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Abstract: In recent years, maintenance work on public transport routes has drastically decreased in
many countries due to difficult economic situations. The various studies that have been conducted by
groups of drivers and groups related to road safety concluded that accidents are increasing due to the
poor conditions of road surfaces, even affecting the condition of vehicles through costly breakdowns.
Currently, the processes of detecting any type of damage to a road are carried out manually or are
based on the use of a road vehicle, which incurs a high labor cost. To solve this problem, many research
centers are investigating image processing techniques to identify poor-condition road areas using
deep learning algorithms. The main objective of this work is to design of a distributed platform that
allows the detection of damage to transport routes using drones and to provide the results of the most
important classifiers. A case study is presented using a multi-agent system based on PANGEA that
coordinates the different parts of the architecture using techniques based on ubiquitous computing.
The results obtained by means of the customization of the You Only Look Once (YOLO) v4 classifier
are promising, reaching an accuracy of more than 95%. The images used have been published in a
dataset for use by the scientific community.

Keywords: smart applications; drones; YOLOv4; crack detection; virtual organizations of agents

1. Introduction

Road safety is key to reducing the number of road accidents. The main solutions often focus on
reducing speed limits, but road conditions are also important in the increase in road accidents. A recent
study carried out by the AEC stated that the poor condition of roads is the main cause of 94% of
accidents [1]. According to this organization, 1 out of every 13 km of the Spanish road network shows
significant deterioration in more than 50% of the surface of the pavement as a result of accumulating
potholes, ruts, and cracks. This damage affects vehicle safety, creating a less stable and safe driving
environment. The report [1] also shows that Spain is failing to maintain its roads, and describes the
condition of the asphalt as very poor. This translates into an increased risk of an accident in the
worst-case scenario, but can also lead to vehicle breakdowns. To minimize the risks of a possible
accident or decrease the possibility of a breakdown, it is vitally important to investigate and develop
techniques that can be used to improve the road infrastructure. The difficult worldwide economic
situation has repercussions for the state of roads, making maintenance and improvement of transport
routes lower priorities.
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To determine which roads require some type of improvement or maintenance, the condition
of the pavement must be determined. This action can be completed manually or automatically.
Currently, in Spain, these checks are manual, which is costly and slow due to the need for a human
expert to identify the condition of these roads. Decision-making by an expert has drawbacks because
the decision about the final state of a section of road is based on the subjective opinion of the individual
based on perceptions that can be misleading, so erroneous information about it may be generated.
The evolution of science and technology, together with the reduction in the cost of electronic component
manufacturing, enable the investigation of new techniques and tools that objectively and automatically
perform detection. Due to the above, universities and research centers are collaborating to obtain clear
images of roads and detect any type of deterioration of a transport route.

At present, different techniques aim to detect the deterioration of road surfaces, for example,
using a laser [2], vibration sensors [3], and images [4]. The development of techniques based on
image processing has prompted research into machine learning methods capable of detecting different
types of deterioration of road surfaces. In all the research using deep learning for image recognition,
two problems must be solved: These techniques only work accurately if the configuration of the
camera is dynamic, i.e., it adapts to the context and the light conditions of the environment, and these
techniques always involve manipulating the pixels of the images. Therefore, this process becomes
computationally complex when applied on computationally limited devices, especially where the
performance and duration of the battery are critical factors [5]. Several investigations have been
conducted to find a solution to these problems [6,7].

In all the investigations that offered a solution to detection through the use of pattern recognition
techniques, an algorithm was constructed that is capable of image recognition together with the
elimination of the problems that traditional deep learning solutions entail—the You Only Look Once
(YOLO) algorithm. YOLO [8] is an algorithm that works in real time and on computationally limited
devices, since only a single forward propagation through the neural network is necessary to determine
a prediction. This algorithm has been evolving in its different versions, including YOLOv3 [9]
and YOLOv4 [10], which are the latest stable versions of the algorithm. The difference between the
versions is that YOLOv3 uses characteristic pyramid networks (FPN) for object detection, whereas
YOLOv4 uses PANet as a method of aggregating parameters for different detection levels together
with an increase in average precision (AP) and frames per second (FPS), a feature that makes the
accuracy of YOLOv4 much higher than that of YOLOv3.

If we analyze the different methods of image collection to automate the process of capturing
geolocated images, some solutions are based on the use of a vehicle with a camera close to the ground;
however, this process is relatively slow because the vehicle must move at a very low speed so that the
images obtained have a high degree of detail, since the movement of the vehicle affects the quality of the
images. If the mapping area is large, several drivers are needed to reduce the time required to obtain the
images. Therefore, the process becomes costly. Another solution is the use of satellite images; however,
they are often outdated and the cost of accessing these images is high. Based on these shortcomings
and trying to take advantage of the advances in recent years in the field of unmanned aerial vehicles
(UAVs) and their low cost of acquisition, we used them as part of the data acquisition platform in
the case study. UAVs contain different elements [11]: human, control, communication, recovery,
and payload. These vehicles are used for surveillance, cartography, photogrammetry, fire detection,
and the inspection of urban infrastructure, such as rooftops [12] or land [13].

In this study, we aimed to develop a platform capable of monitoring the state of roads and
detecting different types of road damage to help coordinate the people and organizations involved in
the identification process. To coordinate and communicate amongst all the entities involved in this
task, the use of a multi-agent system (MAS) is proposed, which allows a dynamic reconfiguration
of the system [14,15]. The multi-agent system distributes the resources and capacities to avoid
problems that occur in centralized systems, such as bottlenecks or recurrent access to critical resources.
The proposed multi-agent architecture increases the efficiency of the system by efficiently retrieving,
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filtering, and coordinating the information handled by the platform. The multi-agent system, which is
used in the case study, is based on the use of the open-source platform PANGEA [16], allowing the
different elements of the system to behave dynamically according to the requirements of the platform
at any given moment. As a fundamental pillar in the identification of road damage, we customized the
YOLOv4 algorithm. Notably, the machine learning models depend on the quality of the data used
for their training; therefore, to obtain a robust model for this task, a new dataset was created for use
by deep learning algorithms. Using a UAV is proposed to obtain the images automatically using a
tracking road [17–19], thus minimizing the effort required for the sample collection process in terms of
both cost and time. Through the proposed multi-agent architecture, coordination and communication
between the different elements of the system are achieved so that the different classifiers that were
tested are transparent to the end users.

The article is organized as follows: Section 2 provides an in-depth review of the current literature
on crack and drone detection algorithms. Section 3 describes the architecture of the proposed system.
The experiments and results are outlined and explained in Section 4. Finally, the conclusions are
presented in Section 5. In addition, images of the pothole detection are provided in Appendix A.

2. Background

In this section, the different works in the different areas involved in this study are analyzed.
This section is divided into different sub-sections to provide a more detailed analysis of each of the
research areas. First, we begin by explaining the state-of-the-art technology used to capture the images
from our dataset (drones). Then, we analyze the different methods and algorithms of image detection.
We then focus on one of these image detection systems, YOLO, which is used in our framework,
as well as some of the most used datasets. Finally, we refer to the framework in which we include the
proposed system, the multi-agent system, highlighting its major advances and utilities.

2.1. Drones

The first step in determining the status of a pathway is to take images of it. To obtain images
with good quality and perspective, we chose to use a drone. UAVs are becoming an important tool
for surveyors, engineers, and scientists, as the number of cost-effective and easy-to-use systems
is increasing rapidly. These platforms offer an attractive alternative for mapping small areas with
centimeter resolution [20]. Drones are widely used today for tasks such as surveillance, monitoring,
and data collection in buildings, infrastructure, and hazardous environments [12], detection of
excessive vegetation growth [13], Internet of Things (IoT) systems [21], and in combination with
virtual reality devices for control [22]. The main reason for why we chose a drone to recognize the
terrain and obtain the data of the dataset was to acquire a large number of images in a short period
of time with an acceptable resolution. Using these images, it is possible to associate the cracks in the
recorded images with their real positions in the real world and to calculate their real sizes.

2.2. Pattern Detection in Images

Once we determined how to obtain the road image data, we focused on the area of object
detection—in our case, cracks and potholes—in the road. In recent years, demand has been growing
for analysis and recovery of large amounts of information from images on a network. The main purpose
of image processing is to separate relevant information (foreground) from non-relevant information
(background) [23].

Cracks are a common defect in structures, and they can cause serious structural failures. Surface
crack detection using image processing has emerged as an important topic in the last 20 years [24].
Most studies have targeted crack detection for concrete surfaces [25,26], glass fiber composite
laminates [27], solar cells [28], and different types of surfaces [29]. The use of the image detection
techniques, which involve the detection of cracks and potholes in the captured image, allowed
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us to extract relevant information without pre-processing the image in a reasonable time with
acceptable results.

2.3. YOLO

One of these systems used for image detection is YOLO. YOLO is an open-source application that
allows the classification of images in real time.

We selected YOLO because it has been tested and used for the detection of cracks in different
surfaces, such as defects in turbine propellers [30], cracks in cement surfaces [31,32], and in composite
panels [33]. YOLO has previously been used for the detection of cracks in roads [34–38].

To select the appropriate version of YOLO, we compare the main versions of YOLO in Table 1,
focusing on different aspects like the number of convolutional layers, activation function, calculation
function, and the specific characteristics of each version.

Table 1. You Only Look Once (YOLO) versions.

Version Article Features

YOLOv1 [4,30,31,34,35,39,40]

26 layers, SoftMax activation function,
sum-squared risk calculation function,

may not detect objects too close together,
non-maximal suppression to eliminate duplicates.

YOLOv2 [35,41].

30 layers, function of calculation of the risk of mean square error,
requires fewer training times,

batch normalization in the layers
(an increase in the mean average precision (mAP)).

YOLOv3 [37,42–45].

106 layers, multi-label sorting,
SoftMax activation function with independent logistic sorters,
binary cross-entropy loss calculation function for each label,

small object enhancement.

YOLOv4 [10].

53 layers, FPN for greater accuracy,
SAM

allows focus on a specific part of the image,
SPP detects object deformations.

Table 2 compares the mean average precision (mAP) and speed (FPS) for the PASCAL VOC2007
dataset made in [46]. The YOLOv2 version has the highest FPS, and YOLOv3 + SPP obtains the
highest mAP.

Table 2. mAP and speed comparison.

Method mAP (%) Speed (fps)

Faster RCNN 76.4 5.0
SSD 74.3 46.0

DSSD 321 78.6 9.5
STDN 78.1 40.3
YOLO 63.4 45.0

YOLOv2 76.8 67.0
YOLOv3 79.3 37.9

DC-SPP-YOLO 78.4 55.7
YOLOv3(DC)+SPP 79.7 37.0

To improve YOLO’s efficiency, it is used in combination with different algorithms and techniques,
as well as different variants of the original YOLO model.

The variants include the YSODA model for the detection of small objects [30], the DC-YOLO
model based on YOLOv3 [42], the Tiny-YOLO-V2 model, which has a lower computational cost,
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and pre-trained detection models, such as DarkNet [42]. The DarkNet model has pre-trained networks
that are capable of recognizing and detecting cracks in pavement, which is why we chose to use it in
our system.

For crack detection, there are two-phase and single-phase methods. Both have their disadvantages:
The first is too slow (low FPS) and the second is less accurate than the two-phase method. Xia et al. [36]
used the single-phase method, focusing on improving the accuracy of the method by incorporating a
new detection pipe (cumulative feature module and a smoothed loss function). This update of the
original algorithm was selected and added to our system because we needed high FPS and significantly
higher accuracy.

2.4. Multi-Agent

We placed the image detection algorithm in a multi-agent system platform framework to control
the drone movements and coordinate all the functions of the system. We selected the multi-agent
system because it is an ideal platform for improving communication between agents due to their
maneuverability and their ability to be deployed in a multitude of environments [47] due to the use
of the RL and Q-learning algorithms. They are useful for tasks in different areas, both in commercial
and industrial environments, such as search and rescue of people, sensorization, monitoring of the
environment, surveillance, and recognition, as well as in other scientific fields [47,48].

For our purpose, we selected the MARLsystem, which performs general-purpose tasks in a
coordinated and efficient manner [48]. After a detailed review of the literature, no reference or
knowledge was found of a crack detection application that makes use of distributed technological
capabilities adapted to the recognition of Spanish roads.

3. Proposed System

3.1. Proposed Architecture

The proposed architecture aims to provide a solution to the problem and can be adapted to the
introduction of new functionality in different environments. An architecture to deal with the proposed
problem must contain a series of well-defined characteristics to correctly operate. To this end, this
research project was designed to focus on a multi-agent architecture that allows for the automation
and detection of irregularities on roads by employing the detection of images captured by a drone.
The main characteristics that led to the decision to use this type of architecture are its distributed
architecture, the high level of communications, and the existence of message queues for information
processing. A multi-agent architecture also allows a functionality used by one system to be replaced
by another without having to modify the whole system, such as the image processing system or the
type of database. A multi-agent system, in addition to the characteristics described above, is mainly
characterized by each agent having a well-defined task and coordinating among themselves to achieve
a common goal.

For the construction of multi-agent systems, several systems have already been developed that
allow the process to be faster, including libraries such as SPADE, Python’s library [49], or more complex
systems, such as JADE [50], PANGEA [15,51], and osBrain [52]. In this architecture, we chose to use
the PANGEA multi-agent system as a starting point. This system allows the elements of the system
to dynamically enter and leave the platform, thus allowing the specific demands of the system to be
met. The MAS architectures have to perform services on demand, which means that each of the agents
has to report on the services they have available and can offer to other entities within the architecture.
PANGEA is based on organizational technology, which allows for visual representation and can be
applied to any type of system, allowing for human interaction within the system. Finally, PANGEA
can be distinguished from other systems by its rules engine that allows for the distribution of the
computational load. Figure 1 shows the proposed architecture using MAS PANGEA, the different
virtual organizations, and the main agents that form the architecture designed for this system.
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Figure 1. Proposed architecture using multi-agent system (MAS) PANGEA.

The designed architecture is divided into different parts. There are two well-defined parts:
The upper part of the image displays the minimum agents necessary for the functioning of the MAS
PANGEA system; the lower part shows the virtual organizations upon which the case study was based.

The organizations in the system are detailed below.
Job/Route Planning Organization: This organization refers to the generation of the routes to

be followed by the drones to capture the video of the roads. Its main functionality is based on
transforming data between two coordinates into a safe route that the drone can follow to capture
information. Communications between the agents of this organization and the central agent are
bi-directional. This agent is responsible for requesting services from each of the agents, and they
respond with data for each of the queries. This central agent is responsible for communicating with the
other organizations for the exchange of information. The agents found in this organization are listed
in Table 3.

Table 3. Agents of the job/route planning organization.

Agent Description

Mapping
Allows iteration with maps to identify

the existence of high-voltage cables in the flying area, distances
to airports, etc.

Waypoint Calculator
Calculates optimal waypoints from

route data.

Roads
Obtains a route from a road indicating two

coordinates. This agent connects to external service APIs. One can use the
services of Google or Open-Street Maps to obtain this information.

Battery Estimation Estimates the battery life for the realization of a route.

Image Process Organization: This organization is responsible for processing images by applying
deep-learning techniques. To achieve the objective of this organization, it has several agents that can
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be replaced by agents of the same characteristics that apply different techniques for labeling, training
models, or detection. This architecture, which allows for exchanges of agents, makes it easy to conduct
tests or apply new techniques without making changes to the whole system. The main agents that can
be found in this organization are as follows:

• Image acquisition: Obtains the images from the source to perform pre-processing, training,
or detection tasks.

• Image pre-process: Performs pre-processing of the images, such as color adjustment, scaling,
and adaptation of each of the images to the inputs of the different models.

• Model training: Takes the tagged images as input and performs training with different deep
learning algorithms.

• Detection: Uses the deep learning models trained by the training model agent to detect cracks or
anomalies in the new images inserted into the system.

UAV Bridge/Link Organization: This organization refers to the application that is used as an
interface for communication and information exchange between the drone and the platform. It contains
several agents that obtain data from the drone sensors, such as the battery agent, the altimeter agent,
or the image monitoring agent. In this organization, we also have a navigation agent that is in charge of
the navigation of the drone. This agent uses the information from the other agents in the organization
and the coordinates of the waypoints from the job/route planning organization to make the drone
reach the indicated coordinates. The global positioning system (GPS) agent, apart from being useful
for navigation, is crucial for the whole system, since it allows tagging of the locations of the photos
and, thereby, locating where crack repairs are necessary.

Application Interface Organization: This organization can adapt the generated information to
the application layer. This organization is used as an interface; the applications that interact with this
interface can interact directly with the system. That is, the organization is responsible for converting
the system’s raw data to human-readable data. In this particular case, it is used for the user in charge of
monitoring and deciding which roads are to be inspected, the applications of the workers responsible
for carrying out repairs on these roads, the generation of reports, and sending notifications.

PANGEA Multi-Agent System Organization: This organization is composed of the minimum
agents necessary for PANGEA’s operation. The objective of this organization is to manage virtual
organizations and the agents in each of them. The agents of this organization include the following:

• Database Agent: The only agent with database access privileges, it stores the information present
within the organization. This agent is also in charge of performing backups and ensuring
consistency of information.

• Information Agent: Manages the services within the virtual organization by making the services
of each of the agents available to the other agents. When an agent joins the system, it indicates to
this agent the services it provides so that when another agent needs to use that service, it makes a
query to this agent.

• Normative Agent: Responsible for imposing and ensuring that the rules comply with the
communications they establish between agents.

• Service Agent: Aims to distribute functionality through web services. It is used as a gateway that
allows the communication of external services with the organization’s agents. These web services
allow the easy construction of external agents in different programming languages.

• Manager Agent: Responsible for checking the status of the system periodically. It is in charge of
detecting if there is any overloaded functionality and any possible failures in the agents of the
different organizations.

• Organization Agent: Responsible for the verification of all the operations of the virtual
organizations, checking the security and the load balancing, and offering encryption of the
most important agents.
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The system uses two different databases for its operation: The PANGEA Database is used by
the PANGEA organization to store the available agents and the services available in each of them.
The APP Storage Database contains information about the specific system. In this case, this includes
the images obtained by the drone, their locations, the next inspections to be performed, routes, etc.

In the proposed architecture, three agents external to the system were designed. These represent
the users who interact with the system. Firstly, Road Monitoring is the main agent in charge of defining
the inspections of the roads to be carried out, labeling the images, and supervising of the results.
The second agent of the system is the Drone Pilot, which is in charge of conducting road inspections.
Its main task is to supervise the flying of the drone in case there is any incident and the drone needs
to be controlled manually. Finally, the Road Maintenance agent represents the person or company
responsible for completing road maintenance and resolving incidents.

The architecture is based on different modules and each one is specialized in a different task or
objective. The challenge of this type of architecture is focused on simplifying communication between
nodes or agents and allowing them to be decoupled from the system so that they can be replaced by
others with similar characteristics or services. To this end, when the system is initiated, we have a set
of agents from the PANGEA organization that are responsible for displaying the available services and
coordinating agents.

The protocol used in this architecture to achieve the objectives is the contract-net protocol,
where an external agent can search, find, and execute a required service. To do this, the agent
that requires a service sends a message to the Agent Manager indicating the type of service required
with the name of the service and the parameters for that service. This agent, with the help of the
Organization Agent, Information Agent, and Database Agent, responds with a list of available agents
that have the services and resources to carry out the required service. The agent accepts the proposal of
the Agent Manager by choosing an agent from the list to carry out the service. An example of requiring
a detection service is provided in Figure 2.

Figure 2. Image call service.

The architecture in the case study based on PANGEA allows the dynamic integration of new
functionality without affecting the other parts of the system. The second reason why PANGEA was
chosen is its user license, as it is open source can be used for commercial purposes.

3.2. Proposed Method

We evaluated the different forms of malfunctions and cracks in roads using deep learning for
detection. The aerial system consisted of a DJI Mavic Air 2 quadcopter (DJI, Shenzhen, China), with a
maximum flight time of 34 min, combining a 4K digital camera and location information, which were
used for aerial imaging. The camera mounted on the UAV had a 24 mm lens with a field of view (FOV)



Sensors 2020, 20, 6205 9 of 23

of 84 degrees and a resolution of 4000 × 3000, and it was capable of shooting 48-megapixel photos;
the camera was three-axis stabilized by its gimbal drone https://www.dji.com.

The image data used for model training and testing of deep neural networks were collected using
the conventional UAV camera, since its resolution capacity was 3840 × 2160 pixels at a distance of
60 m from the ground. According to some authors [53], during this training process, images can be
used from third parties with different environments but following the same process. The general idea
of this proposed solution is illustrated in Figure 3.

Figure 3. Image data acquisition.

During the capture process, videos were created. From them, frames were made for use in
training. A total of 568 high-resolution images were generated, which were then classified and labeled
as potholes and cracks. Then, the data from the labeled images were used to train and evaluate the
convolutional neural net; the dataset used in this work is detailed in this section.

We first prepared of research data, followed by annotation and labeling. The prepared dataset was
divided into training and testing sets. The labeled training data were used to build a model using the
YOLOv4 architecture. The result of the modeling phase was a model, also called weight. To evaluate
the model’s performance, we detected the cracks found in the roads that were saved in the test data.
The proposed method is shown in Figure 4.

Preprocessing

Data
Augmentation

Rescaled Images

Image Labelling

Model Training Model
Evaluation

Results

Detection Algorithm

UAV Pangea

Images Adquired

Figure 4. Block diagram of the drone detection solution.

https://www.dji.com
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3.2.1. Annotation and Labeling

The classification process is a manual process and must be performed by a person who knows
how to differentiate whether the object in question is in the image and where the object is located.
For this process, we used LabelImg software [54]. This graphic tool allows the annotation of images
and delimitation of boxes of labeled objects in images. During this process, more than one object can
be found, and each one must be delimited.

In this process of marking, we completed the annotations on all 568 images acquired.
The information was stored in text, starting with the identification or annotation, differentiating
potholes and cracks. In this case, a Class ID, the central position of the bounding box (x and y),
and width and height of the bounding box (w and h) were stored. The Class ID is an integer value,
starting at 0, and the bounding box information is a decimal format on a scale of 0–1. Each image in
.jpg format has a file in .txt format with information about the holes, as shown in Equation (1).

0 0.365625 0.745370 0.020313 0.055556

0 0.665755 0.531481 0.048698 0.053704
(1)

3.2.2. Model Training

This work was based on the YOLOv4-tiny model, which follows the principle of prediction of
coordinates like YOLOv2 and YOLOv3. It is possible to multi-classify in YOLOv4 instead of classifying
only one class, as in the older versions. YOLOv4 adopts a cross-loss entropy function instead of the
multi-class loss function.

The network was configured to detect two classes. The filter number must be configured directly
in the layer of the convolutional network. Thus, the formula used to apply the filter number is
represented by Equation (2).

Filters = (Classes + 5)× 3 (2)

This number of filters must be replaced in the three convolutional layers before each YOLO layer,
which only has to be the last convolution before each of the YOLO layers. In the model used in this
work, the two last layers before each YOLO instance have 21 filters each. The networks used and
configured are presented in Figure 5, highlighting the YOLO instances in blue.
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Figure 5. The network structure of the YOLOv4 pothole detection model.
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By using this model in a graphics processing unit (GPU), YOLOv4 can be used with real-time
images [55]. However, in devices with low processing capacity, such as the Nvidia Jetson,
the conventional YOLOv4 algorithm works slowly. As an alternative, the YOLOv4-tiny network
can be used, which satisfies the requirements in real time based on limited hardware resources.
Therefore, we chose to use the YOLOv4-tiny algorithm. The structure of the YOLOv4-tiny network
used is shown in Table 4.

Table 4. Network structure of YOLOv4-tiny.

Layer Type Filters Size/Stride Input Output

0 Convolutional 32 3 × 3/2 416 × 416 × 3 208 × 208 × 32
1 Convolutional 64 3 × 3/2 208 × 208 × 32 104 × 104 × 64
2 Convolutional 64 3 × 3/1 104 × 104 × 64 104 × 104 × 64
3 Route 2
4 Convolutional 32 3 × 3/1 104 × 104 × 32 104 × 104 × 32
5 Convolutional 32 3 × 3/1 104 × 104 × 32 104 × 104 × 32
6 Route 5 4
7 Convolutional 64 1 × 1/1 104 × 104 × 64 104 × 104 × 64
8 Route 2 7
9 Maxpool 2 × 2/ 2 104 ×104 × 128 52 × 52 × 128
10 Convolutional 128 3 × 3/1 52 × 52 × 128 52 × 52 × 128
11 Route 10
12 Convolutional 64 3 × 3/1 52 × 52 × 64 52 × 52 × 64
13 Convolutional 64 3 × 3/1 52 × 52 × 64 52 × 52 × 64
14 Route 13 12
15 Convolutional 128 1 × 1/1 52 × 52 × 128 52 × 52 × 128
16 Route 10 15
17 Maxpool 2 × 2/ 2 52 × 52×256 26 × 26 × 256
18 Convolutional 256 3 × 3/1 26 × 26 × 256 26 × 26 × 256
19 Route 18
20 Convolutional 128 3 × 3/1 26 × 26 × 128 26 × 26 × 128
21 Convolutional 128 3 × 3/1 26 × 26 × 128 26 × 26 × 128
22 Route 21 20
23 Convolutional 256 1 ×1/1 26 × 26 × 256 26 × 26 ×256
24 Route 18 23
25 Maxpool 2 × 2/2 26 × 26 ×512 13 × 13 × 512
26 Convolutional 512 3 × 3/1 13 × 13 × 512 13 × 13 × 512
27 Convolutional 256 1 × 1/1 13 × 13 × 512 13 × 13 × 256
28 Convolutional 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
29 Convolutional 21 1 ×1/1 13 × 13 × 512 13 × 13 × 21
30 YOLO
31 Route 27
32 Convolutional 128 1 × 1/1 13 × 13 × 256 13 × 13 × 128
33 Upsample 2x 13 × 13 × 128 26 × 26 × 128
34 Route 33 23
35 Convolutional 256 3 × 3/1 26 × 26 × 384 26 × 26 × 256
36 Convolutional 21 1 × 1/1 26 × 26 × 256 26 × 26 × 21
37 YOLO

For the training, we used the 1362 images present in the dataset. An image could be reproduced
several times, increasing the training of our model. During the pre-processing stage, we manually
detected and recognized the holes in the road, as explained in Section 3.2.1. The model training
environment is composed of the DarkNet network. This neural network structure is written in C
and CUDA language and can be executed directly on the GPU. It is installed depending on the GPU;
we used it with Google Colab, which allowed us to perform calculations on a Tesla K80 GPU with
12 GB of memory.
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4. Results

To evaluate our system, we first considered quantitative aspects, comparing the labeled dataset
images with the final images classified by the algorithm. Next, for the qualitative evaluation, a series
of applications were constructed to allow the user to carry out, in a centralized and unified way, all the
tasks of our system, from the definition and follow-up of routes to the visualization and verification of
the results.

4.1. Dataset

According to [34], the main objective in creating better roads is to avoid holes and cracks in the
track, which requires precise diagnosis and differentiation between the types of problems that can be
found in the pavement.

In the bibliographical research, we identified several datasets of holes and cracks in asphalt, but the
datasets were not adequate for the proposed method of using a drone in a multi-agent system to
capture pictures at a safe distance from the road. Therefore, we created of a new set of data to represent
the situation of Spanish roads. A total of 600 photos were taken at a resolution of 3840 × 2160 pixels.
The images were resized to 1200 × 900 pixels. Some images of the dataset are demonstrated in Figure 6.

Figure 6. Dataset.

After labeling, the dataset contained a total of 568 labeled images. During the pre-processing stage,
adjustments were made to the image orientation and resizing, as mentioned above. For each image in
the set, different versions of the image were created using magnification techniques. The images were
zoomed in and out, ranging from 0% to 15%. This process was repeated to increase the data set size
from N to 2N, repeating only the images that contained defects in the track.

The total number of images in the dataset was 1362 images. Of these images, 70% were for
training, 20% for validation, and 10% for testing the effectiveness of the trained model. The dataset is
composed of the images and their respective labels. An application (https://roboflow.ai) was used to
generate the dataset, according to Figure 7.

https://roboflow.ai
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Figure 7. Dataset.

The dataset used for the validation of the results of this scientific article has been published at
https://github.com/luisaugustos/Pothole-Recognition for verifying the results or for testing new
algorithms by the community.

For the quantitative evaluation, we used the following metrics: accuracy, i.e., the relationship
between true positives (TPs) and true positives (TPs) along with false positives (FPs) (Equation (3));
recall, which is the probability that an image is classified as positive and the relationship between the
TPs and the TPs together with the false negatives (FNs) (Equation (4)); and F1, which is combination of
the two previous metrics (Equation (5)). We classified the speed measured in frames per second (FPS);
the mean average precision (mAP), calculated by the precision and recall curve; and the intersection
over union (IoU), which is the overlapping area between the area found the image and the detected
area. Lastly, we used the kappa metric (Equation (6)), which is the relationship between the relative
observed agreement among raters Pr(a), and the hypothetical probability of chance agreement Pr(e),
which is used to measure inter-rater reliability for qualitative items.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

F1 = 2 · Precision · Recall
Precision + Recall

(5)

Kappa =
Pr(a)− Pr(e)

1 − Pr(e)
(6)

The training process of the model was evaluated in stages, alternating between iterations and
image resolution. The first stage was used for YOLOv4-tiny using a pre-trained weight model, altering
the convolution layers as needed. Every 1000 iterations during the training process, the model was
stored; the result of the success of each of the values is shown in Figure 8. In the image, the value
reached 6000 iterations and stabilized with an average success value of 94.6%.

https://github.com/luisaugustos/Pothole-Recognition
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Figure 8. The result using 608 × 608 images with 6000 batches.

4.2. Detection

YOLOv4 has four data augmentation parameters provided by the author that were also used to
generate more training samples by rotating the angle and adjusting the saturation, exposure, and hue
of the images. YOLOv4 uses a new method of data enhancement, which was explained earlier in
Section 2. The speed of image detection with YOLO initially averages 45 FPS. Its biggest failure is
inaccuracy with small objects in the image.

The bounding box (bbox) method, for each grid cell, predicts B (bbox) and C probabilities of
being one of the trained classes. A bbox prediction has five components: (x, y, w, h, and confidence).
The coordinates (x, y) represent the center of the bbox relative to the location of the cell. If the center of a
bbox is not in a cell, it will not be responsible for it and will not represent it. Cells only have a reference
to objects whose center falls inside them. These coordinates are normalized to [0, 1]. The dimensions
of the bbox (w, h) are also normalized to [0, 1] relative to the image size. Figures 9–11 depicts the result
in the detection of road defects. In addition, results in Appendix A and a video demonstration added
in Supplementary Materials.
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(a) (b)

Figure 9. Detection results with zoom. (a) Single detection. (b) Multiple detection.

(a) (b)

Figure 10. Detection results in a large number of potholes. (a) Multiple detection. (b) Single pothole.

(a) (b)

Figure 11. Crack detection and a detection of a pothole inside other. (a) Detection of a crack in the
track. (b) Pothole inside another.
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In experiment 1 (Table 5), concerning the label that classifies the potholes, we observed an accuracy
of 96.25% and an AP of 98.46%. For the classification of the cracks, we obtained slightly worse accuracy
and AP than for potholes, at 90.38% and 90.89%, respectively. This decrease occurred due to the lower
number of images of cracks in the dataset. For all the images, the precision was 95.70%, the AP was at
94.67%, and the prediction time was 5.53 ms. We obtained a kappa metric of 0.73, which represents a
high concordance.

Table 5. Obtained results.

Label TP FP FN Precision (%) AP (%) Kappa Prediction Time (ms)

Pothole 977 38 - 96.25 98.46 - -
Crack 94 10 - 90.38 90.89 - -
Total 1070 48 62 95.70 94.67 0.73 5.53

In experiment 2 (Table 6), we obtained similar results to those in experiment 1. In the classification
of the potholes, we obtained a precision of 96.54% and an AP of 98.45%; however, in the classification
of the cracks, the precision was higher than in experiment 1, obtaining a similar AP of 92.00% and
90.68%, respectively. In all the images, the precision was 96.13%, the AP was 94.56%, and the prediction
time was 5.52 ms. We obtained a kappa metric of 0.72, which represents high concordance, as in the
first experiment.

Table 6. Obtained results.

Label TP FP FN Precision (%) AP (%) Kappa Prediction Time (ms)

Pothole 977 35 - 96.54 98.45 - -
Crack 92 8 - 92.00 90.68 - -
Total 1069 43 64 96.13 94.56 0.72 5.52

To achieve complete functioning of the system, three different applications were developed,
each with a well-defined objective, which can used by users with different roles within the system.

4.3. Application

The first application in Figure 12a refers to the application used by the Road Monitor. In this
application, the user is responsible for defining the routes where inspections should be performed,
preparing the data for training, and validating the data of the detection output for the generation of
reports and worksheets for the operators in charge of performing road maintenance. Although the
system allows automatic operation, we decided to use expert supervision to avoid possible
failures, identify the cracks or holes that need intervention, and assign these tasks to the operators.
This reclassification will allow feedback on the system to improve the algorithm in the future.

The second application we developed is the Road Maintenance users’ application, which is shown
in Figure 12b. In this application, the user has a list of incidents, for which details, the photo, and the
location of the incident are provided to enable its repair.

The last application is that used by the drone pilot. This application specifically uses the DJI
SDK, since the drone used for the case study is of this brand. In this application, a list of tasks to be
performed is provided and used by the pilot to know where the inspections are required and to perform
real-time monitoring of the route followed by the drone during the inspection. This application takes
the route coordinates calculated in the Road Monitor application to automatically create a route.

The main advantage offered by the development of the set of applications compared to the use
of applications that currently exist on the market is a complete system from the definition of routes,
to inspection, to the monitoring of results.
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(a) Road Monitor Application (b) Mobile App

Figure 12. Application details.

5. Conclusions

In this work, we designed a platform capable of detecting damage on transport routes using
drones and a multi-agent architecture. At the level of detection of anomalies, accurate results were
obtained, since the proposed system enabled the platform to achieve precision higher than 95%.
Despite the different crack detection techniques that were tested and analyzed during the literature
review phase, none of them produced a result higher than 47%. Notably, one of the key factors
producing this low performance was that the datasets found in different articles corresponded to
non-European roads or that cracks were too large, so they were not similar to the small cracks and
potholes that were detected in this work. The dataset for the verification of results in this work was
developed on a regional road in the province of Salamanca. The imaging was performed according to
the current legislation for the flight of drones in public locations. No variation was observed in the
results obtained by the predictive algorithm between images taken at 70 m and at 90 m. The results
were invariant regardless of the speed of the drone, which was 15–25 km/h during the tests.

The findings demonstrated how the procedures currently carried out by companies and regional
governments responsible for road maintenance can be improved. Our method saves time, costs,
and labor by establishing a more objective method for determining the road areas in need of repair as
soon as possible.

The design of the solution proposed in the case study and based on virtual organizations of
agents allows the testing of different techniques and the definition of parameters that are suitable
for the user’s final application, that is, without the final user detecting any kind of change during
the reprogramming. The PANGEA-based multi-agent architecture allows for parallelization of work
according to the requirements of the platform at any given time, thus adapting to the needs of the
context. The advantages of using an MAS include facilitating the development of case studies and
ensuring compatibility between the different entities that compose the platform. The communication
of the different agents implemented by means of the RFC 1459 Internet Relay Chat Protocol allows the
optimization of the energy consumption necessary for communication, thus optimizing the battery
of the drone as much as possible during the flight. To allow the scientific community to carry out
research, both the pre-trained model and the datasets have been made public in a repository.
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As future lines of this work, we plan to work on the coordination and distribution of works using
drones with the main goal of distributing or subdividing a sampling area among several UAVs with
different characteristics, such as weight, speed, and flight time. Due to this, we are currently studying
different techniques to optimize tasks and routes based on battery life, altitude, and distance from
the mapping zone to the initial point of takeoff using ardupilot as a flight controller. We also plan
to continue our research by incorporating new 3D cameras or a LiDAR sensor in this drone or in a
custom-made drone that allows knowledge of the distance from the drone to the road to calculate the
size of the cracks or holes. Although we have started tests using techniques based on drone examples,
no important results are yet available for dissemination.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/20/21/6205/s1.
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Appendix A

Figure A1. Detection results.

Figure A2. Detection results.

Figure A3. Detection results.
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Figure A4. Detection results.

Figure A5. Detection results.
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