics Implementation Consortium 
(CPIC) has also issued guidelines regarding the identifica-
tion of “diagnostic mutations” within CACNA1S (encoding 
the calcium voltage-gated channel subunit alpha 1 
S (CACNAIS)) or RYR1 (encoding ryanodine receptor 1 
(RYRI)) genes responsible for the emergence of malignant 
hyperthermia (MH) following exposure to volatile anes-
thetics or the depolarizing muscle relaxant 
succinylcholine.118 Most often, diagnostic and genetic test-
ing follows an episode of MH, but the identification of 
individuals with MH through genetic testing could signifi-
cantly reduce the relatively high morbidity (35%)119 and 
mortality (12%)120 of an MH episode. In this way, the 
technology for detecting genetic variations has become 
commonplace, but the translational application of this 
knowledge to predict anesthesia-related outcomes is only 
beginning to be used to improve drug efficacy and elim-
inate adverse reactions in the clinical setting.

Pharmacogenetics could be applied to decrease opioid 
use for pain in a number of ways, including assisting in 
prediction of a patient’s opioid analgesic response and 
individual opioid use disorder risk. Physicians have com-
monly relied on medications like morphine and oxycodone 
in the acute/post-surgical setting, but they come with 
a significant side effect profile and risk of tolerance and 
abuse. Both SNPs and CNVs are seen in the CYP2D6 gene 
encoding the hepatic enzyme cytochrome P450 family 2 
subfamily D member 6 (CYP2D6), a key enzyme in the 
metabolism of ~25% of clinically used drugs, including 
the opioid medications codeine and tramadol. CYP2D6 is 
responsible for metabolizing these drugs into their biolo-
gically active metabolites, a conversion process that is 
required for the patient to receive optimal analgesic 
benefit.121 This combination of SNPs and CNVs results 
in patient phenotypes ranging from poor drug metabolizers 

(low enzymatic activity) to ultrarapid metabolizers (very 
high enzymatic activity),122 and can greatly impact the 
analgesic and side effect response to opioid 
medications.123 Understanding the opioid metabolic pro-
file allows the physician to avoid medications when they 
are unlikely to be effective and/or safe. If opioids are 
deemed to be the optimal choice for pain management, 
such as in cancer-related pain, application of pharmacoge-
netics could help determine the most appropriate opioid 
and dosage based on patient genotype and the associated 
metabolic phenotype.124

Understanding the genetic profile of the CYP enzymes 
also provides opportunities for increasing precision in the 
use of non-opioid pain medications. Amitriptyline, 
a commonly utilized medication in pain management, 
undergoes metabolism by CYP2D6 as well as another 
member of the cytochrome P450 family, CYP2C19, 
encoded by the CYP2C19 gene. If a patient is a known 
poor metabolizer of amitriptyline, based on CYP2D6 and/or 
CYP2C19 genotype, then their treatment dose only needs to 
be about 50% of the standard dose.125,126 However, if they 
are a rapid or ultrarapid metabolizer, then the recommenda-
tion is to avoid the use of amitriptyline or to administer 
roughly 110% of the standard treatment dose.121,127 It is not 
only the analgesic efficacy of a drug that should be con-
sidered, but also the risk for adverse effects. More recently, 
this approach has been used in the specific therapeutic 
recommendations for avoiding adverse effects resulting 
from a non-steroidal anti-inflammatory drug (NSAID) by 
evaluating a patient’s risk by CYP2C9 genotype128 and the 
half-life of the NSAID prescribed. NSAIDs act by inhibit-
ing COX-1 and/or COX-2, both of which play a role in 
prostaglandin production.129 The adverse effects of 
NSAIDs include gastrointestinal bleeding, cardiovascular 
complications, and kidney damage, and risk increases with 
the dose administered and length of exposure.130–132 While 
guidelines vary depending on half-life of the specific 
NSAID under consideration, recommendations broadly 
advise that individuals with normal CYP2C9 enzymatic 
activity levels (normal metabolizers) can tolerate a typical 
dosing regimen (prescription or non-prescription) while 
dosing, and duration should be reduced or avoided entirely 
in those with intermediate or poor metabolic phenotypes, 
respectively.128 Knowledge of a patient’s non-opioid genetic 
metabolism profile can allow the physician to prescribe the 
adequate treatment dose, while likely circumventing unne-
cessary medication adverse effects –the fourth leading cause 
of death in the United States.121
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There are several genes where SNP genotype has been 
associated with differences in pain severity or risk for devel-
opment of a chronic pain condition. A comprehensive sum-
mary of these genes and variations would be outside the 
scope of the current review but has been presented 
elsewhere.133 The relationship between pain susceptibility 
and variations within these genes may help to identify 
patients who are at risk for disproportionately severe pain 
or who are most likely to develop chronic pain. These rela-
tionships could not only help to identify those patients at the 
highest risk for pain but also point to specific targets for novel 
precision pain therapeutic development designed to address 
the underlying mechanism of risk. Arguably, the most well- 
defined example in this category of “pain genes” is COMT, 
encoding the enzyme catechol-o-methyltransferase (COMT) 
responsible for the breakdown of catecholamines.134,135 

COMT SNP genotype is associated with the altered sensitiv-
ity to painful stimuli as well as the development of chronic 
pain conditions (eg, fibromyalgia, chronic widespread pain, 
irritable bowel syndrome, migraine headache) and may con-
tribute to individual differences in morphine analgesic 
efficacy.136 COMT genotype is not currently being used to 
inform precision pain management in the clinical setting but, 
moving forward, it may help to identify patients at the highest 
risk of developing chronic pain after interventions like sur-
gery and chemotherapy. Members of the family of voltage 
gated sodium channels responsible for action potential gen-
eration and propagation within pain-sensitive neurons 
include SCN8A-SCN11A, encoding Nav1.6, Nav1.7, Nav1.8, 
and Nav1.9 respectively. Variations within these genes137 

were first implicated in monogenic disorders of altered pain 
sensitivity (eg, congenital insensitivity to pain, familial epi-
sodic pain syndromes, inherited erythromelalgia, and parox-
ysmal extreme pain disorder),138,139 but more recently 
associations have been identified for pain sensitivity in non- 
pathologic individuals140–143 and risk of developing chronic 
pain conditions.140 While genotyping for this group of genes 
is not currently being used clinically outside of diagnosis for 
monogenic disorders, the genetic and functional validation of 
these channels in human pain has led to the development of 
selective sodium channel inhibitors to replace traditional 
local anesthetics.144–147 In the future, the selection of sodium 
channel selective molecules could be tailored to the proce-
dure as well as the patient’s genotype to improve pain 
outcomes.

Pharmacogenetics has, historically, focused on varia-
tions within the genomic DNA sequence associated with 
patient medication response. The related field of 

epigenetics focuses on alterations in gene expression that 
are not the result of alterations to the genomic DNA 
sequence, but still affect patient outcomes through control 
of gene expression and downstream end product availabil-
ity. The epigenome encompasses the heritable components 
of the genome outside of the DNA sequence, which are 
involved in regulating gene and protein expression. To this 
end, individual differences have been noted in DNA 
methylation, histone acetylation, and histone deacetyla-
tion. DNA methylation and histone modifications exert 
critical control over the chromatin structure of the 
genome148–151 to either promote or inhibit gene 
expression.151,152 Health-care professionals use differences 
in gene and protein end-products expression to assess for 
specific disease states (eg, increased circulating CRP or 
decreased insulin), but incorporating epigenetics could 
help to unravel the mechanisms by which altered gene 
expression occurs and, potentially, shed light on how to 
harness that underlying process to improve patient health.

In largely preclinical research, epigenetic modifications 
have been implicated in susceptibility to chronic pain and 
as a therapeutic target to prevent/treat pain. In rat models 
of both inflammatory and neuropathic pain, expression of 
histone deacetylase enzymes (HDACs) is positively corre-
lated with the hypersensitivity; a phenomenon that is 
reversible with HDAC inhibitors including baicalin, val-
proic acid, and suberanilohydroxamic acid.152–155 There 
have also been correlations made between histone acetyla-
tion and opioid receptor expression. Studies using mouse 
models have shown that neuropathic injury is also asso-
ciated with histone-4 acetylation, thereby enhancing activ-
ity of neuron-restrictive silencer factor (NRSF) and 
suppressing expression of OPRM1, which is responsible 
for the production of μ-opioid receptors; however, HDAC 
inhibition blocked OPRM1 suppression by NRSF.156 

Hypermethylation of DNA CpG islands has been impli-
cated in the incidence and severity of cancer-induced 
chronic pain via the increased production of endothelin- 
1, which has pro-nociceptive properties.157

Importantly, while we have focused primarily on the 
inherited aspects of epigenetics, the literature suggests 
methylation and histone modifications are both non- 
modifiable (ie, from parental chromosome donation at 
conception) and sensitive to modification across the life-
span due to environmental or lifestyle factors. Epigenetic 
modifications may be engaged in the perioperative period 
and serve as a key component linking acute surgical pain 
to chronic pain. Elevated levels of glucocorticoids released 
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during the perioperative period secondary to the stress of 
surgery have the ability to disrupt DNA methylation, 
releasing key genes from transcriptional repression. This 
can result in C-fiber dysfunction, increased levels of pain 
promoting neurotransmitters, and altered responsiveness to 
morphine.158,159 While the incorporation of epigenetics, 
and genetics more broadly, into evidence-based practice 
shows great promise, future studies are needed to identify 
the most clinically relevant modifications for pain and 
analgesia and develop strategies for use in precision diag-
nostic and treatment algorithms as well as non-opioid 
targeted therapies.

Cancer-Related Pain
While precision medicine has helped change the landscape 
of cancer research and treatment, there has been far less 
application towards the management and treatment of can-
cer-related pain. Cancer-related pain places significant bur-
dens on a high percentage of patients and, unfortunately, 
less than half of patients who suffer from pain will obtain 
adequate relief.160 Current guidelines for the treatment of 
cancer-related pain include the World Health Organization 
analgesic ladder, which begins with non-opioid medications 
like NSAIDs for mild pain and progresses to opioids ± non- 
opioids as pain becomes moderate to severe.161 While this 
provides a good framework for treating and managing pain, 
it does not include specific guidance on opioid selection and 
dosing or interventional options.

Pharmacogenetics has the potential to improve gui-
dance in dosing and drug selection. For instance, focusing 
on SNPs of genes like OPRM1, where it is well known 
that patients possessing one or more G alleles have 
decreased transcription of opioid receptors as well as 
response to opioid binding, may help improve starting 
doses as well as titration.162 Additionally, one multicenter 
cross-sectional study investigated alterations in CYP2D6 
genotyping and pain management in cancer patients with 
oxycodone, but found no difference in pain scores despite 
showing significant differences of oxycodone metabolites 
including oxymorphone.163 While this study did not show 
a difference in pain scores, there may be a benefit for 
a drug selection that has not been studied.

While half of patients with cancer-related pain have 
insufficient pain control, 25% continue to suffer from 
inadequate pain control at death.164 With suffering so 
high, it is important to recognize that interventional thera-
pies in addition to medications may be necessary. 
A patient’s pharmacogenetic profile may indicate that 

they are a poor candidate for medical therapy alone, in 
which case a referral to a pain specialist may be beneficial 
for evaluation of nerve blocks, neuromodulation, and 
intrathecal drug delivery.

The impact of the biopsychosocial model of pain has been 
applied to cancer-related pain, and the present data may be 
helpful to clinicians providing precision pain medicine care to 
cancer patients with pain. Among cancer patients, much 
research has demonstrated the importance of psychosocial 
factors in the experience of pain. Individuals with cancer 
experience higher rates of psychosocial distress after their 
diagnosis and during their cancer treatment, and anxiety and 
depression have historically been reported as correlated with 
greater pain severity and poor pain outcomes.165,166 

However, in a recent publication of a large cohort of cancer 
patients with chronic cancer-related pain (n = 700), it was 
found that pain catastrophizing and sleep disturbance were 
consistently associated with elevated pain symptoms.167 This 
correlation of increased pain severity and poor pain outcomes 
has been corroborated by other groups.168 The impact of 
social constructs on pain and pain outcomes in cancer pain 
has been reported in a recent meta-analysis that identified that 
social support has been found to be associated with less 
postoperative pain after breast cancer surgery.169 

Furthermore, the presence of a strong social support network 
is associated with reduced cancer pain symptom burden, 
improved quality of life, and reduced distress in patients 
with chronic lymphocytic leukemia,170 breast cancer,171,172 

and colorectal cancer.173 Emerging research is also being 
performed to identify how physiologic pain processing para-
meters may correlate with pain outcomes in breast cancer 
surgery patients. In a study by Schreiber et al, it was found 
that breast cancer surgery patients who had reduced pain 
pressure thresholds and higher pain ratings after pinprick 
temporal summation had associations with the development 
of post-mastectomy pain syndrome.174 Further research in 
this and other cancer pain populations is warranted to deter-
mine if QST is a strong predictive parameter in providing 
precision pain management to cancer patients.

Limitations of the Field
Precision pain medicine offers the promise of a novel set 
of solutions to the problem of chronic pain, through 
mechanism-focused prevention and individualized risk- 
focused treatment strategies. Unfortunately, the current 
state of the science is still focused on identification of 
the critical factors that make up the patient’s profile of 
risk. Precision medicine is dependent on data, but that data 
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also constitute one of the primary areas of concern in the 
field of precision healthcare. Large volumes of highly 
specific patient data must be managed appropriately to 
protect patient privacy. In addition to protecting patient 
data, access to precision pain management strategies must 
not be restricted on the basis of financial means or socio-
economic status. In fact, given that the impact of psycho-
logical, physiological, and genetic factors could have 
differential impact on chronic pain risk based on race, 
ethnicity, sex, and other socioeconomic factors, the appli-
cation of new findings to diverse groups must be based on 
evidence-based medicine and not on the assumption that 
all groups will benefit equally from precision pain man-
agement strategies that work for others. Currently, the 
integration of pharmacogenetics/genomics, nuanced phe-
notyping, and neuroimaging require the availability of 
significant infrastructure (eg, clinical expertise, equipment, 
facilities), but as the cost for these resources decreases and 
education for their application is more effectively inte-
grated into medical training, they should become more 
widely used to benefit patients and reduce suffering.

Another limitation includes who is managing pain. While 
the number of pain centers using multimodal assessment and 
treatment strategies grew in the 20th century, survey data 
suggest that only 15% of people living with pain have 
accessed specialty pain management services and more 
than 50% of pain management is happening in primary care 
settings.175 While there has been significant progress made in 
the assessment and treatment of pain within these centers of 
expertise, the successful application of precision pain medi-
cine for the masses depends on integration of these 
approaches into primary care as well as pain medicine.

Limitations of the Present Study
The goal of the present review was to provide 
a comprehensive overview of precision medicine as it 
pertains to the field of chronic pain management. While 
we focused on many areas that are known to be important 
in the field of precision medicine, we understand that 
a limitation of the present review is that not all biomarkers 
and phenotyping parameters were able to be included. 
Additionally, while many chronic noncancer and cancer- 
related precision pain data have been presented, we recog-
nize that there may be additional research on other pain 
syndromes that were not included. A strength of these 
limitations is that further narrative, scoping, or systematic 
reviews should be pursued given the importance and time-
liness of the topic.

Moving Forward
Chronic pain continues to be a growing public health pro-
blem, requiring significant financial and health-care resources 
annually while negatively impacting the wellness and quality 
of life of millions. Identification of patient risk profiles by 
incorporating genetic and phenotypic data is key to the devel-
opment of precision pain and analgesic medicine strategies. 
The evidence is clear that pain is an individualized experience 
and personalized and/or precision treatments could improve 
pain outcomes. As of this moment, however, we are still in the 
discovery phase with the goal of moving into evidence-based 
practice in the coming years. Once we have a clear under-
standing of the mechanisms that drive pain, we can then 
progress beyond the basic diagnosis and treatment of symp-
toms to the management of the underlying pathophysiology.
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