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Abstract: Autophagy is an important pathway of degrading excess and abnormal proteins and
organelles through their engulfment into autophagosomes that subsequently fuse with the vacuole.
Autophagy-related genes (ATGs) are essential for the formation of autophagosomes. To date, about
35 ATGs have been identified in Arabidopsis, which are involved in the occurrence and regulation
of autophagy. Among these, 17 proteins are related to resistance against plant pathogens. The
transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is involved in innate
immunity and acquired resistance in plants, which regulates most salicylic acid (SA)-responsive
genes. This paper mainly summarizes the role of ATGs and NPR1 in plant immunity and the
advancement of research on ATGs in NPR1 metabolism, providing a new idea for exploring the
relationship between ATGs and NPR1.

Keywords: Arabidopsis; autophagy; NPR1; plant immunity

1. Plant Immunity
1.1. PTI and ETI

Plants have evolved a complex immune system to combat the threat from pathogenic
microorganisms in nature, including innate and acquired immunity [1–3]. It possesses
two innate immune defense lines that enable cell-autonomous defense responses upon
pathogen infection. For the first line of innate immunity, plant cell surface-localized pattern
recognition receptors (PRRs) recognize microbe associated molecular pattern (MAMP) or
pathogen-associated molecular pattern (PAMP) to activate pathogen-associated molecular
pattern triggered immunity (PAMP-triggered immunity, PTI) [4–6]. However, some plant
pathogens can produce effectors to inhibit PTI. The other immune defense line is activated
by the proteins encoded by resistance genes (R genes), these proteins can directly or
indirectly recognize the effectors secreted by pathogenic microorganisms. This process
is known as effector-triggered immunity (ETI) that usually leads to local programmed
cell death (PCD) called hypersensitive response (HR) [7,8]. R genes are highly expressed
during pathogen infection, most of them encode the nucleotide-binding (NB) domain and
Leu-rich repeat (LRR)-containing (NLR) proteins that recognize pathogen effectors and
activate ETI, which usually leads to the accumulation of reactive oxygen species (ROS) and
HR. Based on the N-terminal structures, NLR proteins can be classified into two categories.
TIR-NLR (TNLs) contain the toll/interlcukin-1-reccptor (TIR) region and CC-NLR (CNLs)
contain coiled coil (CC) domain [9–15].

The latest studies have clarified the new mechanism of crosstalk and cooperation
between PTI and ETI, they activate many pathways that are closely related to each other
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and activate plant immune signaling pathways [16–18]. ETI enhances PTI responses,
including ROS production, callose deposition, and upregulation of gene expression [16]. In
addition, ETI-induced HR-PCD is enhanced by PTI [16]. More importantly, knocking out
of key genes in the PTI pathway inhibits the ETI. In PRRs/co-receptor Arabidopsis mutants,
fls2/efr/cerk1 (fec) and bak1/bkk1/cerk1 (bbc) mutants, ETI induced by Pst DC3000 (avrRpt2)
was severely impaired [17,18]. It indicates that activation of ETI requires PTI involvement,
this finding has major implications on future plant immunity studies.

1.2. SAR

Plant system acquired resistance (SAR) can be activated by local defense response,
which emits chemical signals to alert neighboring cells and tissues and protect the whole
organism [19–23]. Thus, it enables the plant to activate defense responses more quickly,
strongly, and effectively when subsequently challenged by pathogens. This requires
strict and precise regulation of plant hormones, metabolites, and proteins [24–28]. SAR
activation is associated with the accumulation of salicylic acid (SA) and the induction of
pathogenesis-related (PR) genes [29–31]. Recent studies have shown that pipecolic acid (Pip)
and glycerol-3-phosphate (G3P) stimulate each other’s biosynthesis and act together to
trigger intracellular SAR and the emission of plant-to-plant (PTP) cues [32,33].

2. ATGs Involved in Plant Resistance to Pathogens

Autophagy is an evolutionary conserved intracellular regulatory mechanism, involv-
ing the degradation and recycling of intracellular proteins, metabolites, and organelles.
One of its main characteristics is the formation of double-membrane vesicles, known as
autophagosomes, which engulf a portion of cytoplasm and transport it into vacuoles for
degradation [34–37]. More than 40 known autophagy-related genes (ATGs) that strictly
regulate this membrane trafficking process have been identified in yeast [38]. In Arabidopsis,
many genes with sequence similarity to the yeast ATGs have been identified. Current
information from Arabidopsis database TAIR (https://www.arabidopsis.org/, 26 September
2021) and related literature showed that about 35 ATGs have been identified. Except for
ATG14/29/31, other homologous genes of ATGs have been found in yeast [39]. The evolu-
tionary process of autophagy is mainly divided into four steps: (1) ATG1-ATG13 complex
and target of rapamycin (TOR) jointly induce autophagy. (2) ATG9 and phosphoinositide-3-
kinase (PI3Ks) complex containing ATG6, ATG14, vacuolar protein sorting 15 (VPS15), and
VPS34, participate in protein sorting and promote vesicle expansion. (3) Two ubiquitin-like
conjugation systems, ATG5-ATG12 and ATG8-phosphatidyl ethanolamine (ATG8-PE) sys-
tems, induce the formation of autophagosomes. (4) The fusion of mature autophagosomes
with the vacuole [35,36,40–43].

In recent years, great progress has been made in the identification of ATGs and the
study of autophagy pathways. Some of these gene knockout mutations revealed the
physiological role of autophagy in nutritional stress (nitrogen and carbon deficiency) and
senescence [44–46]. In addition, more and more studies have shown that autophagy is
also involved in plant immune response [47–51]. Autophagy plays a role in promoting
and inhibiting pathogens in host–pathogen interactions. Hosts can induce or inhibit plant
autophagy during pathogen infection, which is beneficial to resist pathogen invasion [52].
A recent study revealed the interaction between different ATGs and different pathogen
effectors. Researchers found that ATG8 interacted with several effectors, while HrpZ1
targeted ATG8 to enhance autophagy levels and increase the virulence of Pto DC3000
hrcC, HopF3 targeted ATG8 to suppress autophagy. Although the interactions between
ATG1, ATG7, ATG12, and several effectors were found in this study, the exact mechanism
of these interactions in plant disease resistance is unclear [52]. Some of ATGs knockout
mutations exhibited enhanced susceptibility to pathogen infection, such as atg2, atg5,
atg6, atg7, atg9, atg10, and atg18 [13,53–60]. While atg2 mutants displayed less HR-PCD
and ATG4, ATG5 inhibited the occurrence of HR-PCD, ATG6 antisense plants displayed
enhanced HR-PCD during pathogen infection [53–59,61]. A recent study reported that
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phosphorylation modification of ATG18a suppressed autophagosome formation during
pathogen infection, resulting in compromised plant resistance, which provides evidence for
the involvement of autophagy in plant immune regulation [62]. Here, we summarize the
interaction between bacteria, fungal effectors, and ATGs as well as the role of autophagy in
HR-PCD and resistance regulation (Table 1).

Table 1. ATGs (autophagy-related genes) in Arabidopsis participate in plant disease resistance.

Gene Protein Functions References

AT3G61960 ATG1a Interacting with AvrRps4-Pph, AvrPtoB-Pto, HopY1-Pto, Rbp001,
Rbp002, Rbp005, Urf004, Urf010, Urf012. [52]

AT3G19190 ATG2

Atg2 mutants displayed enhanced disease resistance to powdery
mildew, exhibited enhanced susceptibility upon D. dadantii infection.

Less HR cell death in atg2 mutants upon
Pst DC3000/avrRpm1 infection.

[53–55]

AT2G44140
AT3G59950

ATG4a
ATG4b

ATG4 inhibited the occurrence of HR
during Psm ES4326/AvrRpt2 infection. [61]

AT5G17290 ATG5

Atg5 mutants displayed enhanced susceptibility to Alternaria
brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina.

ATG5 inhibits the growth of Pst DC3000 or Pst DC3000 containing
avirulent factors (Pst-avrB, Pst-avrRps4, Pst-avrRpm1) at the early

stage of infection, which is necessary to limit PCD
induced by P. syringae.

[55,57–59]

AT3G61710 ATG6 ATG6 antisense plants displayed enhanced HR cell death when
infected with virulent Pst DC3000 or avirulent Pst DC3000/avrRpm1. [56]

AT5G45900 ATG7

ATG7 interacts with HrpZ1-Psy.
Atg7 mutants displayed enhanced susceptibility to Alternaria

brassicicola, Botrytis cinerea, and avirulent Pto DC3000/AvrRpm1 or Pto
DC3000/AvrRps4.

[13,52,58–60]

AT4G21980 ATG8a

Interacting with AvrPto, HopF3-Pph, HopY1-Pto, HrpZ1-Pph, Rbp001,
Rbp002, Rbp003, Urf003, Urf004. HrpZ1 and HopF3 target ATG8 to

enhance and suppress autophagy, respectively.Overexpressing
ATG8a enhances plant tolerance to D. dadantii.

[52,55]

AT4G04620
AT2G05630
AT3G60640
AT3G06420

ATG8b
ATG8d
ATG8g
ATG8h

Interacting with HrpZ1. HrpZ1 enhances autophagy levels,
increasing the virulence of Pto DC3000 hrcC. [52]

AT4G16520 ATG8f
Interacting with AvrPtoB-Pto, HopF3-Pph, HopY1-Pto, HrpZ1-Pph,
Rbp001, Urf004. HrpZ1 and HopF3 target ATG8 to enhance and

suppress autophagy, respectively.
[52]

AT3G15580 ATG8i

Interacting with AvrB2-Pph, AvrB3-Psy, AvrPto-Pto, HopAQ1-Pto,
HopO1-2-Pto, HopQ1-2-Pto, HopX1-Pto, HopY1-Pto, HrpZ1-Pph,

HrpZ1-Psy, Rbp001, Rbp002, Rbp005, Urf004, Urf012. HrpZ1
enhances autophagy levels, increasing the virulence of

Pto DC3000 hrcC.

[52]

AT2G31260 ATG9 Atg9 mutants displayed enhanced susceptibility to avirulent Pto
DC3000/AvrRpm1 or Pto DC3000/AvrRps4. [60]

AT3G07525 ATG10

Genetic inactivation of ATG10 resulted in enhanced susceptibility to
Alternaria brassicicola and Plectosphaerella cucumerina, atg10 mutants

showed reduced bacterial growth rates when
infected with Pto DC3000.

[55,59]

AT1G54210
AT3G13970

ATG12a
ATG12b Interacting with HrpK1-Pto, HrpZ1-Pph, HrpZ1-Psy, Urf003, Urf012. [52]

AT3G62770 ATG18a

Atg18a mutants showed enhanced susceptibility to Alternaria
brassicicola, Botrytis cinerea, and showed reduced bacterial growth

rates when infected with Pto DC3000.
Phosphorylation modification of ATG18a suppresses

autophagosomes formation during Botrytis cinerea infection, which
results in compromised plant resistance against Botrytis cinerea.

[55,59,62]
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3. Roles of NPRs in Plant Immunity
3.1. The Structure of NPR1

The transcription coactivator non-expressor of pathogenesis-related genes 1 (NPR1) is
a key regulatory factor of SAR, which regulates most SA-responsive genes [30,63–66]. NPR1
contains an N-terminal BTB/POZ (Broad-Compex, Tramtrack, and BricaBrac/POxvirus
and Zinc finger) domain, an ankyrin (ANK) repeat domain, a C-terminal transactivation
domain, and a nuclear localization sequence [67–69]. NPR1 interacts with TGACG motif-
binding factor (TGA) through ANK or BTB/POZ domain [70–72]. In the absence of SA,
the C-terminal transactivation domain of NPR1 interacts with BTB/POZ domain, which
inhibits NPR1 transcriptional coactivator function. The binding of SA to NPR1 leads to
conformational changes of NPR1, it functions as a coactivator of gene transcription with
the release of the C-terminal transactivation domain from the N-terminal autoinhibitory
domain [71,73]. A recent study provided a preliminary understanding of the structure–
function relationship of NPR proteins. The SA-binding core (SBC) consisting of amino
acids 373–516 in the NPR4 C-terminal domain was identified. Arabidopsis NPR4 and NPR1
share 38.1% sequence identity in their SBC region, they share the structural mechanism of
SA recognition. In addition, this study also found that conformational changes of NPR4
SBC could be induced by the binding of SA to NPR1 and NPR4 [74].

3.2. NPR1 and Innate Immunity

NPR1 is a master regulator of plant resistance to pathogen stress, which confers
immunity through multiple transcription factors [75–77]. Research over the last 20 years
has revealed the potential molecular mechanism of NPR1 in different cell states. Under
normal growth conditions, NPR1 is present in the cytoplasm, stabilized by intermolecular
disulfide bonds. Infection by pathogens results in the accumulation of SA and NPR1
oligomer-to-monomer reaction through SA-mediated redox changes in the cell, allowing
NPR1 to migrate into the nucleus [75,78,79]. NPR1 indirectly activates PR gene expression
by interacting with TGA in the nucleus and plays an important role in regulating the PRs
protein downstream [63,80,81]. The NPR1 in SA perception promotes TGAs transcriptional
activity [82]. Recent studies have shown that NPR1 interacts with cyclin-dependent kinase
8 (CDK8) and enhanced disease susceptibility 1 (EDS1) to promote PR1 expression in the
SA signaling pathway [83,84].

A new study found that the formation of SA-induced NPR1 condensates (SINCs) is
mediated by conserved cysteine clusters in intrinsic disorder regions (IDRs) of NPR1 pro-
tein. SINCs are rich in stress-responsive proteins, including NB-NLR receptors, oxidative
and DNA damage-responsive proteins, and ubiquitination-related proteins. In addition,
SINCs are required to form functional NPR1-Cullin 3 RING E3 ligase (CRL3) complex
in the cytoplasm. NPR1-CRL3 complex can ubiquitinate and degrade EDS1 and some
important ETI regulatory factors such as WRKY transcription factors, thereby promoting
cell survival in ETI [85].

3.3. NPR3/NPR4 and Plant Immunity

In Arabidopsis, the NPR family consists of NPR1 and five NPR1-like genes, named NPR1-
like 2 (NPR2), NPR3, NPR4, BLADE-ON-PETIOLE2 (BOP2; NPR5), and BOP1 (NPR6) [86–89].
Each member of the NPR family contains a set of highly conserved cysteine residues that are
thought to be involved in redox control [30]. It was confirmed that NPR1 and NPR3/NPR4
bind to SA and function as SA receptors, with NPR1 (Kd = 223.1 ± 38.85 nM) and NPR3
(Kd = 176.7 ± 28.31 nM) binding to SA with similar affinity. However, the affinity of
NPR4 (Kd = 23.54 ± 2.743 nM) with SA is much higher [82]. Under normal conditions,
NPR4 is a ligand of CRL3 substrate that can interact with NPR1, allowing proteasome to
continuously ubiquitinate and degrade NPR1. At this time point, NPR3/NPR4 inhibits
the expression of defense genes, thereby preventing an autoimmune response [90–92].
During SAR, as SA levels increase, SA binds to NPR4, induces the dissociation of NPR1
and NPR4, disrupts the NPR4-Cullin3 E3 ligase complex [90,92]. At this time point, the
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binding of SA to NPR3/NPR4 inhibits their transcriptional activity, while NPR1 in SA
perception enhances its transcriptional activation, both of which are helpful in inducing
the expression of defense genes [82]. In addition, studies have shown that NPR3 and
NPR4 may promote PCD while NPR1 may inhibit PCD through resistance–avirulence
(R-Avr) gene interaction [91]. Our previous study found that the expression of ATGs and
the protein concentrations of ATG7 and ATG8a-PE were lower in npr3/npr4 mutants than
in the wild-type. NPR3 and NPR4 may regulate the production of autophagosomes by
promoting two ubiquitin-like conjugated systems [91].

4. ATGs Participate in the Regulation of NPR1 Metabolism
4.1. Proteasome-Mediated NPR1 Degradation

Pathogen infection causes accumulation of SA thus leads to post-translational modifi-
cation of NPR1, allowing it to enter into the nucleus. NPR1 is recruited to Cullin3 (CUL3)
for ubiquitination and subsequent degradation, this process requires phosphorylation of
NPR1 at residues Ser11 and Ser15 [31,93–96]. The ubiquitination of NPR1 is a gradual
process. Only when the polyubiquitination of NPR1 is enhanced by ubiquitin conjuga-
tion factor E4 (UBE4), it becomes the target of proteasome degradation [95]. Ubiquitin
ligase activities are opposed by ubiquitin specific protease (UBP6/7). UBP6/7 are two
proteasome-related deubiquitinases (DUBs) that increase NPR1 longevity [95]. In addition
to UBP6/7, other DUBs may also play a role in regulating the expression of SA response
genes, but their exact function is still unclear.

Some studies have found that the plant hormones abscisic acid (ABA) and SA antag-
onistically affect the level of NPR1 in cells. ABA promotes NPR1 degradation through
the proteasome pathway mediated by the CUL3-NPR3/NPR4 complex, while SA protects
NPR1 from ABA-induced degradation through phosphorylation [97–100]. AvrPtoB has a U-
box E3 ubiquitin ligase domain at the C-terminal and shows a weak interaction with NPR1
under uninduced conditions. SA promotes the interaction between AvrPtoB and NPR1,
AvrPtoB mediates NPR1 ubiquitination by E3 ligase and mediates NPR1 degradation via
the proteasome pathway [101].

4.2. Relationship between ATGs and NPR1

Studies have found that NPR1 regulates ATGs expression. NPR1 inhibited the
mRNA expression of ATG1, ATG6, and ATG8a during the early HR induced by Psm
ES4326/AvrRpt2 [61]. SA analog benzothiadiazole (BTH) was confirmed to induce au-
tophagy through the NPR1-dependent signaling pathway, and NPR1, NPR3, and NPR4
are jointly involved in the regulation of autophagosomes [91]. In addition, several studies
have shown that NPR1 affects the phenotype of autophagy-deficient mutants. NPR1 could
accelerate the senescence or infection-induced accumulation of ubiquitinated proteins and
endoplasmic reticulum stress in atg2 [54]. Yoshimoto et al. found that BTH could induce
senescence and cell death in atg5 mutants but could not induce senescence and cell death
in atg5 npr1 double mutants, indicating that the cell death phenotype in atg5 mutants
depended on NPR1 under SA induction [57]. Our previous study also found that ATG4
promoted NPR1 degradation by inhibiting the consumption of free SA [61]. In recent years,
the relationship between ATGs and NPR1 has been gradually revealed (Table 2), but there
are still many problems to be solved.
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Table 2. Relationship between ATGs and NPR1 in Arabidopsis.

Gene Protein Relationship References

AT3G61960
AT3G53930

ATG1a
ATG1b

NPR1 inhibited the mRNA expression of ATG1 during Psm
ES4326/AvrRpt2 infections. [61]

AT3G19190 ATG2

Accumulation of ubiquitinated proteins and increased ER stress in
older atg2 mutants which were suppressed by mutations in NPR1.

NPR1 somehow suppressed cell death in atg2 mutants upon
pathogen infection.

[54]

AT2G44140
AT3G59950

ATG4a
ATG4b

ATG4 inhibited the consumption of free SA and alleviated the
degradation of NPR1 during Psm ES4326/AvrRpt2 induced

autophagy-dependent HR.
[61]

AT5G17290 ATG5 Pathogen-induced spread of chlorotic cell death and BTH
hypersensitivity in atg5 mutants required NPR1. [57]

AT3G61710 ATG6 NPR1 inhibited the mRNA expression of ATG6 during Psm
ES4326/AvrRpt2 infections. [61]

AT4G21980 ATG8a NPR1 inhibited the mRNA expression of ATG8a during Psm
ES4326/AvrRpt2 infections. [61]

5. Conclusions and Future Perspectives

Autophagy-mediated degradation of proteins and organelles is essential for plant
growth, development, maintenance of cell homeostasis, and immune response [34–37,44–51].
A series of ATGs co-located in the phagophore assembly site (PAS), initiate the process
of autophagy. After that, the PI3Ks complex helps to form the nucleation of autophagy,
followed by autophagosome membrane elongation [35,36,40–43,102]. NPR1 activity is
regulated by phosphorylation, dephosphorylation, ubiquitination, and deubiquitination,
and proteasome is involved in its degradation process (Figure 1). Nevertheless, there are
still some questions to be answered, such as whether NPR1, NPR3, and NPR4 have the
opposite effects on autophagy regulation and resistance to pathogen invasion? Do they
co-repress the production of autophagosomes and the expression of EDS1? In recent years,
the role of ATGs (ATG2, ATG5, ATG7, and ATG18a) in plant disease resistance has been
gradually revealed (Table 1). In general, the accumulation of SA leads to the outbreak of
ROS and further induces autophagy, while autophagy can reduce the production of ROS,
thus forming a negative feedback regulation mechanism. ATGs, such as ATG6, can also
regulate the occurrence of HR-PCD [48,56,57,103,104]. NPR1 has been proved to inhibit
HR-PCD and affect the level of ROS in plants, while it is also affected by the level of
ROS [30,91]. Based on this evidence, further research is needed to answer the following
questions: Does the mutation or overexpression of ATGs affect NPR1 transformation from
dimer to monomer? What are the effects of different ATGs on NPR1 entering the nucleus?
What is the relationship between ATGs and NPR1 regulation of the HR-PCD response?
Does autophagy and 26S proteasome co-regulate NPR1 turnover? An in-depth study of
these issues will help us to understand how the autophagy pathway participates in the
regulation of NPR1 metabolism. A recent study showed that the protein expression of
NPR1 was significantly higher in atg4a4b than that in wild type under normal condition
and the expression of NPR1 in atg4a4b was higher than that in wild type under avrRpt2
treatment [61]. Based on the above finding and the relationships among ATG6, HR-
PCD, and NPR1, a hypothesis regarding ATGs participating in NPR1 metabolism was
proposed (Figure 1): ATG6 may promote nuclear translocation of NPR1 by affecting the
phosphorylation level of NPR1, while ATG4 may have the opposite effect.
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Figure 1. Pattern diagram of autophagy involved in NPR1 regulation in Arabidopsis. Autophagy
pathway can be divided into four stages: initiation, expansion, maturation, and fusion. Normally,
NPR1 exists in the cytoplasm as an oligomer. Upon pathogen infection, SA accumulates in the plant
cell. NPR1 was phosphorylated and transferred from cytoplasm to nucleus. In the nucleus, NPR1
forms a protein complex with CDK8 and EDS1, promoting the expression of the PR1 gene. NPR1 is
degraded by the 26S proteasome complex through a series of polyubiquitination processes by CUL3
and UBE4, and its deubiquitination is mediated by UBP6 and UBP7, which are closely linked to 26S
proteasome. It is reasonable to speculate that ATG6 may promote the entry of NPR1 into the nucleus,
while ATG4 may have the opposite effect.
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