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Abstract 

Studying relationships between longitudinal changes in omics variables and risks of events 

requires specific methodologies for joint analyses of longitudinal and time-to-event outcomes. 

We applied two such approaches (joint models [JM], stochastic process models [SPM]) to 

longitudinal metabolomics data from the Long Life Family Study focusing on understudied 

associations of longitudinal changes in lysophosphatidylcholines (LPC) with mortality and 

aging-related outcomes (23 LPC species, 5,790 measurements of each in 4,011 participants, 

1,431 of whom died during follow-up). JM analyses found that higher levels of the majority of 

LPC species were associated with lower mortality risks, with the largest effect size observed for 

LPC 15:0/0:0 (hazard ratio: 0.715, 95% CI (0.649, 0.788)). SPM applications to LPC 15:0/0:0 

revealed how the association found in JM reflects underlying aging-related processes: decline in 

robustness to deviations from optimal LPC levels, better ability of males’ organisms to return to 

equilibrium LPC levels (which are higher in females), and increasing gaps between the optimum 

and equilibrium levels leading to increased mortality risks with age. Our results support LPC as a 

biomarker of aging and related decline in robustness/resilience, and call for further exploration of 

factors underlying age-dynamics of LPC in relation to mortality and diseases. 
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INTRODUCTION 

Contemporary longitudinal studies on humans started collecting repeated measurements of 

various omics (e.g., metabolomics, proteomics) data for study participants. Availability of other 

types of information on the participants such as follow-up data on mortality and onset of 

diseases, genetic markers, questionnaires, repeated measures of health-related biomarkers, etc., 

provides extensive opportunities to study complex relations of individual age-trajectories of 

omics variables with risks of diseases and mortality, in connection to various genetic and non-

genetic factors. However, this abundance of information and opportunities comes along with 

many methodological challenges related to analyses of such massive data. One particular 

complication deals with an inherent complexity of analyzing trajectories of health-related 

variables (repeated measurements of omics variables provide a good example of such) in relation 

to time-to-event outcomes. The Cox model with time-dependent covariates [1] is the 

conventional approach traditionally used for joint analyses of time-to-event data and repeated 

measurements of covariates. However, it is well known that it has certain limitations: ignoring 

measurement errors or biological variation of covariates and using their observed “raw” values 

as time-dependent covariates in the Cox model may lead to biased estimates and incorrect 

inferences [2-4], especially when covariates are measured at sparse examinations or with a long 

time interval before an outcome event. This applies to analyzing repeated omics measurements in 

relation to time-to-event outcomes as well. Even though relevant biostatistical methods, known 

as joint models (JM) [4, 5], have found broad applications in different research areas, their use in 

analyses of longitudinally measured omics data is still limited to a few small-sample proteomics 

studies [6-8].  
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One particular class of models for joint analyses of longitudinal and time-to-event outcomes, the 

stochastic process model (SPM), has been developed in the biodemographic literature based on 

the mathematical foundations laid out in [9-11]. Recent developments in SPM methodology 

merged the statistical rigor of the general approach with biological soundness of specific 

assumptions built into its structure [12-15] (see [16] for non-technical introduction to SPM), This 

brings the biological content to the model structure that made such models particularly appealing 

for research on aging. The main advantage of using SPM for research on aging is that it allows 

disentangling a general association between the longitudinal and time-to-event outcomes that can 

be found using JM into several components representing specific aging-related characteristics 

embedded in the model. This allows researchers not only to evaluate mortality or incidence rates 

but also to estimate age-related changes in the mechanism of homeostatic regulation of 

biological variables, the age-related decline in adaptive capacity and stress resistance, effects of 

allostatic adaptation, and allostatic load.  This provides a more detailed perspective on the impact 

of the longitudinal dynamics of the respective variables on the risk of the modelled events in the 

context of aging. Despite broad applications of SPM to different outcomes and biomarkers (see, 

e.g., [13, 17-23]), to date, there were no applications of SPM to analyses of longitudinal omics 

measurements in relation to time-to-event outcomes.  

In this paper, we fill these gaps and apply both JM and SPM to longitudinal measurements of 

metabolomics in more than 4,000 participants of the Long Life Family Study (LLFS) [24]. To 

illustrate applications of the approaches, we focus on a particular class of lipid metabolites, 

lysophosphatidylcholines (LPC), that have been actively discussed in the literature in relation to 

cardiovascular, infectious, and neurodegenerative diseases, and tested as potential early markers 

of Alzheimer’s disease and accelerated aging [25-31]. Overall, the literature suggests (see, e.g., 
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the recent review [32]) that the reported LPC findings are somewhat contradictory because most 

of the recent studies, in contrast to older ones, found lower LPC levels to be associated with 

unfavorable outcomes such as mortality. In addition, longitudinal dynamics of LPC in relation to 

mortality and aging-related outcomes remains understudied. Here we aimed to test general 

associations of different LPC species with total (all-cause) mortality in the LLFS using JM and 

to investigate how such general associations can be decomposed into relations of the mortality 

risk with different aging-related characteristics (such as robustness, resilience, age-specific 

norms, and allostatic trajectories [16]), and whether such relationships/characteristics differ by 

sex.  

RESULTS 

Applications of the basic JM  

Table 2 shows results of applications of the basic JM (Eqs. 1–2) [4, 5, 33] to measurements of 

LPC species and mortality data in the LLFS. The table presents the values of the association 

parameter (� in Eq. 1) for the respective metabolites in the survival sub-model, along with 

corresponding hazard ratios (for a unit increase in log-transformed and standardized metabolites) 

and their 95% confidence intervals (CI) estimated from the JM adjusted for the covariates 

indicated in Joint models: Specific versions used in applications. For the majority of LPC 

species (19 in the total sample, 16 in females, and 17 in males), the estimates of the association 

parameter � are negative and CI for respective HR do not contain one. This means that the 

increase in the levels of these metabolites reduces mortality risk. The strongest association in the 

total sample in terms of the point estimate was observed for LPC 15:0/0:0 (� � �0.335,HR �

0.715). This metabolite was selected for additional analyses illustrating different specifications 

of JM and more detailed investigation of its association with different aging-related 
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characteristics embedded in the structure of SPM; see below. Supplementary Figure S1 displays 

diagnostic plots assessing the goodness-of-fit and assumptions of JM in applications to LPC 

15:0/0:0. Figure S1 (a) shows random behavior of standardized marginal residuals around zero 

(with 95.65% of values lying within the (-1.96, 1.96) interval) validating the assumptions for the 

within-subjects covariance structure in the longitudinal part of JM. The Cox-Snell residuals plot 

(Figure S1 (b)) also shows the overall good fit of the survival sub-model of JM. Supplementary 

Table S2 provides estimates of other parameters in the longitudinal and survival sub-models 

from the basic JM applied to LPC 15:0/0:0. For comparison, Supplementary Tables S3-S4 show 

respective estimates in the Cox model with LPC used as a time-dependent covariate and all other 

covariates as in the survival part of JM. One can see from these tables that, even though the 

direction of effects and their significance are preserved in most cases, the association parameters 

are biased towards smaller magnitudes in the Cox model as expected from prior research [3, 34].  

Table 2 is around here 

Applications of JM with random intercept and slope  

The results of applications of the general JM described in the previous section established the 

associations of the LPC species with mortality risk. Here we use different specifications of JM 

(Eqs. 3–5) with individual intercepts and slopes of (log-transformed and standardized) LPC that 

provide a further look at the relationships between the age dynamics of LPC 15:0/0:0 and 

mortality risk. Table 3 presents the results of applications of the models with individual 

intercepts (“int”, Eq. 4) and individual intercepts and slopes (“intslope”, Eq. 5) of LPC 15:0/0:0 

to the total sample. Supplementary Table S5 provides estimates for sex-specific samples. The 

values of LPC_randomint in the tables show the values of the regression parameter (��) for the 

random intercept (
��) in the hazard rate (Eqs. 4–5). The negative estimates of the parameter 
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indicate that larger baseline levels of LPC 15:0/0:0 are associated with reduced mortality risks 

(after adjusting for relevant covariates, see in the Survival part of the tables). This was observed 

in both models (“int” and “intslope”) and in total and sex-specific analyses. Similarly, there are 

negative estimates for LPC_randomslope, which is the value of the regression parameter (��) for 

the random slope (
��) in the hazard rate (Eq. 5), but the association was not significant (see also 

Note under Supplementary Table S5 about CI for males in “intslope”). The negative estimates of 

this parameter mean that faster changes in LPC 15:0/0:0 with age might be associated with 

reduced mortality risks (in the model adjusting for the covariates indicated in the Survival part of 

the tables). In the next section, we will further decompose the associations of LPC 15:0/0:0 and 

mortality risk considering different aging-related components embedded in the structure of SPM 

that provide additional details in the context of the aging process. 

Table 3 is around here 

Applications of SPM  

Table 4 presents and interprets the results of testing various null hypotheses (H0’s) in 

applications of SPM to measurements of (log-transformed and standardized) LPC 15:0/0:0 and 

mortality in the LLFS metabolomics sample. Supplementary Table S6 contains estimates of 

parameters in the main (unrestricted) model and in different restricted models fitted for testing 

those hypotheses. Figure 1 displays each estimated model’s components evaluated for females 

and males along with p-values corresponding to different H0’s. Supplementary Figure S2 

provides 3D plots illustrating the results of SPM. Figure S2a presents a 3D plot of the mortality 

rate as a function of age and LPC 15:0/0:0. It shows an increase in the mortality rate for lower 

levels of LPC 15:0/0:0 confirming findings in JM. Figure S2c displays the quadratic part in the 

mortality rate, that is, the difference between the total mortality rate and the baseline mortality 
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rate (which does not depend on LPC 15:0/0:0, shown in Figure S2b). This additional term is 

larger for older individuals with lower levels of LPC 15:0/0:0. However, on the relative scale 

(i.e., the ratio of the total mortality rate and the baseline mortality rate), the largest ratio is at 

younger ages (where mortality is low) and for lower levels of LPC 15:0/0:0 (Figure S2d). 

Figure 1 is around here 

In brief, we found that: 

1) U-shape of mortality as a function of LPC 15:0/0:0 narrows with age so that older individuals 

become more vulnerable to deviations of LPC 15:0/0:0 concentrations from the trajectory of 

its optimal values. 

2) Males have better resilience to deviations of LPC 15:0/0:0 from the equilibrium (“mean 

allostatic”) trajectory compared to females. 

3) Females have higher variability of LPC 15:0/0:0. 

4) Equilibrium trajectories of LPC 15:0/0:0 decline with age. 

5) Females have higher equilibrium levels of LPC 15:0/0:0 than males. 

6) The optimal values of LPC 15:0/0:0 that minimize the mortality risk increase with age. 

7) There is a gap between the optimal and equilibrium trajectories and this gap increases with 

age. 

Sensitivity analyses 

Supplementary Table S7 presents estimates of JM using the familial bootstrap approach [35]. 

While there were a few cases where 95% CI for HR in the main calculations (Table 2) did not 

contain 1.0 but the HR range in the familial bootstrap included 1.0 (highlighted in yellow in 

Supplementary Table S7) and one opposite case (highlighted in grey in Supplementary Table 
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S7), in most cases the sensitivity analysis confirmed the results shown in Table 2. In particular, 

LPC 15:0/0:0, which was selected for downstream analyses, showed strong associations with 

mortality (e.g., HR=0.743 range: [0.585, 0.849] in the combined females + males analyses). 

Supplementary Table S8 presents estimates of SPM in the familial bootstrap analyses. The 

results are similar to the original computations (cf. Supplementary Table S6), in both the 

direction and the magnitude of effects. The resulting patterns of the model components are 

similar to those shown in Figure 1 (data not shown). 

DISCUSSION 

This work is the first application of two approaches dealing with joint modelling of longitudinal 

and time-to-event outcomes (JM and SPM) to a large-scale metabolomics study, which collected 

repeated measurements of metabolomics for more than 4,000 participants. These approaches 

allow performing statistically rigorous analyses of repeated measurements of omics data jointly 

with time-to-event outcomes avoiding common pitfalls of the traditional tools that ignore 

biological variability/measurement errors in longitudinal outcomes and informative missingness 

arising because of attrition due to mortality (which is a common situation due to the nature of the 

outcomes studied in research on aging) [2, 3, 16]. The basic JM [4] which we used in our 

applications allows establishing general associations of longitudinal omics variables with time-

to-event outcomes by including the “true” values (i.e., the difference between the observed value 

and the error term, see Eq. 2) of the variable in the hazard rate and computing respective hazard 

ratios. The JM version capturing associations between the longitudinal and time-to-event 

outcomes by a latent Gaussian process [36-38] provides different specifications of associations 

that include individual intercepts and slopes of omics variables in the hazard rate (Eqs. 3-5). 

These are the ones from the random part of the longitudinal sub-model of JM, i.e., they represent 
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individual characteristics after adjustment for covariates (in the fixed part of the longitudinal 

sub-model) and the error term. Such models expand analyses by the basic JM and quantify the 

relations between these individual characteristics of omics trajectories with time-to-event 

outcomes, e.g., computing hazard ratios for a unit increase in an individual slope. The SPM digs 

deeper into the relations between the longitudinal dynamics of omics variables and time-to-event 

outcomes decomposing the associations observed in JM into several components representing 

relevant aging-related characteristics. Such characteristics include biological/physiological 

norms (“sweet spots” [39-41]), allostatic trajectories and allostatic load, as well as age-related 

decline in adaptive response to deviations from allostatic (equilibrium) trajectories and age-

related increase in vulnerability to deviations from the norms, which represent decline in 

biological/physiological robustness and resilience considered key manifestation of aging [42]. 

SPM analyses thus can shed more light on relations between age trajectories of omics variables 

and time-to-event outcomes in the context of aging. 

Our applications of JM to data on repeated measurements of different LPC species and mortality 

in the LLFS found that, for the majority of LPCs, larger levels were associated with reduced 

mortality risk (or, equivalently, lower levels were associated with increased mortality risk), in the 

total sample as well as in separate analyses in females and males. This confirms recent results 

that reported associations of lower LPC levels with unfavorable health outcomes including 

mortality, see, e.g., reviews in [25, 32]. For example, in the study of patients with sepsis [43], the 

non-survival group had significantly lower levels of LPCs 16:0, 17:0, and 18:0 compared to the 

survival group. In the study involving acute-on-chronic liver failure patients [44], those who died 

had lower LPC levels than survivors. Decreased LPC levels were significantly associated with 

increased mortality in bacterial community-acquired pneumonia patients [45]. Reduced LPC 
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levels were associated with poor prognosis (including mortality) in individuals with acute liver 

failure [46]. All these prior publications reported findings in small samples from specific groups 

(patients with different diseases/conditions). To the best of our knowledge, our work is the first 

study that confirmed associations of LPC species and total (all-cause) mortality in a large 

longitudinal study with thousands of participants and repeated metabolomics measurements. 

SPM applications illustrated how the observed associations between the LPC species (taking as 

an example the variant with the strongest association, LPC 15:0/0:0) and mortality found in JM 

reflect underlying aging-related characteristics that shape the observed age trajectories of LPC 

and their impact on mortality risk. In particular, we found that the U-shape of the mortality risk 

as a function of LPC 15:0/0:0 narrows with age reflecting aging-related decline in robustness to 

deviations of trajectories of LPC 15:0/0:0 from the optimal levels (that is, those minimizing the 

mortality risk at a given age). That is, the same magnitude of deviation at older ages leads to a 

larger increase in the risk than at younger ages. We also observed sex differences in the ability of 

an organism to return to the equilibrium (mean allostatic) levels of LPC 15:0/0:0: males revealed 

a better adaptive capacity so that in males, it takes less time for LPC 15:0/0:0 levels to return to 

equilibrium levels in case of deviations from them, compared to females. These estimated 

equilibrium levels differ by sex with females having higher (more favorable in terms of the 

mortality risk) levels than males. The equilibrium levels also decline with age whereas the 

optimum levels show an increasing pattern with age. As result, there is an increasing gap 

between the optimum and equilibrium levels, which leads to an increased mortality risk with age. 

One particular advantage of SPM is that it allows evaluating optimal levels or ranges [16] of 

longitudinal outcomes (e.g., LPC species as in our applications). Such levels/ranges derived from 

the model can take into account potential confounders and conceptualize the “optimum” as the 
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levels minimizing the mortality risk (or risks of other events of interest, which, hypothetically, 

can differ). Such optimal levels do not necessarily coincide with average sex-specific levels for 

particular ages as our SPM analyses of LPC 15:0/0:0 illustrate. Thus, SPM applications can 

expand and complement the ongoing efforts to compute reference values of metabolites for 

different ages and sexes [47] and can provide additional information that can be used in clinical 

decision-making processes.   

Our SPM results are in line with other studies exploring the LPC-aging nexus. Recently, it was 

found [31] that higher levels of LPC species were associated with slower biological aging 

(expressed by two DNA methylation-based metrics). In particular, the LPC species with 15 

carbons showed the strongest (negative) association with the biological aging metrics in that 

study. Lower baseline concentrations and faster decline in levels of several LPC species were 

associated with faster decline in skeletal muscle mitochondrial function in longitudinal analyses 

[48]. The impaired mitochondrial oxidative capacity was previously found to be related to lower 

levels of several LPC species [49]. Older adults with dual decline in memory and speed showed 

the most extensive alterations (faster decline) in LPC metabolic profiles [50]. The anti-oxidative 

stress and anti-inflammatory responses have been suggested as potential biological mechanisms 

that can explain the observed associations of LPCs with slower biological aging [25, 31, 32]. 

However, as noted in the recent study [51], LPCs can exhibit opposite signatures, both anti-

inflammatory and pro-inflammatory, so that their impact on health can be more ambiguous with 

potentially pleiotropic or competing roles that may depend on physiological context, 

comorbidities or other factors such as age. As our SPM applications indicate, sex can also be a 

significant factor contributing to various hidden aging-related characteristics underlying the LPC 

trajectories and their relations to mortality. Analyzing sex differences in LPCs (and 
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phospholipids in general) in relation to aging in longitudinal cohort studies is of considerable 

interest and importance because of the paucity of such studies, and, in particular, considering 

inconsistencies regarding sex differences in LPC levels during aging observed in prior research 

[52]. Impacts of other factors on the observed relations between LPC trajectories and mortality 

can be explored using the tools in this paper including the genetic underpinnings of the 

relationships that can be evaluated using relevant tools [14, 53]. 

We acknowledge that our study has limitations. First, we used simple specifications for the 

models, e.g., linear functions of age for SPM components. While versatile and flexible, such 

specifications do not allow exploring more complex non-linear age patterns of respective 

characteristics. We are limited in our choice by the current availability of repeated measurements 

of metabolomics in LLFS (up to two per individual). Second, the LLFS is predominantly (>99%) 

a white sample. Therefore, our findings need confirmations in other studies collecting data for 

other race/ethnicity groups. Third, we performed analyses of a single metabolite in one-

dimensional SPM. While multivariate JM and SPM are available [15, 54], their practical 

applications in analyses of samples similar in size to this study can be intractable. Relevant 

dimensionality reduction techniques (e.g., as in our prior works [34, 55]) can be used to mitigate 

this. Fourth, we used available tools developed for analyses of unrelated samples. Even though 

sensitivity analyses using the familial bootstrap confirmed the robustness of our results, 

development and validation of approaches handling relatedness among study participants can 

benefit future analyses of longitudinal omics data in family-based studies. 

MATERIALS AND METHODS 

Data 
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The Long Life Family Study (LLFS) [24] is a family-based, longitudinal study of healthy aging 

and longevity that enrolled participants at four field centers (three in the US: Boston, New York, 

Pittsburgh, and one in Denmark). The LLFS recruited 4,953 individuals from two-generational 

families selected for exceptional familial longevity based on the Family Longevity Selection 

Score [56]. The first in-person evaluation (Visit 1) was done in 2006–2009. The second in-

person visit (Visit 2) of surviving participants from Visit 1 and newly enrolled participants was 

completed in 2014–2017. Visit 3 started in 2020 and is ongoing. The participants provided 

information on socio-demographic indicators, past and current medical conditions, medication 

use, and physical and cognitive functioning [24]. Annual telephone follow-up was conducted to 

collect updates on participants’ vital and health status. All reported deaths were adjudicated by 

an Adjudication Committee [24]. We used the September 20, 2023 release of the phenotypic 

LLFS data, with the latest recorded follow-up date on June 29, 2023. Baseline ages were 

validated using dates of birth from official documents in the US [57] and through the civil 

registration system in Denmark. Ages at censoring for those alive at the end of the follow-up 

period were determined from dates of birth and the last follow-up. Ages at death/censoring and 

an indicator of death were used as time-to-event outcomes in our applications of SPM. In JM 

applications, time since the baseline was used as the time variable due to the specifics of the JM 

software used in the analyses. 

We used batch 6 (released on October 25, 2023) of LLFS metabolomics data, which provides 

information on 188 lipid metabolites measured longitudinally in the LLFS participants at Visits 1 

and 2. In total, the LLFS metabolomics sample contains 6,776 measurements of the metabolites 

(4,221 in Visit 1 and 2,555 in Visit 2). Plasma samples were first processed by using solid-phase 

extraction kits with both aqueous and organic solvents [58]. Extracted metabolites were then 
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analyzed with liquid chromatography/mass spectrometry (LC/MS). To assess lipid metabolites, 

reversed-phase chromatography was used in combination with an Agilent 6545 quadrupole time-

of-flight mass spectrometer at Washington University in St. Louis. A combination of different 

tools was used to remove background, annotate adducts, and identify compounds [59-61]. 

Missing values were imputed using the half-minimum approach (i.e., zeros were replaces by half 

of the minimum value) [62]. Profiling was performed in batches of approximately 90 samples. 

Batch correction was accomplished by using a random forest-based batch correction algorithm 

[63], which outperformed other approaches in the lipid metabolite data [58]. The metabolites 

were annotated by using standardized names from RefMet, version 07/2023 [64]. We used 23 

available lysophosphatidylcholines (LPC) as the longitudinal outcomes in the analyses described 

below:  LPC 0:0/16:0, LPC 0:0/16:1, LPC 0:0/18:0, LPC 0:0/18:1, LPC 0:0/18:2, LPC 0:0/20:3, 

LPC 0:0/20:4, LPC 0:0/22:6, LPC 14:0/0:0, LPC 15:0/0:0, LPC 16:0/0:0, LPC 16:1/0:0, LPC 

17:0/0:0, LPC 18:0/0:0, LPC 18:1/0:0, LPC 18:2/0:0, LPC 18:3/0:0, LPC 20:2/0:0, LPC 

20:3/0:0, LPC 20:4/0:0, LPC 20:5/0:0, LPC 22:5/0:0, LPC 22:6/0:0. Each metabolite was 

analyzed separately in one-dimensional models. Intensity values were (natural) log-transformed 

and standardized (to have a zero mean and a unit variance) before use in the models. The 

characteristics of the LLFS metabolomics sample are presented in Supplementary Table S1. 

Table 1 describes the analytic sample obtained after removal of records with missing information 

on covariates (see Notes under Table 1), which comprised 4,011 participants with 5,790 

measurements of each metabolite (3,656 in Visit 1 and 2,134 in Visit 2, with 2,232 participants 

having one measurement and 1,779 participants with two measurements); 1,431 participants died 

during the follow-up period. 

Table 1 is around here 
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Joint models: General specifications 

The basic form of JM [4, 5] as implemented in the R-package JM [33] jointly estimates the 

parameters of the longitudinal trajectories of LPCs and mortality rates. The survival part of JM 

represents the mortality rate as a function of a metabolite and other covariates: 

 ����|�����,��� � �����exp����� � �������,    [Eq. 1] 

where ����| �� is the mortality rate for ith individual at time point t,  ����� is the “true” (i.e., 

unobserved) LPC level (see below in the text after Eq. 2) at time t, ����� is the baseline mortality 

rate, �� is a vector of baseline covariates (see below), � is a vector of respective regression 

coefficients, and � (a scalar) is the association parameter for the “true” LPC level (with 

respective hazard ratio, HR, for a unit increase in the “true” LPC level, computed in the 

traditional way as �� �  !"���). A linear mixed effects model describes changes in the LPC 

levels as a function of time and other covariates:  

 #���� � ����� � $���� � !�
����% � &�

����
� � $����,   [Eq. 2] 

where #���� is the observed LPC level at time point t in the ith individual, !���� and &���� are 

corresponding fixed and random effects, % and 
�  are the respective vectors of parameters (that 

model population- and individual-level characteristics of LPC trajectories, respectively), and 

$���� is the error term (independent of 
�), normally distributed with zero mean and variance '2. 

The difference between the observed value #���� and the error term $����,  ����� � !�
����% �

&�
����
� , represents the “true” LPC level included in Eq. 1. 

In addition to the general form of JM as in Eqs. 1–2, we used the JM versions where the 

association between the longitudinal and time-to-event outcomes is captured by a latent Gaussian 

process [36-38], as implemented in the R-package joineR, which allows different specifications 
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of associations of individual dynamics of metabolites with the mortality rate. The general 

formula for the longitudinal part is as in Eq. 2, but the expression for the hazard rate differs from 

Eq. 1: 

����|
� , ��� � ����� exp����� �(�������
���,    [Eq. 3] 

where � is a vector of association parameters corresponding to random effects 
�  and (���� is the 

corresponding design matrix. We used two specifications of the JM: the intercept model (“int”) 

and the intercept and slope model (“intslope”). In the latter case, we used the option 

“sepassoc=TRUE” in function joint from the R-package joineR. In the “int” model,  

(�������
�� � ��
�� ,      [Eq. 4] 

that is, the individual intercept of LPC (representing individual differences in baseline levels of 

LPC) enters the hazard rate, and in the “intslope” model, 

(�������
�� � ��
�� � ��
���,     [Eq. 5] 

i.e., the individual intercepts and slopes of LPC (representing individual differences in both 

baseline levels of LPC and rates of change in LPC levels over time) are both tested for their 

association with the mortality rate. 

Joint models: Specific versions used in applications  

In our applications of the basic form of JM [33], the longitudinal trajectories of different LPC 

species were modelled by a linear mixed effects model (Eq. 2) with linear random effects, i.e., 

random intercept and random slope. Time since the baseline visit was used as a time variable (as 

implemented in the R-package JM). Additional covariates were included in the fixed effects part 

of the longitudinal sub-model of JM: sex (1: male, 0: female), age at baseline visit, country (1: 

Denmark, 0: USA), education (1: below high school, 0: otherwise), smoking (smoked >100 
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cigarettes in lifetime: yes [1]/no [0]), medication use (anti-diabetic, lipid-lowering, anti-

hypertensive, heart disease) (1: used, 0: not used), and APOE4 (1: carriers of apolipoprotein E 

[APOE] �4 allele; 0 – non-carriers of �4). The medications listed above include all available 

groups constructed by the LLFS investigators from original medications records using 

the Anatomical Therapeutic Chemical Classification System codes.  

The time-to-event outcome (i.e., the mortality rate) was modeled as in Eq. 1, with the same 

covariates as in the longitudinal sub-model except medications (which are time-dependent). In 

addition, two genetic principal components (PCs) were included as covariates in the hazard rate 

(we tested models with different numbers of PCs and the results were similar; data not shown). 

The baseline mortality rate ����� was modelled by a piecewise constant function. The pseudo-

adaptive Gauss-Hermite quadrature rule [65] was used to approximate the required integrals in 

the estimation procedure.  

In the specification of JM implemented in the R-package joineR, we used the same list of 

covariates in the longitudinal and survival sub-models. Unlike the JM package, the baseline 

hazard is represented semi-parametrically in joineR. Individual values of random intercepts and 

slopes were used in the expression of the hazard rate as shown in Eqs. 3–5, instead of the “true” 

level of the metabolite as in Eq. 1.  

R version 4.3.1 was used to run the R-packages JM (version 1.5-2) and joineR (version 1.2.8) 

estimating respective models. 

Stochastic process models: General specifications 

For SPM applications, we used a one-dimensional version with time-dependent components 

[15]. The dynamics of a repeatedly measured variable ()��, *�, where t is age and c denotes 
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covariates) is represented as a stochastic process with the following equation (in our applications, 

this equation models age trajectories of LPC): 

d)��, *� � ,��, *�-)��, *� � .���, *�/d� � 
��, *�d0���,   [Eq. 6] 

with initial condition )���, *�. Here 0��� is the stochastic (Wiener) process (assumed to be 

independent of Y�t�, c�) that defines random paths of )��, *�, 
��, *� is the diffusion coefficient 

controlling the variability of )��, *�, .���, *� is the long-term mean of the stochastic process, and 

,��, *� is the negative feedback coefficient regulating how fast the trajectory of )��, *� returns to 

the mean .���, *� when it deviates from it. The SPM expresses the hazard rate (i.e., the mortality 

rate in our case) as a function of age (t), the vector of covariates (c) and the value of the 

longitudinal variable )��, *�: 

4-�, *, )��, *�/ � 4���, *� � 5��, *�-)��, *� � .���, *�/
�
.   [Eq. 7] 

Here 4���, *� is the baseline hazard (i.e., mortality in our case) rate, 5��, *� is the multiplier 

scaling the quadratic term of the hazard at different ages and values of covariates, and .���, *� 

represents the values of  )��, *� (i.e., LPC) minimizing the risk (mortality) at age t and covariate 

values c. 

The main characteristic feature of SPM is that Eqs. 6–7 embed several aging-related concepts 

(see more details in [16, 17]) thus facilitating more detailed analyses and interpretation of results 

in the context of aging, compared to analyses by JM: a) homeostatic regulation, which is a 

fundamental feature of a living organism; b) allostasis and mean allostatic (“equilibrium”) 

levels (.���, *�), featuring the effect of allostatic adaptation [66], i.e., the LPC levels forced by 

organism’s regulatory systems functioning at non-optimal levels; c) adaptive capacity (,��, *�), 

modelling the rate of adaptive response (associated with biological resilience [17, 42, 67]) to any 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311176doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311176
http://creativecommons.org/licenses/by-nc-nd/4.0/


21 

 

factors causing deviations of )��, *� from their dynamic equilibrium levels .���, *�; d) 

physiological or biological optimums (“sweet spots” [39-41]) naturally represented by .���, *�; 

e) vulnerability component of stress resistance (associated with biological robustness [67-70]) 

captured by the U-(J-)shape of the hazard and regulated by the multiplier 5��, *� in the quadratic 

part of the hazard; f) allostatic load (AL) computed as 67��, *� � |.���, *� � .���, *�| and 

representing the practical realization of the theoretical concept of AL suggested in the literature 

[66, 71-73] (the larger the value of this AL measure, the larger the price or load is for an 

organism in terms of an increased mortality risk compared to the best case scenario in which the 

trajectory of LPC follows the optimal function .���, *�, i.e., when AL = 0). 

Stochastic process models: Specific parameterizations used in applications  

For applications, we used the following specification of SPM: a) the Gompertz baseline hazard 

(represents a common pattern of mortality rate at adult and old ages): ln 4���, *� � ln ,µ� �


µ��� � �	
�� � %µ�*; b) constant diffusion coefficient (based on our prior simulations showing 

the best accuracy of parameter estimates for models with constant b(.) [15]): 
��, *� � '� � %�*; 

and c) linear functions of age for other components (to estimate age trends in the respective 

components): ,��, *� � ,
 � 

�� � �	
�� � %
*, where ,
 : 0, 

 ; 0 and �	
� � 50; 

.���, *� � ,�� � 
���� � �	
�� � %��*; .���, *� � ,�� � 
���� � �	
�� � %��*; 5��, *� � ,� �


�� � %�*; and )���, *�~=�.����, *�, '���. Based on our prior experience (dictated by technical 

complexities of the estimation algorithm), we included all covariates used in JM in 4���, *�, 

whereas only one covariate (sex) was included in all other components. 

In-house MATLAB codes (run in MATLAB version R2023a) implementing estimation 

algorithms with covariates in discrete-time approximations of SPM [18, 55] were used to 
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estimate SPM parameters. Likelihood ratio tests were used to test several null hypotheses about 

the functional forms of each model’s components (i.e., to test whether they depend on age and on 

respective covariates). First, an “unrestricted” model (with the parameterization presented above) 

with no restrictions on parameters was estimated. Then, other models that contain one or more 

restrictions on parameters were estimated to test respective null hypotheses (H0’s):  

1) H0: 5��, *� � 0 (Qzero; interpretation: no quadratic term in the hazard);  

2) H0: 5��, *� � 5�*� (QnoT; the term in the quadratic hazard does not depend on age, i.e., 

robustness to deviations of LPC from the optimal trajectory does not depend on age);  

3) H0: 5��, *� � 5��� (QnoC; the term in the quadratic hazard does not depend on sex, i.e., 

robustness to deviations of LPC from the optimal trajectory does not depend on sex);  

4) H0: ,��, *� � ,�*� (AnoT; the feedback coefficient does not depend on age, i.e., the adaptive 

capacity [resilience] is age-independent);  

5) H0: ,��, *� � ,��� (AnoC; the feedback coefficient does not depend on sex, i.e., the adaptive 

capacity [resilience] is the same in females and males);  

6) H0: 
��, *� � 
��� (BnoC; the diffusion coefficient is age-independent);  

7) H0: .���, *� � .��*� (F1noT; equilibrium LPC levels are the same for all ages);  

8) H0: .���, *� � .���� (F1noC; equilibrium LPC levels do not differ by sex); 

9) H0: .���, *� � .��*� (F0noT; LPC “sweet spots” are the same for all ages);  

10) H0: .���, *� � .���� (F0noC; optimal LPC levels minimizing mortality risks coincide for 

females and males);  
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11) H0: .���, *� � .���, *�, i.e., 67��, *� � 0 (ALzero, zero AL);  

12) H0: .���, *� � .��*� and .���, *� � .��*�, i.e.,  67��, *� � 67�*� (ALnoT, AL does not 

accumulate with age). 

Sensitivity analyses  

The LLFS is a family-based study that contains related individuals. Currently available JM tools 

allowing analyses of related individuals (R-packages merlin and rstanarm) were not usable for 

our applications because of technical issues. SPM tools for related samples currently do not exist. 

Therefore, we used the available tools for unrelated individuals. To test whether this could affect 

our results, we performed sensitivity analyses implementing the “familial bootstrap” approach 

[35]. Specifically, we collected estimates of the respective models (JM and SPM) from 100 

bootstrap samples constructed from data on the families generated (with replacement) from the 

original analytic sample (note, that, even though the number of families in each generated sample 

was the same, the numbers of individuals were different). Then, we computed relevant quantities 

from all 100 samples (e.g., medians of hazard ratios of the association parameter � [Eq. 1] in JM, 

along with the range of the hazard ratios). The respective estimates are provided in 

Supplementary Materials and discussed in RESULTS. 
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TABLES 

Table 1: Characteristics of the Long Life Family Study metabolomics subsample used in analyses 

Characteristics Field Center Total Sample 

BU NY PT DK 

Number of families 235 248 216 78 573 

Number of participants at any visit 1,128 721 1,115 1,047 4,011 

Number of participants at visit 1 1,070 636 1,055 895 3,656 

Number of participants at visit 2 570 361 534 669 2,134 

Number (%) of deceased 

participants 

382 (33.9%) 291 (40.4%) 417 (37.4%) 341 (32.6%) 1,431 (35.7%) 

Follow-up period (years) (mean ± 

SD [range]) 

10.3 ± 4.4  

[0.28, 17.00] 

9.8 ± 4.1  

[0.52, 17.00] 

10.3 ± 4.4  

[0.29, 17.00] 

11.5 ± 4.8  

[0.55, 17.00] 

10.5 ± 4.5  

[0.28, 17.00] 

Age at baseline (mean ± SD 

[range])  

70.0 ± 15.8  

[32, 110] 

74.2 ± 15.8  

[24, 108] 

71.5 ± 15.9 

 [36, 104] 

69.5 ± 14.4  

[38, 104] 

71.0 ± 15.6  

[24, 110] 

Whites (%) 99.6% 98.8% 99.6% 99.5% 99.4% 

Females (%) 56.5% 54.4% 55.9% 55.9% 55.8% 
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Low educated participants (below 

high school) (%) 

6.0% 7.8% 7.1% 29.3% 12.7% 

Smokers (smoked >100 cigarettes 

in lifetime) (%) 

41.0% 45.5% 36.2% 48.9% 42.6% 

APOE �4 allele carriers (%) 15.3% 19.1% 17.8% 26.3% 19.6% 

Medication use: angina (%) 34.1% 33.0% 34.0% 26.5% 31.9% 

Medication use: anti-diabetic (%) 6.8% 6.9% 9.4% 6.1% 7.4% 

Medication use: anti-hypertensive 

(%) 

52.7% 56.0% 56.9% 47.8% 53.2% 

Medication use: lipid-lowering (%) 35.5% 45.9% 40.4% 24.0% 35.8% 

Notes: a) Number of missing data: race – 20, education – 10, smoking – 18, APOE – 257, angina medications – 273, anti-diabetic 

drugs – 273, anti-hypertensive drugs – 273, lipid-lowering drugs – 273, other variables listed in the table have no missing values; b) 

The numbers shown in “Number of deceased participants” and “Follow-up period” correspond to the LLFS data release used in this 

paper (see Data). Abbreviations: BU – Boston, DK – Denmark, NY – New York, PT – Pittsburgh, SD – standard deviation. 
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Table 2: Results of applications of joint models to measurements of LPC species and mortality data in the LLFS: Estimates of the 

association parameter for the metabolite in the survival sub-model 

Metabolite Total Females Males 

Alpha HR (95% CI) Alpha HR (95% CI) Alpha HR (95% CI) 

LPC 0:0/16:0 -0.222 0.801 (0.718,0.894) -0.183 0.833 (0.717,0.967) -0.185 0.831 (0.740,0.934) 

LPC 0:0/16:1 -0.019 0.981 (0.870,1.105) -0.036 0.965 (0.816,1.141) -0.028 0.972 (0.837,1.130) 

LPC 0:0/18:0 -0.038 0.963 (0.872,1.064) -0.029 0.971 (0.862,1.093) -0.082 0.921 (0.786,1.080) 

LPC 0:0/18:1 -0.150 0.861 (0.779,0.952) -0.109 0.897 (0.764,1.053) -0.151 0.860 (0.770,0.960) 

LPC 0:0/18:2 -0.233 0.792 (0.704,0.892) -0.153 0.858 (0.727,1.013) -0.330 0.719 (0.603,0.856) 

LPC 0:0/20:3 -0.164 0.849 (0.764,0.942) -0.160 0.852 (0.775,0.936) -0.161 0.851 (0.716,1.011) 

LPC 0:0/20:4 -0.192 0.825 (0.746,0.913) -0.250 0.779 (0.671,0.905) -0.131 0.877 (0.765,1.006) 

LPC 0:0/22:6 -0.237 0.789 (0.711,0.876) -0.301 0.740 (0.642,0.854) -0.173 0.841 (0.726,0.974) 

LPC 14:0/0:0 -0.236 0.790 (0.681,0.917) -0.185 0.831 (0.712,0.969) -0.212 0.809 (0.674,0.972) 

LPC 15:0/0:0 -0.335 0.715 (0.649,0.788) -0.300 0.741 (0.650,0.844) -0.267 0.766 (0.667,0.879) 

LPC 16:0/0:0 -0.241 0.786 (0.694,0.890) -0.190 0.827 (0.719,0.952) -0.164 0.849 (0.763,0.945) 
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LPC 16:1/0:0 -0.045 0.956 (0.854,1.071) -0.049 0.952 (0.807,1.124) -0.054 0.947 (0.812,1.104) 

LPC 17:0/0:0 -0.206 0.814 (0.729,0.908) -0.182 0.834 (0.731,0.951) -0.292 0.747 (0.610,0.914) 

LPC 18:0/0:0 0.031 1.031 (0.935,1.137) 0.026 1.026 (0.912,1.154) 0.000 1.000 (0.852,1.174) 

LPC 18:1/0:0 -0.209 0.811 (0.734,0.895) -0.177 0.838 (0.729,0.963) -0.171 0.843 (0.759,0.936) 

LPC 18:2/0:0 -0.241 0.786 (0.711,0.868) -0.158 0.854 (0.742,0.983) -0.188 0.829 (0.750,0.917) 

LPC 18:3/0:0 -0.163 0.850 (0.724,0.999) -0.030 0.970 (0.779,1.207) -0.341 0.711 (0.553,0.915) 

LPC 20:2/0:0 -0.226 0.798 (0.715,0.889) -0.160 0.852 (0.738,0.984) -0.280 0.756 (0.642,0.890) 

LPC 20:3/0:0 -0.277 0.758 (0.680,0.845) -0.259 0.772 (0.671,0.890) -0.324 0.723 (0.589,0.887) 

LPC 20:4/0:0 -0.212 0.809 (0.728,0.900) -0.221 0.802 (0.693,0.928) -0.202 0.817 (0.702,0.950) 

LPC 20:5/0:0 -0.334 0.716 (0.657,0.780) -0.354 0.702 (0.602,0.819) -0.246 0.782 (0.676,0.905) 

LPC 22:5/0:0 -0.237 0.789 (0.717,0.868) -0.265 0.767 (0.666,0.882) -0.201 0.818 (0.727,0.920) 

LPC 22:6/0:0 -0.269 0.764 (0.692,0.844) -0.315 0.730 (0.632,0.842) -0.233 0.792 (0.690,0.909) 

Notes: Alpha – estimates of the association parameter for the longitudinal variable (metabolite) in the survival sub-model of the joint 

model (parameter � in Eq. 1); HR – hazard ratios (for a unit increase in log-transformed and standardized metabolite values) 

computed from the association parameters; 95% CI – 95% confidence intervals for HRs (highlighted in bold are cases where 

confidence intervals do not contain one). The joint models were estimated using R-package JM.  
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Table 3: Results of applications of joint models with random intercept and slope of LPC 15:0/0:0 in mortality rate in the LLFS 

Model Variable Longitudinal Survival 

Beta 95% CI Beta HR 95% CI for HR 

int LPC_randomint   -0.433 0.649 (0.570, 0.728) 

 Intercept_longit 1.044 (0.894, 1.202)    

 AgeV1 -0.012 (-0.015,-0.010) 0.130 1.139 (1.132, 1.147) 

 TimeV1 0.013 (0.007, 0.018)    

 SexM -0.088 (-0.145, -0.029) 0.294 1.341 (1.200, 1.497) 

 IsDK -0.308 (-0.377, -0.239) 0.125 1.133 (0.977, 1.309) 

 LowEduc -0.065 (-0.155, 0.029) 0.120 1.128 (0.983, 1.311) 

 Smoke100 -0.083 (-0.143, -0.025) 0.186 1.204 (1.074, 1.345) 

 APOE4 -0.016 (-0.087, 0.055) 0.203 1.225 (1.068, 1.419) 

 MedsDiab -0.136 (-0.241, -0.037)    
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 MedsHtn -0.027 (-0.090, 0.032)    

 MedsLipid -0.237 (-0.295, -0.180)    

 MedsNitro -0.008 (-0.079, 0.061)    

 PC1   0.126 1.135 (0.998, 1.346) 

 PC2   0.060 1.062 (0.936, 1.267) 

intslope LPC_randomint   -0.379 0.685 (0.589, 0.770) 

 LPC_randomslope   -0.188 0.828 (0.021, 1.584) 

 Intercept_longit 1.046 (0.895, 1.202)    

 AgeV1 -0.012 (-0.015, -0.010) 0.130 1.138 (1.132, 1.146) 

 TimeV1 0.012 (0.005, 0.018)    

 SexM -0.088 (-0.143, -0.029) 0.291 1.338 (1.198, 1.490) 

 IsDK -0.303 (-0.376, -0.237) 0.125 1.133 (0.976, 1.305) 

 LowEduc -0.066 (-0.151, 0.029) 0.118 1.126 (0.979, 1.303) 
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 Smoke100 -0.083 (-0.143, -0.026) 0.182 1.200 (1.072, 1.343) 

 APOE4 -0.017 (-0.087, 0.054) 0.203 1.225 (1.070, 1.417) 

 MedsDiab -0.139 (-0.246, -0.038)    

 MedsHtn -0.026 (-0.088, 0.033)    

 MedsLipid -0.238 (-0.296, -0.180)    

 MedsNitro -0.008 (-0.078, 0.061)    

 PC1   0.124 1.132 (0.998, 1.351) 

 PC2   0.059 1.060 (0.938, 1.268) 

Notes: Model – type of joint model (int – random intercept of LPC in survival sub-model; intslope – random intercept and slope of 

LPC in survival sub-model); Variable – LPC_randomint: random intercept of the metabolite (in Survival only), LPC_randomslope: 

random slope of the metabolite (in Survival only), Intercept_longit: intercept (in Longitudinal only), AgeV1: age at visit 1, TimeV1: 

time since visit 1, SexM: sex (1 – male, 0 – female), IsDK: country (1 – Denmark, 0 – USA), LowEduc: low education (1 – below 

high school, 0 – otherwise), Smoke100: smoking (1 – smoked 100 cigarettes in lifetime, 0 - otherwise), APOE4: APOE �4 carrier 

status (1 – carrier, 0 – non-carrier), MedsDiab: diabetes mellitus medications (1 – taking; 0 – not taking) (in Longitudinal only), 

MedsHtn: hypertension medications (1 – taking; 0 – not taking) (in Longitudinal only), MedsLipid: lipid lowering medications (1 – 

 . 
C

C
-B

Y
-N

C
-N

D
 4.0 International license

It is m
ade available under a 

 is the author/funder, w
ho has granted m

edR
xiv a license to display the preprint in perpetuity. 

(w
h

ich
 w

as n
o

t certified
 b

y p
eer review

)
T

he copyright holder for this preprint 
this version posted July 30, 2024. 

; 
https://doi.org/10.1101/2024.07.29.24311176

doi: 
m

edR
xiv preprint 

https://doi.org/10.1101/2024.07.29.24311176
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

taking; 0 – not taking) (in Longitudinal only), MedsNitro: angina medications (1 – taking; 0 – not taking) (in Longitudinal only), 

PC1, PC2: principal components computed from LLFS whole-genome sequencing data (in Survival only); Longitudinal – estimates 

for the longitudinal sub-model of JM (modeling the metabolite); Survival – estimates for the survival sub-model of JM (modeling 

mortality rate); Beta – estimates of the regression parameters for Variable in respective sub-models; HR – hazard ratios (for a unit 

increase in all variables except PCs where they are for an increase by a standard deviation) computed for Beta (in Survival only); 

95% CI – respective 95% confidence intervals. The JM were estimated using R-package joineR. LPC values were log-transformed 

and standardized (see Data). 
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Table 4: Results of applications of stochastic process models to measurements of LPC 15:0/0:0 and mortality data in the LLFS: 

Results of testing different null hypotheses on patterns of model’s components 

Null hypothesis 

(H0) 

LR statistics DF P-value Interpretation of findings 

���, �� � 0 100.382 3 <0.0001 Rejection of this H0 justifies further applications of SPM to LPC 

15:0/0:0 and mortality (otherwise, there would be no quadratic term in 

the hazard rate [Eq. 7] so that the dynamics of LPC 15:0/0:0 would be 

unrelated to the mortality risk). 

���, �� � ���� 12.590 1 0.0004 U-shape of the mortality risk as a function of LPC 15:0/0:0 narrows 

with age (Figure 1a). That is, as individuals grow older, they become 

more vulnerable to deviations of LPC 15:0/0:0 from the optimal 

trajectory 
���, �� because the same deviation of LPC 15:0/0:0 from 


���, �� results in a larger increase in the mortality risk at older ages 

compared to younger ages. 

���, �� � ���� 1.346 1 0.25 U-shape of the hazard rate (as a function of LPC 15:0/0:0) does not 
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depend on sex, i.e., there is no sex difference in robustness related to 

trajectories of LPC 15:0/0:0. 

���, �� � ���� 0.000 1 1.00 Feedback coefficient (���, �� in [Eq. 6]) is age-independent, i.e., there 

is no age-related decline in adaptive capacity (resilience) related to 

trajectories of LPC 15:0/0:0. 

���, �� � ���� 25.318 1 <0.0001 Males have better adaptive capacity (resilience) to deviations of LPC 

15:0/0:0 from the equilibrium trajectory 
���, �� compared to females 

(Figure 1b). Larger absolute values of ���, �� in [Eq. 6] for males mean 

a faster return of the trajectory of LPC 15:0/0:0 to 
���, �� in case of 

deviations from it (i.e., better adaptation or resilience), compared to 

females. 

���, �� � ���� 24.026 1 <0.0001 Females have higher variability of LPC 15:0/0:0 (Figure 1c). 


���, �� � 
���� 195.890 1 <0.0001 Equilibrium trajectories of LPC 15:0/0:0 decline with age (Figure 1d).  


���, �� � 
���� 13.446 1 0.0002 Females have higher levels of LPC 15:0/0:0 than males (Figure 1d). 


���, �� � 
���� 3.898 1 0.048 The optimal trajectory of LPC 15:0/0:0 that minimizes the mortality 
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risk increases with age (Figure 1e). 


���, �� � 
���� 0.678 1 0.41 The optimal trajectory of LPC 15:0/0:0 does not depend on sex, i.e., 

LPC levels minimizing mortality risks coincide for females and males. 


���, �� � 
���, �� 79.528 3 <0.0001 There is a gap between the equilibrium and optimal trajectories of LPC 

15:0/0:0 (Figure 1f). 


���, �� � 
���� and 


���, �� � 
���� 

199.788 2 <0.0001 The gap between the equilibrium and optimal trajectories of LPC 

15:0/0:0 increases with age (Figure 1f). Such deviating patterns lead to 

an increased mortality risk compared to the situation when the 

metabolite follows the optimal trajectory 
���, ��. 

Notes: LR – likelihood ratio, DF – degrees of freedom. LPC values were log-transformed and standardized (see Data). 
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TABLE LEGENDS 

Table 1: Characteristics of the Long Life Family Study metabolomics subsample used in the 

analyses 

Table 2: Results of applications of joint models to measurements of LPC species and mortality 

data in the LLFS: Estimates of the association parameter for the metabolite in the survival sub-

model 

Table 3: Results of applications of joint models with random intercept and slope of LPC 

15:0/0:0 in mortality rate in the LLFS 

Table 4: Results of applications of stochastic process models to measurements of LPC 15:0/0:0 

and mortality data in the LLFS: Results of testing different null hypotheses on patterns of 

model’s components 

 

FIGURE LEGENDS 

Figure 1: Applications of stochastic process models to measurements of LPC 15:0/0:0 and 

mortality data in the LLFS: Estimates of different components of the model. a) quadratic 

hazard term (���, ��); b) adaptive capacity (|���, ��|); c) diffusion coefficient (	��, ��); d) mean 

allostatic trajectory (
���, ��); e) optimal trajectory (
���, ��); f) measure of allostatic load 

(����, �� 
 |
���, �� � 
���, ��|); p-values shown on the graphs are for different null hypotheses 

(H0): H0: ���, �� 
 ���� (P_QnoT); H0: ���, �� 
 ���� (P_QnoC); H0: ���, �� 
 0 (P_Q0); 

H0: ���, �� 
 ���� (P_AnoT); H0: ���, �� 
 ���� (P_AnoC); H0: 	��, �� 
 	��� (P_BnoC); H0: 


���, �� 
 
���� (P_F1noT); H0: 
���, �� 
 
���� (P_F1noC); H0: 
���, �� 
 
���� (P_F0noT); 

H0: 
���, �� 
 
���� (P_F0noC); H0: 
���, �� 
 
���, ��, i.e., ����, �� 
 0 (P_AL0); H0: 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 30, 2024. ; https://doi.org/10.1101/2024.07.29.24311176doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.29.24311176
http://creativecommons.org/licenses/by-nc-nd/4.0/


47 

 


���, �� 
 
���� and 
���, �� 
 
����, i.e.,  ����, �� 
 ����� (P_ALnoT). LPC values were log-

transformed and standardized (see Data). 
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