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Summary

Because people age differently, age is not a sufficient marker of

susceptibility to disabilities, morbidities, and mortality. We

measured nineteen blood biomarkers that include constituents

of standard hematological measures, lipid biomarkers, and

markers of inflammation and frailty in 4704 participants of the

Long Life Family Study (LLFS), age range 30–110 years, and used

an agglomerative algorithm to group LLFS participants into

clusters thus yielding 26 different biomarker signatures. To test

whether these signatures were associated with differences in

biological aging, we correlated them with longitudinal changes

in physiological functions and incident risk of cancer, cardiovas-

cular disease, type 2 diabetes, and mortality using longitudinal

data collected in the LLFS. Signature 2 was associated with

significantly lower mortality, morbidity, and better physical

function relative to the most common biomarker signature in

LLFS, while nine other signatures were associated with less

successful aging, characterized by higher risks for frailty, mor-

bidity, and mortality. The predictive values of seven signatures

were replicated in an independent data set from the Framingham

Heart Study with comparable significant effects, and an addi-

tional three signatures showed consistent effects. This analysis

shows that various biomarker signatures exist, and their signif-

icant associations with physical function, morbidity, and mortal-

ity suggest that these patterns represent differences in biological

aging. The signatures show that dysregulation of a single

biomarker can change with patterns of other biomarkers, and

age-related changes of individual biomarkers alone do not

necessarily indicate disease or functional decline.
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morbidity and mortality.

Introduction

The steady increase in human average life expectancy in the 20th

century is considered one of the greatest accomplishments of public

health. Improved life expectancy has also led to a steady growth in

the population of older people, age-related illnesses and disabilities,

and consequently the need for prevention strategies and interventions

that promote healthy aging. A challenge in assessing the effect of

such interventions is ‘what to measure’. Chronological age is not a

sufficient marker of an individual’s functional status and susceptibility

to aging-related diseases and disabilities. As has been said many times

by Gerontologists and Geriatricians, people can age very differently

from one another. Individual biomarkers show promise in capturing

specificity of biological aging (Karasik et al., 2005), and the scientific

literature is rich in examples of biomarkers that correlate with physical

function, anabolic response, and immune aging (Gruenewald et al.,

2006; Walston et al., 2006; Stenholm et al., 2010; Banerjee et al.,

2011; Franceschi & Campisi, 2014; B€urkle et al., 2015; Cohen

et al., 2015; Catera et al., 2016; Peterson et al., 2016). However,

single biomarker correlations with complex phenotypes that have

numerous and complex underlying mechanisms is limited by poor

specificity.

Moving from a simple approach based on one biomarker at a time to

a systems analysis approach that simultaneously integrates multiple

biological markers provides an opportunity to identify comprehensive

biomarker signatures of aging (Zierer et al., 2015). Analogous to this

approach, molecular signatures of gene expression have been correlated

with age and survival (Kerber et al., 2009; Passtoors et al., 2013), and a

regression model based on gene expression predicts chronological age

with substantial accuracy, although differences between predicted and

attained age could be attributed to some aging-related diseases (Peters

et al., 2015). The well-known DNA methylation clock developed by

Horvath has been argued to predict chronological age (Horvath, 2013).

Alternative approaches that aggregate the individual effects of multiple

biological and physiological markers into an ‘aging score’ have also been

proposed (MacDonald et al., 2004; Levine, 2013; Sanders et al., 2014;

Belsky et al., 2015; Peterson et al., 2016). These various aging scores do

not attempt to capture the heterogeneity of aging. In addition, many of

these aging scores use combinations of molecular and phenotypic

markers and do not distinguish between the effects and the causes of

aging (Newman, 2015).

Here we propose a system-type analysis of 19 circulating biomarkers

to discover different biological signatures of aging. The biomarkers were

selected based upon their noted quantitative change with age and

specificity for inflammatory, hematological, metabolic, hormonal, or

kidney functions. The intuition of the approach is that in a sample

of individuals of different ages, there will be an ‘average distribution’ of

these circulating biomarkers that represents a prototypical signature of

average aging. Additional signatures of biomarkers that may correlate to

varying aging patterns, for example, disease-free aging, or aging with

increased risk for diabetes or cardiovascular disease (CVD), will be

characterized by a departure of subsets of the circulating biomarkers

from the average distribution. We implemented this approach using data

from the Long Life Family Study (LLFS), a longitudinal family-based study

of healthy aging and longevity that enrolled individuals with ages

ranging between 30 and 110 years (Newman et al., 2011; Sebastiani
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et al., 2013). We also validated the predictive values of the signatures

discovered in LLFS using data from the Framingham Heart Study (FHS).

Figure S1 (Supporting information) summarizes the overall discovery and

replication analysis.

Results

The LLFS is a family-based study that enrolled 4935 participants including

probands and siblings (30%), their offspring (50%), and spouses (20%),

with ages between 30 and 110 years (Newman et al., 2011). Approx-

imately 40% of enrolled participants were born before 1935 and had a

median age at enrollment of 90 years and 45% participants were male

(Fig. S2). Almost 55% of participants from the proband generation (birth

year < 1935) have died since enrollment, with a median age at death of

96 years. Mortality in the generation born after 1935 is lower (3%) and

among these few that have died, median age at death is currently

69 years. Table S1 (Supporting information) describes participants’

characteristics.

Generation of biomarker signatures in LLFS

Approximately 40 serum biomarkers were measured at enrollment in

4704 LLFS participants, and the quality and distribution of these

biomarkers has been characterized elsewhere (Sebastiani et al.,

2016b). After removal of biomarkers that did not change with age,

age and sex standardized values of 19 uncorrelated biomarkers (Table 1)

were analyzed with an agglomerative cluster analysis that identified 26

significant clusters of LLFS participants (P < 0.004, Fig. S3). Seventeen of

these clusters had at least 10 individuals, and only eight clusters had

more than 40 individuals. Means and standard deviations of the 19

biomarkers in each cluster defined the 26 biomarker signatures that are

depicted in Table S2 (Supporting information). The dependency of

clusters on all 19 biomarkers was tested by ‘leave one-biomarker-out’

replication (Supporting information and Table S3).

Figure 1 shows the distribution of the 19 biomarkers in the six largest

clusters, and the complete description of the 26 clusters is in Figs S5–

S17. In each plot in Fig. 1, the horizontal line at 0 represents the value of

standardized biomarkers expected for an individual age and sex group.

We designate the biomarker signature associated with cluster 1 as the

‘referent signature’ which is characterized by age and sex standardized

biomarkers symmetrically distributed around 0. On average, all biomark-

ers of the individuals allocated to this cluster would match the values

expected for their age and sex group. Note, however, that unstandard-

ized values change with age and sex, as shown in Fig. 2 for IL-6 and CRP,

and Fig. S18a–p for all 19 biomarkers. Cluster 1 included 37% of

participants born < 1935 (n = 837), with median age 90 years, and

54% females. Cluster 2 included 1128 LLFS participants who were

slightly older than participants in cluster 1 (41% born < 1935; median

age at enrollment 91 years, and 59% born ≥ 1935, median age at

enrollment 61 years) and with a higher rate of females (55%). The

signature associated with the second cluster was characterized by lower

than average creatinine and cystatin values, lower than average

biomarkers of inflammation, and elevated albumin suggesting that

individuals in this cluster had lower than average inflammation and

better than average kidney function for all ages. Cluster 3 included 387

individuals with noticeably low IGF1, and DHEA, and elevated sex

hormone-binding globulin (SHBG) and markers of inflammation, with an

overall signature of poor physical function. Clusters 5 and 6 had similar

patterns of biomarkers with the exception of NT-proBNP, HbA1C,

adiponectin, and SHBG. Other clusters were characterized by more

substantial variations of biomarkers but smaller sample sizes. Table S4

(Supporting information) summarizes participants’ demographics by all

cluster.

Annotation of biomarker signatures in LLFS by their

predictive values

To test whether the biomarker signatures for clusters with 10 or more

individuals correspond to different patterns of biological aging, we

correlated them with longitudinal changes in physiological functions and

incident risk of cancer, CVD, type 2 diabetes, and mortality. Figure 3 and

Table S5 (Supporting information) summarize the results of the analysis

that compared participants in cluster 1 (n = 2262) with the other clusters

in terms of aging phenotypes measured at enrollment and at the second

visit (approximately 8 years apart). The analysis showed that the

different signatures are characterized by significant variations in impor-

tant physiological markers of aging that include grip strength (signifi-

cantly worst in cluster 3 compared to cluster 1), gait speed (significantly

slower in clusters 3, 5, and 14 compared to cluster 1), FEV1 (significantly

worse in clusters 3, 5, 7, and 14 compared to cluster 1), cognitive

functions (significantly worse in cluster 5 compared to cluster 1), and

pulse pressure (significantly higher in clusters 5, 6, and 11 compared to

cluster 1). Participants in the 2nd cluster were characterized by a faster

gait speed, higher FEV1, better cognitive scores, and lower pulse rate

compared to the referent cluster. The difference in FEV1 was statistically

significant (Bonferroni corrected significance 0.004), while the signifi-

cance level for the other markers did not pass correction for multiple

comparisons. No substantially significant interactions between age and

clusters were found suggesting that physiological advantages or

disadvantages remained constant over the past 8 years. However, this

result may change as more data are collected and power to detect

significant interactions increases.

Table 2 shows the results of the prospective analysis of morbidity and

mortality in about 8 years of longitudinal follow-up based on a Cox

Table 1 Biomarkers used for generation of signatures, and change with older age

High-sensitivity C-reactive protein (hsCRP) ↑
Interleukin 6 (IL-6) ↑
N-terminal B-type natriuretic

peptide (NT-proBNP) ↑
Absolute monocyte count (Abs.M) ↑
White blood cell counts (WBC) ↑

Inflammation biomarkers

Red blood cell distribution width (RDW) ↑
Transferrin receptor (Transf.R) ↑
Mean corpuscular volume (MCV) ↑
Hemoglobin (Hgb) ↑

Hematological biomarkers

Glycated hemoglobin (HbA1c) ↑
Soluble receptor for advanced

glycation end product (sRAGE) ↑
Adiponectin (Adip) ↑
Insulin-like growth factor (IGF1) ↓

Diabetes associated biomarkers

Total cholesterol (T.Chol) ↑ ↓ Lipid biomarker

Sex hormone-binding globulin (SHBG) ↑
Dehydroepiandrosterone sulfate (DHEA) ↓

Endocrine biomarkers

Albumin (Album) ↓
Creatinine ↑
Cystatin C ↑

Renal biomarkers

List of the 19 biomarkers used to define signatures. The biomarkers are grouped by

functions. Biomarkers with generally increasing values with older age are labeled

with an arrow pointing up, while biomarkers that generally decrease with older

age are labeled with an arrow pointing down.
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proportional hazard model stratified by sex and adjusted for age at

enrollment. Several signatures showed significantly different hazards for

mortality and morbidity compared to the referent group. Consistent with

the favorable signature of lower inflammation and better kidney

function, subjects in cluster 2 were characterized by significantly lower

risk for type 2 diabetes and overall mortality compared to participants in

cluster 1, while all other clusters were characterized by significantly

higher risk for mortality, or aging-related diseases including cancer, CVD,

and type 2 diabetes. Participants in cluster 2 had a significantly lower

BMI compared to participants in cluster 1 (average BMI difference

�1.54, 95% CI: �1.82; �1.257), while participants in cluster 6 had a

significantly higher BMI compared to cluster 1 (average BMI difference

2.87, 95% CI: 2.32; 3.47). Some of the smaller clusters had a limited

number of events, so the results are less reliable. Note that 200 of 330

CVD events were a ‘first time event’, and 289 of these events were not

preceded by type 2 diabetes.

Calibration of biomarker data in Framingham Heart Study

Our goals with the FHS data were (i) to verify whether the age-sex

distributions of biomarkers in the LLFS were similar to those observed in

the LLFS, (ii) to use the biomarker data available in the FHS to predict

Fig. 1 Six signatures of 19 biomarkers. Side-by-side boxplots display the distributions of the 19 standardized biomarkers in LLFS participants allocated to each cluster.

Biomarkers are grouped and colored by function (salmon: inflammation; green: anemia; blue: diabetes; red: lipid; cyan: endocrine; magenta: renal). In each plot, the

horizontal line at 0 represents the expected values of the standardized biomarkers, and hence, the value of biomarkers expected for specific age and sex groups. Note that

the unstandardized values change with age. For example, the expected value of albumin and hemoglobin for a male aged between 60 and 65 years would be 4.2 g dL�1

and 15 mg L�1, respectively, while the expected value of albumin and hemoglobin for a male aged between 80 and 85 years would be 3.9 g dL�1 and 14.5 mg L�1,

respectively (Fig. S2). LLFS, Long Life Family Study.
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their biomarker signatures, and (iii) to use these predicted signatures to

validate their association with morbidity and mortality in FHS. Limited

subsets of biomarkers were available in the three FHS cohorts, and the

most complete subset was from the offspring generation with 12

biomarkers measured at exam 7 and WBC measured at exam 2 that we

used as a proxy of the measurement at exam 7 (Table S6). Analysis of

one biomarker at a time showed that some markers of inflammation

[high-sensitivity C-reactive protein (hsCRP), NT-proBNP, IL-6, WBC],

diabetes (IGF1, HBA1C, SRAGE), endocrine functions (SHBGE), and

kidney function in men (Albumin) had significantly different distributions

in age groups after adjusting for laboratory-specific effects (Table S7 and

Fig. S19). To remove laboratory-specific effects, calibration of the

biomarkers in the FHS was performed for the FHS original and offspring

generations as described in the Appendix S1, and histograms of the

externally standardized biomarker data in FHS in Fig. S20 show that all

biomarkers had been calibrated successfully.

Validation of predictive values of biomarker signatures in FHS

The next step was to develop a classification model and use it to assign

one of the 26 biomarker signatures discovered in LLFS to each FHS

participant, based on their biomarker profile. To this end, we trained a

Bayesian classifier in LLFS data to predict the biomarker signatures of FHS

participants, and we evaluated sensitivity and positive predictive values

(PPV) when incomplete biomarker data are used for the prediction.

Tables S8 and S9 (Supporting information) show the sensitivity and %

PPV of the classifier in the LLFS data. Notwithstanding the challenge of a

26-label classification, the sensitivity ranging between 36% and 100%

was substantially higher than a random classification of 26 labels which

yields a sensitivity of 3% (Table S8). The %PPV rate was also above 50%

for 14 of the 26 clusters, and above 30% for 22 of 26 clusters (Table S9).

The PPVs of clusters 9 and 17 were lower, suggesting that results

associated with these clusters may not be reliable. Both sensitivity and %

PPV were also tested using the subsets of the biomarkers available in the

original and offspring generations of the FHS (Tables S10 and S11). With

just the eight biomarkers available in the FHS original generation, the

%PPV decreased substantially, while maintaining acceptable values

(%PPV > 25%) with the 13 biomarkers used in the FHS offspring

generation.

When the classifier trained with LLFS data was applied to FHS

standardized data, it predicted the most likely biomarker signature of

each FHS participant. The distribution of these predicted signatures in

Fig. 2 Age- and sex-specific distribution of IL-6 and hsCRP in LLFS participants, by cluster. Top: Age and sex distribution of IL-6 in LLFS participants in cluster 1 (blue = males,

red = females), and cluster 2 (cyan = male, magenta = females). Both inflammation markers are lower in cluster 2 than cluster 1 for all age groups. Bottom: Age and sex

distribution of IL-6 in LLFS participants in cluster 1 (blue = males, red = females), and cluster 5 (cyan = male, magenta = females). Both inflammation markers are

substantially more elevated in cluster 5 than cluster 1 for all age groups. hsCRP, high-sensitivity C-reactive protein; LLFS, Long Life Family Study.
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FHS participants from the offspring generation was substantially

different from LLFS, and particularly, the signature associated with

healthier aging (cluster 2) was less common in FHS participants

(Fig. S21). In both FHS generations, the incident risk for mortality,

CVD, and diabetes of participants with signatures 2 through 26 was

compared to the referent group (signature 1). Table 3 reports the

analysis of risk for mortality in the FHS offspring for the nine clusters that

had a significantly different hazard for mortality compared to the

referent cluster in LLFS, while the complete set of results is in Table S12.

Six of the nine clusters replicated the significantly different hazard for

mortality relative to the referent cluster, with the same effects seen in

LLFS. The other three clusters had increased risk for mortality but failed

to reach statistical significance. Noticeably, FHS offspring with signature

2 also had a reduced risk for mortality compared to the referent group,

confirming the favorable effect of a signature combining lower than

average inflammation and better than average kidney functions. The

reduced risk for mortality associated with signature 2 and the increased

risk for mortality of signature 14 were also replicated in FHS participants

of the original cohort (Cluster 2: HR = 0.64, P < E10�4, Cluster 14:

HR = 1.05, P-value 0.007). The increased risk for CVD of signature 5 was

replicated in the offspring generation, and the reduced risk for type 2

diabetes of signature 2 and the increased risk for type 2 diabetes of

signature 6 were replicated in both original and offspring generations

(Table 4 and Table S13 and S14).

Discussion

We used an agnostic data-driven cluster analysis to identify 26 signatures

of 19 blood biomarkers associated with important aging-related

physiological functions summarized in Table 1. To demonstrate that

these signatures are associated with differences in biological aging, we

analyzed their ability to predict changes in physical and cognitive

function, survival, and risk of age-related diseases, including cancer,

cardiovascular events, and type 2 diabetes. We showed that 10 of these

signatures predict different risks of morbidity and mortality in LLFS

participants and we identified one signature that is associated with

healthy aging, as characterized by better physical and cognitive function,

and reduced risk for mortality and morbidity. The risk prediction of 7 of

the 10 signatures was replicated in an independent set of participants

from the FHS with consistent effects. Our analysis shows that various

Fig. 3 Association between biomarker signatures defined by 10 or more participants and physiological markers of aging. Top panel: Manhattan plot of the �log(P-value) to

test significant differences between physiological markers of aging comparing clusters with more than 20 subjects relative to cluster 1 (the referent group). Phenotypes are

grip strength, gait speed, forced expiratory volume in 1 s (FEV1), scores of digital symbol substitution test (DSST) and Mini-Mental State Examination (MMSE), pulse rate, and

systolic blood pressure (sys BP). Horizontal lines represent the significance threshold based on Bonferroni correction. Bars above 0 represent increased effects relative to

cluster 1, while bars below 0 represent decreased effects relative to cluster 1. For example, participants in cluster 2 have better gait speed, FEV1, DSST and MSE, and slower

pulse rate compared to cluster 1, although only the difference of FEV1 remains significant after Bonferroni correction. Participants in cluster 5 have significantly slower gait

speed, significantly lower FEV1 and MMSE, and faster pulse rate compared to cluster 1. Estimates of all 84 comparisons and p-values are in Table S2. Bottom panel: Scatter

plots of individual changes of gait speed and FEV1 between enrollment and the second in-home visit colored by cluster membership (red: cluster 2; green: cluster 3; cyan:

cluster 5). Each segment represents an individual change between age at enrollment and age at visit 2.
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signatures of 19 circulating biomarkers exist, and their significant

associations with function, morbidity, and mortality suggest that these

patterns represent differences in biological aging.

While prediction of the risk for morbidity and mortality was used to

demonstrate that different biomarker signatures are linked to different

trajectories of aging-related function, morbidity, and mortality, the goal

of our analysis was not to discover another risk score of aging-related

diseases. Many scores have already been described and work well in an

epidemiological setting, for example, the physiological index of comor-

bidities (Newman et al., 2008; Newman & Murabito, 2013), the Healthy

Aging Index that was developed with LLFS data (Sanders et al., 2014), or

the well-known Framingham Risk Score (Wilson et al., 1998) and its

modifications (Tsao & Vasan, 2015). Our hypothesis was that patterns of

departures from the ‘average age trajectories’ of many circulating

biomarkers may be linked to differences in biological aging that are

characterized by worsened or improved physical and cognitive functions,

morbidity, and mortality. Validating the hypothesis, our analysis discov-

ered various signatures of circulating biomarkers that were significantly

associated with different risk for disease and death, and varying physical

and cognitive functions. Importantly, this hypothesis contrasts with the

view that the biological profile of older, but healthy individuals should be

indistinguishable from that of younger healthy people (Huemer, 1977), a

tenant that is the basis of ‘anti-aging’ and ‘orthomolecular medicine’.

We have previously shown (Sebastiani et al., 2016a) that the distribu-

tions of the 19 biomarkers change with age in a subset of healthy LLFS

participants, and the current analysis provides additional compelling

evidence that some age-related changes in the distribution of biomark-

ers do not necessarily represent disease. For example, the referent

signature associated with cluster 1 captures these average age-related

changes (see hsCRP and IL-6 in Figs 2 and S18a) and is associated with

lower risk for morbidity and mortality than the majority of the other

signatures. Signature 2 was associated with better physical and cognitive

functions, and lower risks for mortality and type 2 diabetes than the

referent signature. Interestingly, levels of markers of inflammation of

individuals sharing this signature tended to be higher with older age, but

they were lower in all age groups compared to the referent group

(Fig. 2, top panel, and Fig. S18b). These results are consistent with some

of the data shown in (Belsky et al., 2015) that emphasize the need to

study aging in younger in addition to older individuals to identify markers

of healthy and unhealthy aging.

An important characteristic of these biomarker signatures of ‘biolog-

ical aging’ is that they are only based on molecular data and do not

include any expressed aging-related phenotype. Investigators have

proposed mathematical models to compute the biological age of an

individual that use molecular data together with physiological pheno-

types such as forced expiratory volume (FEV1), body mass index (BMI),

Table 2 Prediction of incident morbidity and mortality in LLFS

Trait Cluster Size n events HR Wald’s Test P value

Death 2 1128 231 0.81 6.72 0.009524

Type 2 diabetes 11 0.51 3.91 0.048026

Death 3 387 96 1.24 14.13 0.000171

Peripheral

artery disease

6 1.73 5.03 0.024986

Glaucoma 8 1.53 4.20 0.040338

Death 5 140 49 1.20 22.68 1.91E-06

Type 2 diabetes 6 1.32 6.47 0.010941

Type 2 diabetes 6 178 12 1.32 17.56 2.79E-05

Death 7 178 73 1.10 21.12 4.31E-06

CVD 19 1.10 5.38 0.020357

Cancer 9 31 4 1.16 5.11 0.023814

Death 11 33 7 1.12 8.04 0.004587

COPD 12 91 3 1.15 5.78 0.016201

CVD 13 32 6 1.15 15.45 8.47E-05

Death 17 1.05 5.61 0.017905

Death 14 28 12 1.11 20.01 7.70E-06

Skin cancer 3 1.11 5.41 0.020031

Death 15 11 6 1.15 20.47 6.06E-06

Death 16 14 9 1.08 11.76 0.000606

Skin cancer 17 11 4 1.22 33.35 7.72E-09

Cancer 2 1.13 7.31 0.006866

All hazard ratios (HR) are relative to the referent signature of cluster 1 and were

estimated using Cox proportional hazard and were adjusted by age at enrollment

and stratified by sex. P-values to test whether the HR are different from 1 are based

on Wald’s test. Cardiovascular disease (CVD) was defined as myocardial infarction,

coronary artery bypass graft, atrial fibrillation, congestive heart failure, or valve

replacement.

Table 3 Replication of mortality risk by biomarker signatures in FHS offspring

Cluster (signatures)

FHS: offspring LLFS

CommentSize Events HR P-value %PPV % ?C1 Size Events HR P-value

1 694 158 78

2 576 92 0.68 0.02405 56 38 1128 231 0.81 0.00952 Replicated

3 310 56 1.12 0.22662 42 33 387 96 1.24 0.00017 Consistent

5 171 48 1.23 0.00003 30 40 140 49 1.20 < 1E-05 Replicated

7 195 34 1.02 0.58680 32 57 178 73 1.10 < 1E-05 Consistent

11 172 75 1.05 0.01120 50 21 33 7 1.12 0.00458 Replicated

13 297 35 1.02 0.21334 13 21 32 6 1.05 0.01790 Consistent

14 126 77 1.10 < 5 E-07 64 7 28 12 1.11 0.00001 Replicated

15 100 18 1.04 0.033 13 19 11 6 1.15 0.00001 Replicated

16 93 64 1.13 < 5 E-06 45 6 14 9 1.08 0.00061 Replicated

Replication of the risk for mortality relative to the referent group (cluster 1) in the offspring generation of the FHS. Hazard ratios (HR) were estimated using Cox proportional

hazard regression and adjusted by age at blood collection and stratified by sex. Significance is based on P-values from Wald’s test. %PPV denotes the proportion of positive

predicted values of each signature selected by the Bayesian classifier trained in the LLFS data. The column denoted by ‘%?C1’ denotes the proportion of profiles assigned to

the referent group.
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grip strength, and systolic blood pressure (Levine, 2013; Belsky et al.,

2015). While the inclusion of these expressed phenotypes may improve

prediction of morbidity and mortality because changes of these

expressed phenotypes may be closer in time to onset of morbidity and

mortality, signatures based exclusively on molecular data could capture

earlier departure from the normal healthy aging trajectory and suggest

the need for early interventions before phenotypic symptoms appear.

The graphical display of signatures (Fig. 1) underscores the impor-

tance of a system-type approach to assess the clinical implications of

altered or dysregulated expression of multiple biomarkers. Our analysis

shows that the effect of the dysregulation of a single biomarker changes

with varying patterns of other biomarkers. For example, the morbidity

and mortality risk associated with elevated hsCRP changes with different

patterns of NT-proBNP and HBA1C (signatures 5 and 6 in Fig. 1). The

modeling approach we used, based on clustering, is designed to capture

this type of interdependence that would be difficult to describe using

standard regression modeling. Such complexity also makes sense given

the many different biological mechanisms and their determinants that

underlie aging and its many different trajectories (Lopez-Otin et al.,

2016). Other system-type approaches have been proposed to capture

the complexity of biological aging (Zierer et al., 2015). Li et al. used a

multisystem approach to model 6 predefined physiological systems and

to generate dysregulation scores that correlate with age and predict

morbidity and mortality (Li et al., 2015). Collino et al. (Collino et al.,

2013) discovered metabolic signatures that can discriminate between

different age groups. While these and other analyses showed interesting

features of aging, they did not discover different patterns of aging

affected by multiple systems simultaneously. Our analysis shows that

specific groups of people share specific biomarker signatures that

implicate clinical and biological conditions. In the LLFS data, we found 26

such signatures of biomarkers among a group of individuals who are

generally aging well and are possibly enriched for genetic and

nongenetic factors that promote longevity (Sebastiani et al., 2009,

2013; Newman et al., 2011).

It is possible that the biomarker signatures discovered in the LLFS are

biased toward healthy agers and that we may have missed important

biomarkers that correlate with less successful aging. These signatures

reproduced well in the offspring cohort of the FHS (Fig. S22a–g), but

their distribution in FHS participants was different (Fig. S21) and was

characterized by higher prevalence of signatures associated with higher

risk for mortality and morbidity. In fact, the FHS did not enroll

participants based on longevity or healthy aging and may be considered

as a more generalizable sample of aging individuals compared to the

LLFS. Noticeably, the FHS has been used to study the genetic and

epidemiology of aging-related diseases with results that have been

replicated in numerous other studies. Therefore, the validation of some

of the associations of the biomarker signature with morbidity and

mortality in the FHS is an important strength of this work (Tsao & Vasan,

2015). We expect that similar analyses in other and larger samples of

aging individuals may discover many more signatures that capture

additional types of biological aging.

In addition to elucidating different patterns of aging, the signatures

we discovered have a potential utility in clinical trials, testing treatments,

and nonpharmacological strategies that promote healthy aging or

reduce the risk for aging-related diseases. The predictive values of some

of the biomarker signatures suggest that they could become an efficient

way to assess the effect of interventions but also a more organic means

of simultaneously assessing efficacy and safety of new treatments. Also,

biomarker signatures assessed over time will likely detect target-related

outcomes both preclinically and earlier when efficacy for age-related

diseases needs to be demonstrated. If these analyses replicate in larger

cohorts, biomarker signatures could be used for patient stratification in

the design and analysis of clinical trials and go beyond studies to become

tools for early preclinical diagnoses and more efficacious patient

treatment in clinical settings.

The selection of biomarkers to be measured in LLFS was based on

known or putative roles of the biomarkers in aging and related diseases,

and many of these biomarkers have been shown to change differentially

in normally aging and healthy aging individuals (Newman et al., 2016).

By design, there are no ‘surprising’ biomarkers in our signatures because

we did not conduct molecular-wide analyses to discover novel aging-

related biomarkers. An addition limitation of this analysis is that many

biomarkers of inflammation such as CMV (Wang et al., 2010) that were

shown to be important in the calculation of biological aging in (Levine,

2013), or several markers of inflammaging or immunosenescence

(Franceschi & Campisi, 2014) have not yet been measured in the LLFS.

We expect that many more biomarkers exist that could lead to even

more powerful results, and as costs for measuring and processing

proteomics data become more approachable and the technology more

reliable, these analyses will be very informative. The approach we have

Table 4 Replication of CVD risk by biomarker signatures in FHS offspring

Cluster

FHS: offspring LLFS

CommentSize No. events HR P-value Size No. events HR P-value

Cardiovascular disease

1 694 158 2262 151

5 171 48 1.23 2.90E-05 140 14 1.13 0.07283 Replicated

7 195 34 1.02 0.58680 178 19 1.10 0.02036 Consistent

13 297 35 1.02 0.21348 32 6 1.15 8.47E-05 Consistent

Diabetes

1 694 53 2262 40

2 576 31 0.52 0.0080 1128 11 0.51 0.04802 Replicated

5 171 18 1.07 0.3726 140 6 1.32 0.01094 Consistent

6 289 78 1.34 3.3E-13 178 12 1.32 2.8E-05 Replicated

Hazard ratios (HR) relative to the referent signature of cluster 1 were estimated using Cox proportional hazard regression, adjusted by age at examination in 7 FHS, and

stratified by sex. Significance is based on P-values from Wald’s test. Cardiovascular disease (CVD) in FHS was defined as myocardial infarction, coronary insufficiency, and

congestive heart failure.
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used is applicable to high-throughput data, although large sample sizes

will be needed for reliable results.

Rarely do studies of biomarkers use independent data to replicate the

findings. In this study, we validated the predictive value of the biomarker

signatures in an independent set. Although the validation is suggestive,

the lack of complete biomarker data in the FHS (FHS had 13 of the 19

biomarkers) was a limitation, and we had to resort to a proxy

measurement of WBC obtained at younger age to avoid loss of

specificity. In addition, we are unable to verify whether the signatures

predicted by the Bayesian classification rules in the FHS data are valid.

The graphical displays of the clusters associated with different inferred

signatures suggest the results are correct (Fig. S22a–g), but a definite

answer will be provided by a replication with more complete biomarker

data.

Our analyses did not attempt to explain why subsets of individuals age

more healthily than others, and we hypothesize that both genetic and

nongenetic factors contribute to different aging patterns captured by

the different biomarker signatures. This work sets the stage for a

molecular-based definition of aging that leverages information from

multiple circulating biomarkers to generate signatures associated with

different mortality and morbidity risk, and additional work is needed to

better characterize these signatures. Application of the proposed

approach to larger studies and a larger number of biomarkers will

extend the current set of biomarker signatures and possibly discover new

ones, and we expect that these biomarker signatures will become a

potent investigative, diagnostic, and prognostic tool.

Experimental procedures

A more detailed description of study samples, data and statistical

methods is in Supporting information. Figure S1 (Supporting informa-

tion) summarizes the analysis process.

Study populations and study design

The LLFS is a family-based, longitudinal study of healthy aging and

longevity that enrolled 4935 subjects in 583 families between 2006 and

2009 via three American and one Danish field centers (Sebastiani et al.,

2009, 2013; Newman et al., 2011). Surviving participants are currently

undergoing a second in-person evaluation (taking place in 2015–2018).

The FHS was recently reviewed in Tsao & Vasan (2015).

Biomarkers data

Fasting blood samples in LLFS participants were collected as described in

Newman et al. (2011), and biomarkers to assay were chosen based on

known or hypothetical association with aging-related diseases and

functions (Sebastiani et al., 2016a). Protocols of biomarkers data in FHS

are available from the study web site (https://www.framinghamhea

rtstudy.org/researchers/description-data/index.php).

Derivation of biomarker signatures

The 19 of the 40 available biomarkers assayed in LLFS that were used

for construction of the biomarker signatures appears in Table 1, and

preliminary analysis are detailed in Appendix S1. Hierarchical clustering

and a novel resampling procedure (Sebastiani & Perls, 2016) were

used to detect 26 significant clusters. The distribution of biomarkers

for LLFS participants allocated to each cluster was depicted with side-

by-side boxplots and summarized by means and standard deviations

of each biomarker (Fig. 1 and S5–S17, Tables S2 and S4). Sensitivity

analysis was conducted to examine the robustness of selected clusters

to varying significance levels. To verify the relevance of the 19

biomarkers to define clusters, the analysis was also repeated by

removing one biomarker at a time, and differences in clusters were

examined. Effect of familiarity was examined as described in the

Supporting information.

Annotation of biomarker signatures

Age- and sex-adjusted mixed effect linear models for repeated measures

were used to estimate differences between physiological markers (gait

speed, grip strength, FEV1, digital symbol substitution test and Mini-

Mental State Examination, BMI, pulse rate, and systolic blood pressure)

associated with the clusters (Fig. 3 and Table S5). Cox proportional

hazard models stratified by sex and adjusted by age at enrollment were

used for the analyses of incident events (Table 2).

Calibration of FHS biomarkers

To remove laboratory-to-laboratory effect, an external standardization of

FHS biomarker data using LLFS standards was used.

Replication of associations between biomarker signatures

and morbidity and mortality in FHS

We built and validated a 26-label Bayesian classifier (Hand & Yu, 2001)

to assign the most likely biomarker signature discovered in LLFS to each

FHS participant based on his biomarker data. The accuracy of the

Bayesian classifier was evaluated in the LLFS data to assess the goodness

of fit of the rule and to estimate the proportion of positive predicted

values and the misclassification error. The analyses were also repeated

using the subset of biomarkers available in the FHS. The classifier was

then used to identify the most likely biomarker signature of FHS

participants using the externally standardized biomarker data. In all

cases, uniform prior probabilities were used. Incident risk for mortality

and morbidity in FHS participants in clusters 2–26 were compared to

cluster 1 using Cox proportional hazard regression adjusted for age at

blood collection and stratified by sex.

All analyses were conducted in the statistical program R v3 (https://

www.r-project.org/) and OpenBUGS (http://www.openbugs.net/w/

FrontPage).
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