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Abstract

Background

Many human infectious diseases are caused by pathogens that have multiple strains and

show oscillation in infection incidence and alternation of dominant strains which together

are referred to as epidemic cycling. Understanding the underlying mechanisms of epidemic

cycling is essential for forecasting outbreaks of epidemics and therefore important for public

health planning. Current theoretical effort is mainly focused on the factors that are extrinsic

to the pathogens themselves (“extrinsic factors”) such as environmental variation and sea-

sonal change in human behaviours and susceptibility. Nevertheless, co-circulation of differ-

ent strains of a pathogen was usually observed and thus strains interact with one another

within concurrent infection and during sequential infection. The existence of these intrinsic

factors is common and may be involved in the generation of epidemic cycling of multi-strain

pathogens.

Methods and Findings

To explore the mechanisms that are intrinsic to the pathogens themselves (“intrinsic fac-

tors”) for epidemic cycling, we consider a multi-strain SIRS model including cross-immunity

and infectivity enhancement and use seasonal influenza as an example to parameterize the

model. The Kullback-Leibler information distance was calculated to measure the match

between the model outputs and the typical features of seasonal flu (an outbreak duration of

11 weeks and an annual attack rate of 15%). Results show that interactions among strains

can generate seasonal influenza with these characteristic features, provided that: the infec-

tivity of a single strain within concurrent infection is enhanced 2−7 times that within a single

infection; cross-immunity as a result of past infection is 0.5–0.8 and lasts 2–9 years; while

other parameters are within their widely accepted ranges (such as a 2–3 day infectious
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period and the basic reproductive number of 1.8–3.0). Moreover, the observed alternation

of the dominant strain among epidemics emerges naturally from the best fit model. Alterna-

tive modelling that also includes seasonal forcing in transmissibility shows that both external

mechanisms (i.e. seasonal forcing) and the intrinsic mechanisms (i.e., strain interactions)

are equally able to generate the observed time-series in seasonal flu.

Conclusions

The intrinsic mechanism of strain interactions alone can generate the observed patterns of

seasonal flu epidemics, but according to Kullback-Leibler information distance the impor-

tance of extrinsic mechanisms cannot be excluded. The intrinsic mechanism illustrated

here to explain seasonal flu may also apply to other infectious diseases caused by polymor-

phic pathogens.

Introduction
The incidence of many infectious diseases varies periodically: for example, seasonal influenza
develops as an epidemic during winter in temperate regions but remains at very low levels dur-
ing summer. Furthermore, in infectious diseases caused by multi-strain pathogens such as viral
aseptic meningitis [1,2], respiratory syncytial virus [3], cholera [4], influenza [5,6], dengue [7]
and rotavirus [8], the dominant strain can also alternate between epidemics although the fre-
quency of alternation is lower than the frequency of epidemics. For convenience, in this study
we define ‘epidemic cycling’ as a combination of both periodicities in incidence and alternation
of the dominant strain to reflect that successive epidemics is often accompanied by dominant
strain alternation (cf. [9]). Despite the common nature of epidemic cycling, their underlying
mechanisms are not well understood. Several external mechanisms have been suggested by oth-
ers for periodicity in infection incidence: e.g., survival of disease pathogen outside host; host
behaviour and seasonal changes in host susceptibility and immune defence [10,11,12]. These
mechanisms can be expressed as seasonal dynamics [13] caused by the ‘seasonal forcing’ in the
transmission rate [3,14]. However, they have difficulty in explaining, for example, a fast and
wide spread of influenza [15]. Many human infectious diseases are caused by pathogens that
have multiple strains that differ antigenically. And coinfection with different strains is also a
common occurrence. This suggests that interactions between strains might play some role in
the formation of seasonality [16]. In fact, Grassly et al. [17] showed that it is the intrinsic fac-
tors (e.g., immunity), rather than external factors (e.g., changes in human sexual behaviours),
that causes an 8–11 year cycle in syphilis incidence. Interactions among different types and
subtypes of influenza virus surely play some role in determining the cyclical pattern of inci-
dence and the replacement of the dominant strain [18]. For example, A/H1N1 pdm09 strain
emerged in 2009 to cause the 2009 pandemic influenza and displaced the A/H1N1/77 strain
which circulated before 2009; while A/H3N2 still circulated [19]. These phenomena could not
be due to external factors such as environmental variations and host behaviour changes alone.
Therefore traditional seasonal dynamics cannot explain what we call epidemic cycling. Others
have suggested that strain interactions such as cross-protective immunity may be responsible
for the replacement and cycle of strains (cf. [3,14]). In this study, we consider seasonal influ-
enza as an example and show how strain interactions alone can generate the observed patterns
of total and strain-specific incidence of seasonal influenza epidemics.
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Seasonal influenza causes approximately 250,000–500,000 deaths globally each year [20].
The mechanisms underlying the annual behaviour of influenza infection are crucial for fore-
casting and planning for seasonal influenza epidemics. Seasonal influenza epidemics are usu-
ally caused by influenza B virus and/or one of two influenza A subtypes: A/H3N2 and A/
H1N1. Influenza viruses A and B are very similar in overall structure with eight single-stranded
negative-sense RNA segments and only matrix genes differing somewhat between them. The
targets of antibodies are two major surface glycoproteins: hemagglutinin (HA) and neuramini-
dase (NA), which allows for the similarity of possible immunity between types and that
between subtypes of type A [21, 22, 23]. For simplicity, type or subtype is in this article roughly
referred to as "strain" in view of their similar dynamical behaviours although their biological
details are different (c.f. [18, 21, 24]). Detailed studies illustrate that the dominant strain in sea-
sonal influenza cycles irregularly among years [5, 6, 18, 19, 25]. Strains interact by the means of
changing human susceptibility and strain infectivity. For example, cross-immunity induced by
previous infection protects against subsequent infection [22, 26, 27, 28, 29, 23, 30, 31]. This
protection is expressed as either reduced susceptibility [32] or attenuated symptoms during
subsequent infections [33].

Nevertheless, infectivity enhancement was observed following a deliberate infection of
another strain to previously infected animals (e.g., [34, 35, 36, 37]). A vaccine effectiveness
analysis indicates that vaccination can increase the susceptibility to other strains if the vaccine
strain mismatches the circulated strains, which occurs in 26% of their study period of 33 years
[38, 39]. Increasing evidence emerges to support these observations: Skowronski et al. [40] and
Tsuchihashi et al [41] showed that seasonal influenza vaccination might increase susceptibility
to A(H1N1) pdm09. Skowronski et al (2013) [42] pointed out that H7N9 infection age profile
in China 2013 that was skewed to the older side might hint the phenomenon of cross-reacting
antibodies that facilitate infections. Furthermore, Dutry et al. [43] demonstrated that prior
addition of human serum to the inoculum trigged a 2–5 fold increase in infected cells. This is
thought to occur when low-levels of different but similar antibodies are cross-reactive but not
cross protective. When antibodies generated by past exposure to virus antigen form bridging
complexes they facilitate uptake and replication of related but non-identical variants of them-
selves [40].

Coinfection (by which we mean that individuals are simultaneously infected with different
strains), hereafter defined as ‘concurrent infection’, was observed in influenza (e.g., [32, 33, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]). Concurrent infection can be produced
by either the simultaneous transmission of two strains [60] or two separate transmissions with
the transmission of the second strain before recovery from the first strain. This is different to
secondary infection after individuals have recovered from primary infection which is referred
to as sequential infection (or re-infection). Within concurrent infections, strains may interact
with each other in a way different from how they interact when infections are sequential. This
can be argued from the following points: first, as Liu et al. [60] noticed, within two days of
symptom onset, no patients infected with influenza A virus had detectable hemagglutination
inhibition (HI) antibodies against other strains of influenza; second, through better aerosolisa-
tion infection with one strain of influenza may increase the chance of being infected with
another strain of influenza during the infectious period of the first infection [61]. Though
Brundage [61] focused on the interactions between influenza viruses and bacterial respiratory
pathogens, the same argument might also apply to the interaction between influenza viruses
through the better aerosolisation. These two points might imply the possibility of infectivity
enhancement within concurrent infection. So far there is no direct report showing infectivity
enhancement within concurrent infection in influenza, which is perhaps because of the short
duration of influenza virus infectiousness (typically less than a week). Based on the observed
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data [60] of concurrent infection and co-transmission events, Zhang and De Angelis [62] dem-
onstrate an indirect evidence of infectivity enhancement during concurrent infection in flu. As
a theoretical exploration, we will in this paper investigate how this possible interaction along
with the well-known cross-immunity affects dynamic patterns of season flu.

Cross-immunity during sequential infection has been widely recognised in multi-strain
transmission models (e.g., [14, 63, 64]) while the possible infectivity enhancement within con-
current infection has only recently been noticed [16]. These strain interactions might collec-
tively provide an explanation for the periodicity in incidence and alternation of the dominant
strain in seasonal influenza. Truscott et al. [14] proposed a two strain SIRS epidemic model
that allows for age and includes cross-immunity and seasonal forcing. They can almost gener-
ate the observed patterns of seasonal influenza: dominant strain alternation in successive years
is due to a negative association between strains which is generated by cross-immunity; and
incidence periodicity is due to seasonal forcing and variation between age groups of the contact
rate, infectivity and susceptibility. However, the reports of seasonal influenza usually include
three strains (i.e. type B, A/H1N1 and A/H3N2) and the alternation of dominant strains is not
as regular as Truscott et al. [14] predicted (i.e., [5, 6, 18, 25]).

In this study seasonal influenza epidemics are modelled via a three strain SIRS model. It is
worth mentioning that small changes in the three routinely reported strains occur continuously
due to frequent antigenic drift caused by mutation in the viral genome. Immunity built through
primary infection will wane either because of immune loss within the human body or immune
escapement due to changes in the strains. To approximate these complications, the model
assumes a constant biological identity for each strain but allows for a waning immunity. Novel
influenza virus strains can also be generated due to antigenic shift via reassortment, which
could cause pandemic influenza. Because antigenic shift is much rarer than antigenic drift, it is
ignored in this study. The emergence of pandemic influenza due to reassortment was discussed
in a previous study [65].

Within this model two types of strain interaction are assumed: (a) the immunity due to a past
infection of a different strain (referred to as “cross-immunity”); and (b) the greater infectivity of
an individual who is simultaneously infected with more than one strain (referred to here as
“enhanced infectivity within concurrent infection”) (cf. [16]). Strain interaction within concur-
rent infection can induce the periodic epidemics; however, strains become synchronized if cross-
immunity is sufficiently strong (cf. [16]). Like Truscott et al. [14], we assumed that seasonal influ-
enza was typically characterised by an outbreak duration of 11 weeks and an annual attack rate of
15% and an epidemic period of one year. The possible range for model parameters was deter-
mined by using the Kullback-Leibler information distance, which is based on a comparison
between the predicted epidemics and the observed epidemics of seasonal influenza. In addition
the replacement of the dominant strain was used as another criterion for the goodness of fit. The
model we propose here includes two different types of parameter. One type is used to describe
the traditional transmission characteristics such as the transmission rate, the infectious period
and the immunity period; the second type is used to represent strain interactions such as co-
transmissibility, infectivity enhancement within concurrent infection and cross-immunity during
sequential infection. The purpose of the model fitting exercise is to show whether the model pro-
posed here can explain the typical patterns of seasonal influenza under the widely accepted values
of transmission characteristics and reasonable ranges of strain interaction parameters.

Models and Methods
The flowchart of the three strain SIRS model is shown in Fig 1 where two types of strain inter-
action are assumed: cross-immunity and infectivity enhancement (cf. [16]). The model has 17
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compartments as shown in Table 1 and the model parameters are as defined in Table 2. For
simplicity, the three strains are assumed to be phenotypically indistinguishable. Some experi-
mental evidence exists that cross-immunity will increase with repeated infections (e.g., [21, 22,
23]). We hence assume that once infected with two strains, individuals cannot be further
infected by the third strain. That is, those who have recovered from single infections become
fully immune to the infecting strain and partially immune to other strains with reduction ψ in
susceptibility during the immunity period D; while those who have recovered from dual infec-
tions become completely immune to all the three strains. The immunity within compartments
Ri, i = 1, 2, 3, and Rd are assumed to wane at the same rate σ and all different infections are
assumed to have the same infectious period dI. The infectivity enhancement of strain i within
concurrent infection Iij is measured by a coefficient ϕ. Assuming symmetry among the three

Fig 1. Flow chart of the three-strain SIRS epidemic model. Solid arrows indicate transitions. Expressions next to arrows show the per capita flow rate
between compartments. Births and deaths, and transitions from the recovered to the susceptible are not shown. Variables and parameters are explained in
Tables 1 and 2. Triple infection is ignored by assuming that, once infected with two strains (either concurrent or sequential), no one can be infected by the
third strain.

doi:10.1371/journal.pone.0142170.g001
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strains, the increased infectivity is the same to strain i and j within a concurrent infection Iij.
The additional mortality caused by the virulence of infections is ignored, and births and deaths
are assumed to be balanced in order to maintain a constant population size. Age and spatial
heterogeneity are ignored so that homogeneous mixing of the population is assumed. To avoid
the “trough extinction” an external force of infection (EFOI) (ε) representing the effect of con-
tact between the modelled population and the infected from outside is included but is assumed
to cause only single-infected patients (cf. [14]). The model system is described by the following
set of differential equations:

dS
dt

¼ ð1� SÞ=L� ð
X

i

Li þ
X
i<j

Lij þ 3εÞSþ ð
X

i

Ri þ RdÞ=D

dIi
dt

¼ ðLi þ εÞS� ð
X
j6¼i

LjÞIi � ð1=dI þ 1=LÞIi; i ¼ 1; 2; 3

dIij
dt

¼ LjIi þ LiIj þ LijS� ð1=dI þ 1=LÞIij; i < j

Table 2. Model parameters and their baseline values. The values shown are those used if not otherwise
specified. The baseline values are extracted from Truscott et al. [14] and Boëlle et al [66] except βd and ϕ
whose baseline values are tentatively chosen.

Parameter Definition Baseline value

β Transmission rate for single strain 1.0 per person per day

βd Co-transmission rate of double infection 0.25 per person per day

ϕ Infectivity enhancement of single strain within concurrent
infection

2.5

ψ Cross-immunity induced by primary infection 0.7

D Immunity duration (1/σ) with σ representing the waning rate of
immunity

5 years

dI Infectious period (1/γ) with γ representing the recovery rate 2 days

L Life span (1/μ) with μ representing the birth rate 70 years

N Population size 6.3×107

δ Relative amplitude of variation in the transmission rate 0

ε External force of infection 4.1×10−9 per person per
day

doi:10.1371/journal.pone.0142170.t002

Table 1. Model Variables.

Variable Definition

S Proportion of the population that are susceptible to all strains

Ii Proportion of primary infections with strain i = {1,2,3}

Iij Proportion of concurrent infections with two strains i and j (>i)

Ji,j Proportion of secondary infections with strain i after recovery from infection with strain j.

Ri Proportion of those recovered from single infections with strain i so that they are immune to
strain i

Rd Proportion of these recovered from double infections and now are immune against any further
infection

doi:10.1371/journal.pone.0142170.t001
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dJi;j
dt

¼ ð1� cÞ½Li þ ε�Rj � ð1=dI þ 1=LÞJi;j; i 6¼ j ð1Þ

dRi

dt
¼ gIi � ½ð1� cÞð

X
j 6¼i

Lj þ 2εÞ þ 1=Dþ 1=L�Ri

dRd

dt
¼ gð

X
j 6¼i

Ji;j þ
X
i<j

IijÞ � ð1=Dþ 1=LÞRd

Where

Li ¼ bðIi þ
X
j 6¼i

Ji;j þ φ
X

j1<j2;j1 ;or;j2¼i

Ij1 j2Þ; i ¼ 1; 2; 3 ð2Þ

are the force of infection of the three single strains,

Lij ¼ bdIij; i < j ð3Þ

are the force of infection of the three dual infections.
In an additional model, we also examine the effect of seasonal forcing in the transmission

rate on the patterns of seasonal influenza by considering

bðtÞ ¼ bð1þ dcosð2pt=365ÞÞ ð4Þ

Here δ is the relative amplitude, which reflects the annual variation in contact intensity and
environmental conditions, and β is the average value of the transmission rate. Another similar
time-varying contact rate is also included for the co-transmission rate βd.

Strain interactions are characterised by three parameters: co-transmission rate (βd), coeffi-
cient of infectivity enhancement within concurrent infection (ϕ) and cross-immunity during
sequential infection (ψ). It is worth mentioning that because the infectivity enhancement ϕ
only directly benefits the transmission of single strains the relative prevalence of concurrent
infection (Iij) is mainly determined by βd rather than ϕ as illustrated in Table 2 of [16]. There-
fore the low number of reported concurrent infections (e.g., [32, 60]) should not simply be
regarded as a fact for rejecting the infectivity enhancement of single strains which we assumed
in this study.

To generate a long-term dynamic process of infection, infection was initiated by randomly
selected seed infections of each type and a burn-in period of 20000 years is allowed to let the
system be fully developed. The time series of infection was monitored to detect the times at
which the incidence rate rose above or fell below a threshold level of 42 cases per 100000 per-
son-days (cf. [14]) so to obtain the duration of epidemic (DE) and the inter-epidemic period
(IEP). The attack rate (AR) is defined as the proportion of the population infected during the
epidemic. These three characteristics were calculated only for the total number of all infections.
Stochastic extinction occurs once the total number of infected people reduces to below one.
Following Truscott et al. [14], the Kullback-Leibler (KL) information distance over parameter
space was calculated to measure the match between the model outputs and these three charac-
teristic features,

KLðgðpÞ; f Þ ¼
Z

gðpÞ logðgðpÞ
f

Þdx ð5Þ
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where f is the empirical distribution of a feature, and g(π) is the approximate distribution of the
same feature from model simulations over 1000 consecutive epidemics under the values of a
set of model parameters π. As in Truscott et al. [14], empirical patterns of seasonal influenza
are assumed to be characterised by these three normally distributed features with mean (m)
and standard deviation (SD): (m, SD) = (11,3) weeks for DE, (15%,5%) for AR, and (52,7)
weeks for IEP. We approximate the continuous empirical distribution f as fi, i = 1,. . .,Nbin

where Nbin is the number of bins. Under the values of the model parameters π, the predicted
distribution is categorised as gi where i = 1,. . .,Nbin. The KL information distance is approxi-
mated as

KLðgðpÞ; f Þ �
XNbin

i¼1
gi logðgi=fiÞ ð6Þ

Nbin takes the following values: 52, 104 and 100 for DE, IEP and AR, respectively. The overall
measure of goodness of fit is an unweighted sum of the information distance for DE, AR, and
IEP, denoted in this paper as KL3. For convenience, acronyms that are used to describe the
characteristic features of an infection time series (such as DE) are listed in Table 3.

The baseline values of model parameters given in Table 2 are based on recent reviews of
influenza transmission parameters [14, 66]. Derived from the baseline values is the basic repro-
ductive number of single strains, defined as the average number of secondary infections caused
by an infected patient within a naïve population, R0 = β/(γ+μ) = 2.0. We assume a baseline
value of 0.25β for co-transmission rate βd so the corresponding reproductive number of dual
infection, Rd

0 ¼ bd=ðgþ mÞ = 0.5. Further the baseline value for infectivity enhancement ϕ is
tentatively assumed to be 2.5, which is confirmed by simulations shown below to be within the
range of values that can generate practical patterns of seasonal influenza. Simulations were run
within a population of the size of the UK (N = 63 million). We investigated parameter space
especially to see which values of the strain interaction parameters (βd, ϕ, and ψ) generated
cyclical or chaotic epidemics [14, 16], which most closely resembled empirical patterns. The
examples of how infectivity enhancement and cross-immunity interact to produce different
types of epidemic are given in S1 File.

Under the circumstance of no seasonal forcing (i.e., δ = 0) and weak infectivity enhance-
ment (e.g., ϕ<1.5 in S1 Fig), only endemics with constant incidence where the number of new
infections is balanced by the number of recoveries are possible. When the infectivity enhance-
ment exceeds a certain threshold ϕc (i.e., 1.7 by assuming the baseline values for other model
parameters) the endemics bifurcate into cyclical (recurrent) epidemics. However, as ϕ further
increases, the cyclical epidemics burst into chaotic epidemics (S1 Fig and S2A Fig). When the
cross-immunity is very strong (i.e., ψ>80%) only cyclical epidemics are possible as shown in

Table 3. Acronyms used for characteristic features of epidemic time series.

Acronym Definition

DE Duration of an epidemic defined as the time interval when the daily number of infections
continuously exceeds an epidemic threshold level of 42 per 100000 persons per day.

KL_DE Kullback-Leibler (KL) information distance from a comparison of the observed DE and the
predicted DE.

AR Attack rate defined as the proportion of the population infected during an epidemic

KL_AR KL information distance from a comparison of the observed AR and the predicted AR.

IEP Inter-epidemic period

KL_IEP KL information distance from a comparison of the observed IEP and the predicted IEP

KL3 Combined KL information distance defined as an unweighted sum of the three KL component
information distances: KL_DE+KL_AR+KL_IEP

doi:10.1371/journal.pone.0142170.t003
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S1 Fig. With an increased co-transmissibility (βd), the threshold infectivity enhancement ϕc
reduces (cf. Fig 4A of [16]). This implies that both infectivity enhancement and co-transmis-
sion complement each other to sustain cyclical epidemics. We notice that when the periodic
epidemics are regular, the goodness of fit is not as good as for chaotic epidemics (see S2E Fig).
Clearly the three characteristics of the seasonal flu patterns (i.e., DE, AR and IEP) vary between
epidemics when they are chaotic or aperiodic (see S2B–S2D Fig) as observed in influenza sur-
veillance [5, 6, 19, 25]. In the following we judge the model output by the combined KL infor-
mation distance (KL3).

We define a strain as the dominant strain if the fraction of infections with that strain
exceeds 50% during an epidemic. Under the situation of synchronous strains, the three strains
have the same share of the total infection at any time. With asynchronised strains the fraction
of infections of each strain varies between epidemics. This fraction does not necessarily exceed
50% and therefore there is not necessarily any dominant strain. It is obvious that within the
three strain system, the requirement for the alternation of dominant strains is stronger than
the emergence of asynchronous strains, which is clearly illustrated in S1 and S3 Figs.

Results
Fig 2 shows the exploration of parameter values for cross-immunity (ψ) and infectivity
enhancement (ϕ). Over a wide range of values for ψ and ϕ, the distribution of the KL informa-
tion distance for each of the three characteristic features was plotted. On the upper and right
side of Fig 2B is the area for which KL_DE is less than 3.0. On the corresponding area of Fig
2A, the mean duration of the epidemics (DE) ranges from 5 to 20 weeks and matches the
observed values. On the bottom left corner of Fig 2D and 2C where KL_IEP< 3.0, the mean
inter-epidemic period (IEP) ranges from 1.0 to 1.25 years. On the top left corner of Fig 2F and
2E on which KL_AR< 3.0, the attack rate (AR) ranges from 10 to 20%. The overall measure of
goodness of fit (KL3) is plotted on Fig 2G. The best fit region is located within a narrow band:
0.5<ψ<0.75 and 2.4<ϕ<5.0 on which KL3 is less than 9.0. Within this narrow band, the dura-
tion of epidemics (DE) is estimated to range from 15 to 20 weeks; the inter-epidemic period
(IEP) ranges from 1.0 to 1.3 years and the attack rate (AR) ranges from 15% to 25%. IEP esti-
mates appear longer than the observed, however, the overall model outputs are a reasonable
match to the empirical patterns. Model outputs are much less likely to match the empirical pat-
terns for parameter values on which KL3> 9.0 (Fig 2). Fig 2H shows that when cross-immu-
nity is very strong (i.e.>80%), or infectivity enhancement (ϕ) is not strong (i.e.,<1.7), the
dominant strain cannot change (cf. [16, 67]). While for a very weak cross-immunity, the domi-
nant strain changes between epidemics but KL3 is unacceptably high, implying that the model
outputs deviate substantially away from the typical observations of seasonal flu.

Three examples of model output time series are shown in Fig 3. When KL3 is small, the
three characteristic features produced by the model match well those of empirical patterns. For
the example shown in Fig 3A in which KL3 = 1.7, the output time series has a mean IEP of 51
weeks and a mean DE of 14 weeks, and a mean AR of 18%. Furthermore, the dominant strain
changes irregularly between epidemics. A time series with KL3<9.0 can still resemble the
empirical patterns. For the example in Fig 3B where KL3 = 4.7: the average IEP was 57 weeks
and the average DE was 19 weeks which are both slightly longer than observed. When KL3
>9.0 the model outputs deviate from the observed patterns. For the example in Fig 3C, the epi-
demics have a mean IEP of 52 weeks but have a mean DE of 27 weeks, which is unlikely to be
true. We therefore use a tentative criterion of KL3<9.0 to classify the overall goodness of fit:
the output infection time series of KL3<9.0 corresponding to realistic behaviours with appro-
priate distributions of the three characteristic features.

Strain Interactions and Epidemic Cycling
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Fig 2. Model fit as a function of cross-immunity and infectivity enhancement.Other parameters are as baseline values in Table 2. A) Duration of
epidemics (DE) in weeks; B) Goodness of fit as measured by the KL information distance of duration of epidemics (KL_DE); C) Inter-epidemic period in
years; D) Goodness of fit as measured by the KL information distance of inter-epidemic period (KL_IEP); E) Attack rate; F) Goodness of fit as measured by
the KL information distance of attack rate (KL_AR); G) the overall goodness of fit to the three characteristics (KL3); H) alternation of the dominant strain (the
yellow area represents the model parameter region where only endemics with constant incidence are available).

doi:10.1371/journal.pone.0142170.g002
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Fig 3. Examples of model output time series. The blue lines show the total case incidence, the red lines the annual attack rate and the bottom bar plot
shows the fractions of the three strains (represented by three different colours). The dashed blue straight line represents the threshold level of 42 cases per
100000 person-days for defining an epidemic. Other parameters are as baseline values in Table 2. Model parameters: A) R0 = 2.5, D = 4.5 years, ψ = 0.75,
ϕ = 2.3. The infection time series generated has a mean IEP of 1.0 year, a mean DE of 14 weeks and a mean AR of 18%, with its overall goodness of fit:
KL3 = 1.7 (KL_DE = 1.1, KL_IEP = 0.2, KL_AR = 0.4). B) R0 = 2.0, D = 5.0 years,ψ = 0.70, ϕ = 2.5. The infection time series generated has a mean IEP of 1.1
years, a mean DE of 19 weeks and a mean AR of 13%, with its KL3 = 4.7 (KL_DE = 3.1, KL_IEP = 0.7, KL_AR = 0.2); C) R0 = 2.0, D = 5.0 years, ψ = 0.50,
ϕ = 2.5. The infection time series generated has a mean IEP of 1.0 year, a mean DE of 27 weeks and a mean AR of 13%, with its KL3 = 16.7 (KL_DE = 14.7,
KL_IEP = 0.7, KL_AR = 1.2).

doi:10.1371/journal.pone.0142170.g003
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In order to identify the best fitting regions of model parameters, the 5-dimensional parameter
space of: infectious period (dI), basic reproduction number (R0), infectivity enhancement (ϕ),
cross-immunity (ψ) and immunity period (D) was divided to explore. Fig 4A shows the minima
of KL3 and Fig 4B, 4C and 4D show their corresponding best fitting values of the five parameters.
A linear relationship emerges between the best fitting values of R0 and those of dI (Fig 4A), which
indicates a constant transmission rate β because of the formula R0 = βdI. The results show that
when R0 is within the accepted range 1.5–3.0 [66], the infectious period is more likely to be
shorter than 4 days. It is also found that there is a positive association between the best fitting val-
ues of R0 and those of the immunity period (D) (Fig 4B). A higher transmissibility (R0) is com-
pensated for by a longer immunity period which reduces the susceptible proportion of the
population, leading to a constant mean attack rate. Fig 4B also shows that the immunity period
(D) decreases with the infectious period, which is a consequence of both the constancy of the

Fig 4. Theminima of the combined KL information distance (KL3) as a function of the infectious period (dI) and the basic reproductive number
(R0). For each pair of dI and R0, the best fit parameters were searched over the following space, ϕ: [1,7] gridded evenly into 71 points, ψ: [0,1] gridded evenly
into 21 points and D: [1,10] years gridded evenly into 21 points. It is assumed that the co-transmission rate βd = β/4 and the external force of infection (ε) is
fixed at 4.1×10−9 per person per day. A) shows that there is a positive correlation between dI and R0: when R0 is about 1.5, dI is <2.1 day; whilst when R0 =
2.5 dI should be <3.5 days. B) shows that the immunity period decreases with dI but increases with R0; C) shows that for a given R0, infectivity enhancement
(ϕ) required to generate the observed patterns of seasonal influenza decreases with dI; D) shows that cross-immunity increases with dI but decreases with
R0.

doi:10.1371/journal.pone.0142170.g004
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transmission rate (Fig 4A) and the positive association between D and R0. Infectivity enhance-
ment is negatively associated with the infectious period but cross-immunity is positively associ-
ated with the infectious period; however, they both appear to be relatively not associated with R0
(Fig 4C and 4D). It is worth noting that within the best fitting region (i.e. that of KL3<9.0 in Fig
4A), infectivity enhancement ϕ ranges from 2 to 7 (Fig 4C), the cross-immunity stays within a
narrow range: 0.60–0.80 (Fig 4D) with its average duration (D) ranging from 3 to 9 years (Fig
4B). Within these regions, model outputs have a mean DE of 8–18 weeks, a mean IEP of 0.9–1.2
years, and a mean AR of 5–30%, which are fairly close to the empirical patterns of seasonal influ-
enza. Furthermore, the dominant strain among the three strains alternate between epidemics
within the best fitting model parameters (data not shown). Within the bottom right corner of Fig
4A where strains are of low R0 but long dI, the fit of the model is poor: cross-immunity is very
strong and the dominant strain does not change between epidemics (cf. S1 Fig). Fixing at other
alternative values of both co-transmission rate (βd) and external force of infection (ε), similar
explorations in the 5-dimension parameter space suggest the above observations still hold over a
wide region of model parameters βd and ε (see S2 File).

Fig 5A illustrates the model fit (KL3) as a function of the basic reproductive number (R0)
and the immunity period (D). The best fitting values suggest that a low transmissibility is

Fig 5. Model fit as a function of the basic reproductive number (R0) and the immunity period (D). It is assumed that the cross-immunity (ψ) is fixed at
0.75 and the co-transmission rate (βd) is equal to β/4. Other parameters have the baseline values in Table 2.

doi:10.1371/journal.pone.0142170.g005
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compensated by a low immunity period (D: 2–4 years), while a high transmissibility is associ-
ated with a wide range of immunity period (3.0<D<10.0 years), as also shown in Fig 4. Both
DE and IEP decrease with R0, but increase with D (Fig 5B and 5C). AR is relatively insensitive
to R0 but decreases with D (Fig 5D). Fig 5A shows that the model behaves well (with the tenta-
tive criterion of KL3<9.0) in a broad triangular parameter area: 1.8< R0 <4.0 and 2< D< 9
years. Within these parameter areas, DE ranges from 7–15 weeks, IEP from 0.8–1.3 years, and
AR from 10–30%. And the dominant strain alternates between the three strains. That is, model
epidemics on these parameter regions resemble the observed patterns.

Fig 6 explores how the external force of infection (EFOI) and co-transmission rate (βd)
affect the model outputs. When βd is weak and EFOI is strong, only endemics with constant
incidence are possible (see the small right triangle on the bottom right corner of Fig 6). This
indicates that a strong constant EFOI will prevent variations in incidence. It is interesting to
note how the effect of βd depends on the value of EFOI. When EFOI is larger than 6.3×10−9 per
day, the three strains remain synchronous and there is no trough extinction. This is because, at
these high levels of EFOI, there are more than three cases imported per week. When EFOI is
smaller than 6.3×10−9, the infection cannot become extinct when βd is low; however, as βd
exceeds ½β, the infection becomes increasingly likely to suffer extinction (Fig 6E; [16]). On this
small range of EFOI, epidemic patterns remain roughly unchanged because the level of EFOI is
negligible compared with the average force of infection generated by the indigenous popula-
tion. Based on the value of KL3 and the probability of extinction (<10%) (Fig 6A and 6E), the
best fitting values of βd are 0.2β–0.5β (i.e., R0

d from 0.4 to 1.0) with EFOI (ε)<6.3×10−9 per
day under the situation of Fig 6. Within this region of model parameter values, model outputs
have a mean DE of 10–16 weeks, a mean IEP of 1.0–1.3 years, and a mean AR of 10–25%.
These are close to the empirical patterns of seasonal flu. Note that the range of EFOI estimated
in this study includes the maximum likelihood estimate obtained by Truscott et al. [14]:
5.5×10−9 per day.

Fig 7 illustrates the effect of strain interactions within concurrent infection on the model
outputs. When both ϕ and βd are weak (i.e., the bottom left corner), cyclical epidemics cannot
occur. As ϕ and βd increase to exceed certain threshold values, cyclical or chaotic epidemics
will occur (cf., S1 Fig, and Fig 4 of [16]). When they become very large (i.e., the right top cor-
ner), IEP increases to three years or longer (Fig 7C) while the DE shortens to 6–9 weeks (Fig
7B) and AR exceeds 80% (Fig 7D). Under these circumstances, the infection incidence
increases to very high levels within a reduced DE while they fall to very low levels during a long
inter-epidemic period so that they can easily become extinct (cf. S3H Fig). Between these two
extreme regions in the ϕ–βd plane, model outputs resemble reasonably well the empirical pat-
terns of seasonal flu. Within a narrow diagonal band of KL3<9.0, model outputs are a good
resemblance to the observed patterns with a mean DE of 15–18 weeks, a mean IEP of 1.0–1.5
years and a mean AR of 10–20%. Within this band, there is a negative association between ϕ
and βd, implying a compromise between the two aspects of strain interaction within concurrent
infection. Further the dominant strain alternates among the three strains between epidemics
when both ϕ and βd take values from the band (data not shown).

Finally, we explore the situation that includes seasonal forcing in the transmission rate as
described in Eq (4). The results are shown in Fig 8. The effect of δ on KL3 depends on the val-
ues of R0. When R0 is large, KL3 will increase monotonically with the relative amplitude δ.
However, when R0 is small, KL3 is not clearly associated with the relative amplitude δ. As the
KL3 values are larger when δ>0.3 than that when δ<0.3, Fig 8A only displays the situation
for δ< 0.3. With the inclusion of sufficient seasonal forcing in the transmission rate, the fre-
quency of epidemics is determined by its yearly variation (Fig 8D; cf. [14]). According to our
tentative criterion of KL3<9.0, the model outputs from a wide region of model parameters
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Fig 6. Model fit as a function of the external force of infection (ε) and the co-transmission rate (βd).Other parameters have the baseline values in
Table 2. Note that within the small whited triangle of the bottom right corner when the co-transmission rate is weak (βd <0.4β) but the EFOI is strong (ε >10−7

per person per day), only endemics with constant incidence where the number of new infections is balanced by the number of recoveries are possible.

doi:10.1371/journal.pone.0142170.g006
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(e.g., R0 >1.7 and low values of δ) resemble the typical patterns of seasonal flu. Two regions
have KL3<3.0: one is the region of δ ~0.0 and R0 >2.2, with ϕ ranging from 2.0 to 4.0; the
other is the region of δ = 7–15% and R0 = 2.0–2.7 with ϕ around 1.0 (Fig 8A and 8B). They cor-
respond to two different mechanisms for epidemic cycling that we call for convenience the
intrinsic and extrinsic mechanism regions. All these results are obtained under the assumption
of the co-transmission rate βd = 0.25β. For the situation of no co-transmission (i.e., βd = 0), we
obtained similar distributions of KL3 and the other characteristic features, except for the
required values of ϕ increasing to 3.0–5.0 within the intrinsic mechanism region (see S2 File).
This increase in ϕ is in agreement with the results illustrated in Fig 7A (c.f. Fig 4A of [16]).
Within these two regions, the model can well generate the observed infection time series (Fig
8C–8E); and the dominant strain alternates among the three strains between epidemics (Fig
8E). This suggests that though seasonal forcing can facilitate the generation of empirical pat-
terns of seasonal flu, co-transmission and infectivity enhancement surely provide another
mechanism that can generate the empirical patterns of seasonal influenza.

Fig 7. Model fit as a function of the infectivity enhancement (ϕ) and the co-transmission rate (βd) to demonstrate the effect of strain interaction
within concurrent infection.Other parameters have the baseline values in Table 2. A) the combined KL information distance (KL3); B) duration of epidemic;
C) inter-epidemic period; D) attack rate. Within the whited triangular region of the bottom left corner, only endemics with constant incidence where the number
of new infections is balanced by the number of recoveries are possible.

doi:10.1371/journal.pone.0142170.g007
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Fig 8. A) Model fit as a function of the basic reproductive number (R0) and the relative amplitude of seasonal forcing (δ) to illustrate the impact of
seasonal forcing in the transmission rate. The co-transmission rate is assumed as βd = β/4 and other parameters have the baseline values in
Table 2. The best value for ϕwas searched on the interval [0,6] for each pair of (R0, δ). B) shows the values of ϕ for which the minima of the
combined KL information distance (KL3) (i.e., the best–fitting) are found. C)-F) show the corresponding characteristic features of the epidemics
for the minima of KL3. The two best fitting regions with KL3<3.0 emerge and correspond to two different mechanisms for epidemic cycling:
intrinsic and extrinsic. To make their characteristics to be easily identified, only the relevant values are shown in panels 8B, 8C, 8D, 8E and 8F.

doi:10.1371/journal.pone.0142170.g008
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Discussion
The most obvious explanation for seasonal patterns of influenza is the variation in transmis-
sion rate caused by yearly environmental changes. In this study, we show an alternative mecha-
nism for it. Our investigations show that the combination of both cross-immunity during
sequential infection and infectivity enhancement within concurrent infection can generate the
empirical patterns of both the periodic incidence and the alternation of the dominant strain in
seasonal influenza. Within the accepted ranges of other transmission parameters, our model
outputs closely resemble the empirical patterns of epidemic cycling when cross-immunity
ranges from 0.5 to 0.8 and both co-transmission rate and infectivity enhancement are at inter-
mediate levels.

Seasonal influenza viruses circulate worldwide and cause annual epidemics. To prevent and
control flu, it is important to understand the underlying mechanisms of the annual patterns.
Over the years much effort has been made to analyse and model seasonal influenza (e.g., [12,
14, 15, 18, 24, 25, 64, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]). Overall, these studies propose an
extrinsic mechanism caused by environmental factors [10, 11, 73]. This appears obvious
because transmission of influenza viruses depends on a number of environmental conditions
especially climatic conditions and human gathering behaviours [70, 71, 72, 73, 74, 75, 76, 77].
Seasonal influenza is caused by different influenza viruses such as A/H1N1 and A/H3N2 and
subtype B, and the dominant strain also cycles between epidemics [5, 6, 19]. However, a pure
extrinsic mechanism cannot explain this [14, 64].

Concurrent infection [32, 33, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60]
and sequential infection among co-circulating influenza viruses occur. Although the cross-
immunity during sequential infection is well known, proof for the existence of interactions
between strains within concurrent infection is lacking. To our knowledge, there are some
observations and theoretical reasoning for their existence [40, 60, 61] and some indirect mea-
surements of their possible values [43, 62]. In this study we explore an alternative explanation
for both periodicities in incidence and alternation of the dominant strain based on strain inter-
actions. Non-linear models with enhanced transmissibility are well known for generating com-
plex bifurcation structure and periodic behaviour [16, 78]. In this study we concentrate on the
cyclical behaviours by skipping the complex bifurcation details. We simply estimate the pattern
of the time series by averaging over a long period (1000 epidemics after a burn-in period of
20000 years). We noticed that when both co-transmission rate (βd) and infectivity enhance-
ment within concurrent infection (ϕ) are low, only endemics with constant incidence will be
generated (Fig 7). In the absence of co-transmission, generating the empirical patterns of sea-
sonal flu requires a moderate value of infectivity enhancement ϕ (about 3 in the situation illus-
trated in Fig 7). With the presence of co-transmission, the requirement for ϕ is reduced
further. That is, infectivity enhancement within concurrent infection could be compensated by
co-transmission to produce the empirical patterns (also see Fig 4A of [16]).

The crucial question arising from our modelling study is: what are the magnitudes of the
co-transmission rate (βd) and the infectivity enhancement (ϕ) required to produce the observed
patterns of seasonal influenza? Following Truscott et al. [14], the typical seasonal influenza epi-
demic was assumed to have an outbreak duration of 11 weeks and an annual attack rate of 15%
and an epidemic period of one year. The Kullback-Leibler information distance between pre-
dicted and empirical epidemics was used to find model parameters that generated the typical
patterns observed. The best fitting values for ϕmay appear a bit high as shown here in the SIRS
epidemic model of three strains. In the situation of βd = 0, for example, the required value for ϕ
could be greater than 3.0. However, Zhang and Cao [16] show that the requirement reduces
when the number of co-circulating strains increases. This implies that under the circumstance
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of a large number of co-circulating strains the empirical patterns of seasonal flu can be recre-
ated even if infectivity enhancement is not strong (i.e., ϕ ~1) (see Fig 4A of [16]). If defining
different strains by different genotypes (cf. [18, 69]), there are a large number of strains. Even if
we define strains by their serological characteristics, the number of different influenza virus
strains should be much larger than three [70].

To test which mechanism is more likely, extrinsic or intrinsic, a seasonal variation in the
transmission rate was introduced into the model (see Eq (4)). Model fitting exercises show two
best fitting regions (see Fig 8, also S2 File), which suggests two possible mechanisms for epi-
demic cycling. The intrinsic mechanism region is the long band having the relative amplitude δ
�0 but requiring infectivity enhancement; the extrinsic mechanism region is the round island
which includes seasonal forcing but requires no infectivity enhancement. As far as the com-
bined Kullback-Leibler information distance is concerned, it is not possible to distinguish
which mechanism is better or more parsimonious.

It is interesting to compare our model with other extrinsic models for epidemic cycles in
both incidence and strain. Truscott et al. [14] found that in an age-structured population and
when there are two strains that are affected by seasonal forcing, a weak cross-immunity (0.3–
0.5) is necessary to recreate observed patterns in flu time-series data. Koelle et al. [4] examined
a two strain cholera model using an estimate of the time varying reproductive rate and found
that the observed serotype cycles in cholera epidemics can be explained when the cross-immu-
nity exceeds 95%. White et al. [3] also examined a two strain SIRS model for transmission
dynamics of groups A and B human respiratory syncytial virus in England &Wales and Fin-
land. They found that the change in the dominant group can be explained by a 65% reduction
in the susceptibility to (and the infectiousness of) secondary homologous infections and a 16%
reduction in the susceptibility to (and the infectiousness of) secondary heterologous infections.
These models consider seasonal forcing and cross-immunity, but don’t include the strain inter-
actions within concurrent infection. These models require a relatively high level of relative
amplitude in seasonal forcing to explain the empirical patterns in seasonal flu (about 15–30%),
in cholera (about 30%) and in respiratory syncytial virus infection in humans (about 35% for
Finland and about 82% for England &Wales). Nevertheless, the basic understanding of those
studies is that recurrent epidemics are induced by seasonal forcing while alternation in the
dominant strain between epidemics is due to the negative association created by cross-immu-
nity. Our model, which includes strain interactions within concurrent infection but ignores
seasonal forcing, can also explain the empirical patterns seen in seasonal flu when cross-immu-
nity is 50–80%. When relaxing the assumption of a constant transmission rate, the relative
amplitude in seasonal forcing required in our model (Fig 8) is 7–14%, which is lower than that
required in [14].

Recker et al. [7] considered a four strain SIR model by decomposing the antibody dependent
enhancement during sequential infection into two aspects: increased susceptibility to second-
ary infections and increased transmissibility from individuals suffering secondary infections.
They showed that both the observed temporal patterns and the replacement in the dominant
serotype of dengue can be reproduced without the need for extrinsic factors such as seasonal
forcing or stochasticity. Hence it was suggested that it is the enhancement in both susceptibility
and transmission during the sequential infection that induces irregular patterns of dengue.
Nevertheless, this mechanism does not rule out cross-immunity which could be a contributing
factor for the asynchronicity of strains [79]. As in [3, 4, 14], Recker et al. [7] did not include in
their model the existence of concurrent infection and any strain interactions within it. How-
ever, both Recker et al. [7] and our study demonstrate that in the absence of seasonal forcing,
at least two different types of strain interaction are required to generate epidemic cycling. Anti-
genically diverse pathogens are common and they are a big challenge for modern medicine.
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Co-circulations of different strains of other multi-strain pathogens have been observed (e.g., [1,
2, 3, 4, 7, 8, 17]); concurrent infection and hence strain interactions within it are also possible
(e.g. [80]). The current lack of evidence for them may be due to our lack of intention or tool to
search for them. This study shows that the key mechanism for the existence of epidemic cycling
may lie in interactions between strains within concurrent infection and during sequential infec-
tion. Therefore, the intrinsic mechanism we show here for seasonal flu may also apply to other
infectious diseases caused by antigenically diverse pathogens.

For simplicity, we have ignored the heterogeneity among age groups. However, Truscott
et al. [14] identified age-structure as a necessary factor for recreating the patterns seen in time
series of seasonal flu. Both Fig 5 of this study and Fig 3 of [14] explore the model behaviour as
a function of transmissibility and duration of immunity. But the best fits are quite different: in
[14] the best fit region is located in a narrow diagonal band while in this study it is located in a
broad triangle. The former shows a highly restrictive relationship between transmissibility and
duration of immunity while the latter suggests a weak relationship. These discrepancies may
result from different assumptions made about age-structure and seasonal forcing in these mod-
els. Age-structure allows for examinations of the impact of non-randommixing patterns and
heterogeneity in the infectivity and the susceptibility of different age groups. Inclusion of such
heterogeneity will surely improve our model. Further we assume the same epidemiological
characteristics for each of the three strains in our model (i.e. that the three strains are pheno-
typically indistinguishable). This is surely a simplification of the truth as the epidemiological
characters of influenza A and B are different. A deterministic model was used to describe influ-
enza epidemics over a long term in spite of there being evidence for strong stochastic behaviour
during the inter-epidemic periods. To reflect the antigenic drift within each strain (lineage),
infection-induced immunity is assumed to wane, as a result of immune escapement and loss,
and each strain was regarded as a constant biological identity. In this study, the same waning
rate of immunity (equivalent to the rate of antigenic drift) is assumed for each strain. A recent
comprehensive study [69] of strains co-circulating in the human population shows that the
rates of antigenic drift are different among them with A/H3N2 the fastest and B strain the
slowest. Heterogeneity in the intrinsic factors of strains and the stochastic nature of the trans-
mission process will also make the model more realistic [7, 70]. All of these will be considered
in future work.
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