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ABSTRACT Mammaliicoccus sciuri (previously Staphylococcus sciuri) is a frequent
colonizer of mammals. We report the draft genomes of a methicillin-resistant strain
(2254A) isolated from an armadillo and a methicillin-susceptible strain (6942A) from a
cow. Genomes were sequenced using long-read Nanopore sequencing.

Five Staphylococcus species belonging to the Staphylococcus sciuri group (S. sciuri,
S. fleurettii, S. lentus, S. stepanovicii, S. vitulinus) were recently reassigned to the novel ge-

nus Mammaliicoccus (1). The M. sciuri group has been hypothesized to carry the evolution-
ary ancestor of the mecA gene (2), which encodes an alternative penicillin-binding protein
PBP2a and confers resistance to broad-spectrum beta-lactams (3). M. sciuri is a potential res-
ervoir of resistance and virulence genes that can be acquired by other species (4). It has
been reported in humans and animals (5, 6), and has been implicated in disease (7, 8).

Methicillin-resistant M. sciuri (MRMS) strain 2254A and methicillin-susceptible M. sciuri
(MSMS) strain 6942A were sampled from animals with confirmed clinical infections
(Table 1). Pure isolates were cultured in commercially prepared tryptic soy agar with 5%
sheep red blood cells (Thermo Scientific Remel) at 37°C for 24–48 h. Initial species identi-
fication was carried out using matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry in Bruker Biotyper.

Total genomic DNA was isolated using Zymo Quick-DNA high molecular weight
Magbead Kit. We used 400 mL of the bacterial cells grown in brain heart infusion broth
(BD Difco) containing diluted bacteria and 550 mL of Bashing Bead Buffer in the initial
step. We quantified DNA concentration using Qubit fluorometer (Invitrogen) and DNA
quality using NanoDrop spectrophotometer (Thermo Scientific).

Sequencing libraries were prepared using the Genomic DNA by Ligation (SQK-
LSK110) kit from Oxford Nanopore Technologies (ONT), including the DNA repair step
prior to adapter ligation. Long-read sequencing was performed using the MinION plat-
form with R9 flow cells. Sequencing quality was monitored using the MinKNOW v4.5.4
GUI interface. Sequences were base called and demultiplexed using Guppy v5.1.12 (9).

Genomes were assembled using open-source scripts from ONT, including the EPI2MELABS
wf-bacterial-genomes pipeline, and ran on the nextflow platform (10). Raw fastq files that
passed quality controls in MinKNOW were concatenated with fastcat v0.4.10 and assembled
with Flye v2.9 (11). Variants, consensus sequences, and polished contigs were obtained with
Medaka v1.6.0 (12). Assembly completeness was assessed using BUSCO v5.3.2 (13) and
CheckM v1.1.3 (14). Genome contamination, GC content, N50, and number of contigs were
estimated using QUAST v5.0.2 (15). Genomes were annotated using the Prokaryotic Genome
Annotation Pipeline (PGAP) v6.1 (16) in the National Center for Biotechnology Information
(NCBI) (Table 1). Antimicrobial and heavy metal resistance genes were detected using Abricate
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(https://github.com/tseemann/abricate), AMRfinderPlus (17), and the Comprehensive
Antibiotic Resistance Database (18). We used fastANI v1.33 (19) to compare the average
nucleotide identity against 14 complete genomes named as either M. sciuri or S. sciuri
that were available in NCBI as of June 2022 (Fig. 1).

TABLE 1 Genome characteristics of the twoM. sciuri from diseased animals

Features MRMS 2254A MSMS 6942A
Animal source
Date of sampling
Location
No. of reads
Bases called
Contigs
Genome size
N50
GC content
Genome completeness
Genome contamination
BUSCO (“bacteria_odb10”)
BUSCO (“bacillales_odb10”)
CDS
Ribosomal RNAs
Transfer RNAs
Noncoding RNAs (ncRNAs)
Antimicrobial resistance genes

Eye of a pet armadillo (order Cingulata)
April 2018
West Nottingham, New Hampshire, USA
768,000 reads
9,345,898,253 bases
One
2,774,130 bp
2,774,130 bp
32.68%
89.5%
4.1%
49.2%
47.6%
3,044
19
58
4
mecA (methicillin resistance), salA (pleuromutilin-lincosamide-

streptogramin A resistance)

Right rear mammary gland of a cow (Bos taurus)
September 2018
Durham, New Hampshire, USA
3,384,000 reads
17,538,066,197 bases
Two
2,772,237 bp, 32,841 bp
2,772,237 bp
32.54%, 29.1%
96.8%
6.3%
85.5%
83.8%
2,949
19
57
4
salA

Heavy metal resistance genes arsB (arsenic resistance) asrC (arsenic resistance), cadD (cadmium resistance)
mecA1 (mecA precursor) Present Present

FIG 1 Pairwise comparison of the average nucleotide identity (ANI) between the newly sequenced MRMS 2254A and MSMS 6942A
strains, and 14 complete S. sciuri or M. sciuri genomes available in NCBI. Genomes with at least 95% ANI threshold (inset) were
considered the same species (19).
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Default parameters were used for all software unless otherwise specified.
Data availability. Raw sequence reads have been deposited in the NCBI Sequence

Read Archive (SRA) under the BioProject PRJNA851703, with SRA accession numbers
SRR19779535 (2254A) and SRR19790864 (6942A). Genome assemblies are available at
NCBI under accession numbers CP100353 (2254A) and CP099816/CP099817 (6942A).
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