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Abstract: Nasu-Hakola Disease (NHD) is a recessively inherited systemic leukodystrophy disorder
characterized by a combination of frontotemporal presenile dementia and lytic bone lesions. NHD is
known to be genetically related to a structural defect of TREM2 and DAP12, two genes that encode for
different subunits of the membrane receptor signaling complex expressed by microglia and osteoclast
cells. Because of its rarity, molecular or proteomic studies on this disorder are absent or scarce, only
case reports based on neuropsychological and genetic tests being reported. In light of this, the aim of
this paper is to provide evidence on the potential of a label-free proteomic platform based on the
Multidimensional Protein Identification Technology (MudPIT), combined with in-house software
and on-line bioinformatics tools, to characterize the protein expression trends and the most involved
pathways in NHD. The application of this approach on the Lymphoblastoid cells from a family
composed of individuals affected by NHD, healthy carriers and control subjects allowed for the
identification of about 3000 distinct proteins within the three analyzed groups, among which proteins
anomalous to each category were identified. Of note, several differentially expressed proteins were
associated with neurodegenerative processes. Moreover, the protein networks highlighted some
molecular pathways that may be involved in the onset or progression of this rare frontotemporal
disorder. Therefore, this fully automated MudPIT platform which allowed, for the first time, the
generation of the whole protein profile of Lymphoblastoid cells from Nasu-Hakola subjects, could be
a valid approach for the investigation of similar neurodegenerative diseases.

Keywords: Nasu-Hakola Disease; frontotemporal dementia; TREM2; proteomics; MudPIT; Lym-
phoblastoid cells

1. Introduction

Based on the last report edited by Alzheimer’s Disease International [1], every 3.2 s a
person falls ill worldwide with “dementia” [2], an umbrella term that indicates a broad
category of brain diseases linked to cognitive decline. These include Alzheimer’s Dis-
ease (AD), Vascular Dementia (VD), Lewy Bodies Dementia (LBD) and Frontotemporal
Dementia (FTD). In 5–15% of dementia cases, FTD is the second most common cause of
presenile dementias. FTD includes a large spectrum of pathologies caused by atrophy of
the frontal and/or anterior temporal lobes of the brain which leads to changes in behavior,
social conduct, language or speech [3]. Despite a wealth of studies on FTD, much about
the molecular mechanism of the disease, including the causes of the sporadic or rare forms,
remains unknown. The overlap of several symptoms with other neurological syndromes
makes this category even more puzzling.
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In this context, a prominent position is occupied by Nasu-Hakola Disease (NHD)
or Polycystic Lipomembranous Osteodysplasia with Sclerosing Leukoencephalopathy
(PLOSL), a frontotemporal neuropathology characterized by a combination of dementia
and cyst-like osseous lesions. The contemporary impairment of nervous and skeletal
body systems results in a disorder that is truly unique in the neurodegeneration field [4].
Despite PLOSL pathogenesis still being unknown, the clinical history of patients is well-
standardized. It follows four sequential stages: a latent stage which moves to an osseous
stage, an early neurological stage, and a late neurological stage that leads patients to death,
usually within around 45 years [5]. With roughly two hundred cases described worldwide,
NHD is likely to be the least common neuropathy, the highest incidence being reported
within the Finnish and Japanese populations [6]. The genetic studies on NHD suggest that
this disorder is caused by a structural defect of two genes encoding different subunits of
the same membrane receptor signalling complex, specifically the DNAX-activating protein
12 (DAP12, also named TYROBP) and the Triggering Receptor Expressed on Myeloid cell 2
(TREM 2) genes [7,8]. TREM2/DAP12 are expressed in different tissues including the central
nervous system (CNS), microglia, pre-osteoclast and the immune system (natural killer
cells, lymphocytes, macrophages and dendritic cells). The expression and distribution of
this complex in brain tissue cells has been described by Sessa et al. [9]. While several DAP12-
TREM2 mutations that cause NHD onset [10] are well-identified, the precise molecular
mechanism and the relationship between neuro and bone involvement in its progression
are not fully understood. Thus, assuming that the purpose of scientists in this field is the
development of a tailored therapy to halt/slow down the progression of illness, a great
deal of research is certainly needed.

To this purpose, in an effort to uncover their protein profiles, proteomics were applied
for the first time by our team to lymphoblastoid cells (LCLs) from NHD subjects [11].
LCLs from the components of an Italian family (two patients with homozygous C-to-T
mutation at position 97 in exon 2 of TREM2 gene, four patients with heterozygous mutation,
and one healthy individual) were analyzed by two-dimensional electrophoresis (2-DE)
followed by liquid chromatography mass spectrometry (LC-MS/MS). This resulted in the
identification of 21 proteins (involved in glucose metabolism and information pathways
as well as in stress responses) that were differentially expressed among groups [11]. The
lack of identification of other proteins involved in the same and/or in other pathways this
information, while being of great interest, suggests that their roles were clearly partial. The
aim of the present work was to fill this gap by identifying most of the proteins that could
discriminate against the above subjects and illustrate the metabolic pathways involved in
the development/progression of this anomalous frontotemporal dementia. The application
of a label-free approach, consisting of a two-dimensional liquid chromatography coupled
to tandem mass spectrometry (µ2DLC-MS/MS), allowed us to achieve this goal. To the
best of our knowledge, this is the first LC-MS study dealing with the investigation of NHD
individuals from the same family that led to the identification of protein differences among
them. Taken together, these data provide a picture of physio/pathological NHD states that
could be considered as a model for studying similar neurodegenerative diseases.

2. Results
2.1. Protein Profiling

The application of a gel-free proteomic platform, based on a bi-dimensional µliquid-
chromatographic system combined to a high resolution mass spectrometer (also known
as MudPIT) [12,13], allowed the identification of 10,253 unique peptides and 3458 distinct
proteins from a total of 19 protein lists (including biological and technical replicates), by
analyzing Lymphoblastoid cell lines (LCLs) obtained from the healthy (Wt), heterozygous
(He) and homozygous (Ho) components of the family indicated in the Materials and
Methods section. The complete list of proteins identified for each group is reported in
Table S1 of the Supplementary Material.
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To verify the repeatability of the data and the efficiency of our procedure, the spectral
counts (SpCs), i.e., the number of mass spectra assigned to each identified protein in
the first technical replicate were plotted vs the SpCs of the one identified in the second
technical replicate. The same procedure was applied to two different subjects of the same
group (biological replicates). The nearly optimal linear correlation (R2 value ≥ 0.95) and
slope (y = 1.08 ± 0.15) close to the theoretical value (1.00) were obtained (Figure S1 of
Supplementary Material). The comparison of all lists revelaed that 1478 proteins were
shared among the three groups and that 448, 335 and 452 proteins were specific for Wt, He
and Ho cohorts, respectively (Figure 1). Moreover, the number of proteins that He and Ho
had in common (n = 425) was higher than the number of proteins in common between He
and Wt (n = 115) or Ho (n = 205).
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Figure 1. Venn Diagram. The figure shows the distribution of all identified proteins within three investigated categories
(Wild type, Wt, green circle; Heterozygote, He, violet circle; Homozygote, Ho, orange circle). About 1400 proteins were
shared between the three groups of subjects and approximately 400 proteins were identified as anomalous of each category.

Of note, this approach allowed for the identification of many proteins usually difficult
to detect, several of which were characterized by anomalous properties in terms of both
MW and pI values, as shown in 2D virtual maps (Figure S2) where all the identified proteins
were plotted according to their theoretical molecular weight (MW) and isoelectric point
(pI), shown in Figure S2. In particular, around 100 proteins had an MW of < 10 or > 200 kDa
and a similar number had a pI > pH 10.0. By contrast, very few proteins (about 10) had a
pI < pH 4.0.

2.2. Clustering and Differential Analysis

All 19 lists of proteins identified were compared using the MAProMa platform [14],
normalized and used to perform a hierarchical clustering [15]. As shown in Figure 2, the
seven subjects were correctly grouped into the three corresponding categories: Wt, He, and
Ho. Interestingly, two main branches could be observed: one involved protein lists from
Wt only, while the other included both He and Ho. The latter two cohorts were correctly
sub-grouped in their set.
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Figure 2. Hierarchical Clustering. Dendrogram of protein lists from 7 Nasu-Hakola subjects and their technical replicates.
Clustering was performed by computing the average spectral count (aSpC) value of proteins selected by Linear Discriminant
Analysis (LDA); Euclidean’s distance metric and Ward’s methods were applied. Categories were reported in different
colours: He subjects in violet, Ho subjects in orange and wt subjects in green.

The average lists from each category (the number of proteins identified were: 2246,
2353 and 2560 for Wt, He and Ho, respectively) were compared singularly by applying
the DAve (Differential Average) and DCI (Differential Coefficient Index) algorithms of the
MAProMa Software. Using stringent filters (0.4 and 15, respectively) on aSpC for both
Dave and DCI indexes, 192 differentially expressed proteins (DEPs) could be extracted.
Among these, 147 distinct proteins were differentially expressed between Wt and Ho:
55 were upregulated in Wt (among which 2, HSP90AB2P and KRT10, were exclusive),
whereas 92 were upregulated in Ho. One hundred and sixty proteins were differentially
represented in Wt and He: 52 were upregulated in Wt (among which 1, TMSB4X, was
exclusive), whereas 108 were upregulated in He and only 28 distinct proteins (13 were
upregulated in He and 15 were upregulated in Ho) distinguished the protein profile of He
from that of Ho. This minimal difference corroborated with a cluster analysis shown in
Figure 2, highlights the homology of protein expression between He and Ho. The complete
list of the up- and down-expressed proteins in the different categories is reported in Table
S2 of the Supplementary Material.

The application of the Linear Discriminant Analysis (LDA) allowed the extraction of
475 significant proteins (LDA-SPs, see Table S3) with a p < 0.01 from the total of proteins
identified [16]. The layout of Figure 3 clearly shows that these selected proteins included
128 of all 192 DEPs mentioned above.

By interrogating UniPROT, it could be observed that 40% of proteins extracted by LDA
and label-free differential analysis were cellular; 28% were organelles, 22% were from the
macromolecular complex, and 7% were membrane proteins. This subcellular distribution
matched with the localization of total identified proteins (Figure S3).

2.3. Network Analysis: Systems Biology Evaluation

The identification of the largest possible number of proteins and the availability of
the Homo Sapiens network dataset was the premise of this study; to investigate the func-
tional relationships among proteins anomalous to Wt, He and Ho. Both the differentially
expressed proteins and the proteins selected by means of LDA were plotted onto the
Protein–Protein Interaction (PPI) Network using Cytoscape and its plug-ins [17,18]. This
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approach identified the following four principal sub-networks: (i) energetic metabolism
(Glycolysis, Krebs Cycle and Electron Transport Chain); (ii) cell cycle (Jak-STAT cascade,
Chromatin assembly and Proteasome); (iii) protein synthesis (Translation factors and
mRNA splicing) and (iv) cytoskeleton (Actin-related proteins, HSP, T and B cells activation)
(Figure 4).
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This large-scale identification of proteins allowed for a significant increase in the
number of differentially expressed proteins belonging to the glycolysis and Krebs cycle
pathways previously detected by Giuliano et al. [11] with the on-gel procedure.

Given the important role played in this pathology by TREM2 receptor, our attention
was focused on the identification of this protein. While this protein could not be detected
in our proteomic analysis, the identification of three specific proteins that interacted with
TREM2-Ras-related C3 botulinum toxin substrate 1 (RAC1), Guanine nucleotide exchange
factor (VAV2) and 1-Phosphatidylinositol 4,5-Bisphosphate Phosphodiesterase Gamma-2
(PLCG2), led us to investigate this network in more detail. Of particular interest was
the evidence that these TREM2 interactor proteins were differentially expressed in the
three groups. The data shown in Figure 5, panel A suggest that their level of expression
was gradually increased when moving from Wt to He, the highest upregulation being
observed in Ho. The positive correlation between this observation and the Western blot
data generated from the comparison of band intensities of VAV2 by using ImageJ software,
validated this result, as shown in Figure 5, panel B.

While not succeeding in the detection of DAP12, the co-receptor of TREM2, identifica-
tion of its protein interactor Sialic acid-binding Ig-like lectin 14 (SIGLEC14) was successful.
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3. Discussion

This report shows the potential of the MudPIT proteomic platform combined with
in-house software and online bioinformatics tools, to identify the proteins expressed in
NHD and to characterize the major biochemical pathways involved.

A previous 2-DE proteomic study performed on the lymphoblastoid B cells of two
homozygotes in which dementia manifests, four heterozygotes affected by this disorder,
and a healthy control of the same family, led to the identification of a few proteins which
displayed altered expression among the cohorts [11]. However, due to the inherent limi-
tations of the approach applied, these findings, while being strongly correlated with the
data available in the literature, relative to other neurodegenerative disorders [19–24], were
partial and could not answer all of the questions about the dynamics of NHD. Indeed,
the label-free proteomic platform described in this report could help bridge that gap. In
fact, the detection of the largest possible number of proteins paves the way for a detailed
analysis of the proteome differences among the three conditions examined and for the
identification of key protein markers potentially useful for the diagnosis and/or treatment
of this TREM2-based disease.

To the best of our knowledge, this is the most complete proteomic analysis of LCLs
performed on subjects of an entire family carrier of TREM2 mutation. Specifically, around
3500 distinct proteins (a number 100-fold higher than that obtained by the previously
mentioned 2-DE approach), including proteins with a wide dynamic range in terms of
isoelectric point and molecular weight, were identified. It is interesting to note that the
data provided by the proteomic clustering allowed us to associate subsets of proteins to
each specific cohort (Wt, He or Ho) and to confirm the clinical classification of the subjects
investigated, thus offering indirect proof of the efficiency of the MudPIT approach to
studies on neurodegenerative diseases (NDs).

To better appreciate the biological message of this work and to visualize the processes
involved in the disorder, a PPI Network was built. We observed that, while most of proteins
identified were shared among Wt, He and Ho, a few of them were anomalous for each
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cohort and the profile of Wt differed from those of Ho and He for several differentially
expressed proteins (147 and 160, respectively). Interestingly, more than 90% of proteins
that showed a specific behavior in Wt subjects appeared to own completely opposite trend
in He and Ho. They also exhibited different expression levels; most proteins that were
down-represented in sub-networks of Wt were over-expressed in He and Ho subjects. The
small number (only 28) of up- or down-regulated distinct proteins that differentiated He
and Ho evidenced a strong homology of protein expression between these two cohorts.
This finding was of particular interest since, assuming that the He phenotype was healthy,
the greater similarity of its proteome profile to Ho than to Wt, while unexpected, provided
a novel context for interpreting disease symptoms.

Based on the total human protein network and on the occurring functional relation-
ships, the most significant proteins (DEPs and LDA-SPs) were grouped in four principal
sub-networks. Specifically, the high number of differentially expressed proteins involved
in energetic metabolism allowed us to validate an assumption previously made: that the
impaired glucose metabolism could be the result of the accumulation of glycolytic interme-
diates [11]. The current experimental data are highly consistent with the hypothesis of an
alteration of energy metabolism in NHD patients. This hypothesis supports the idea that
the general decrease of energy metabolism due to the reduced metabolic rate of glucose
may be a feature of NHD, at least as far as the neurodegenerative aspect is concerned.

Compared with other tissues, the brain is a high energy-demanding organ (it utilizes
about 25% of the body’s total glucose) and relies on the efficient production of ATP via the
sequence of metabolic pathways (glycolysis, the TCA cycle and oxidative phosphorylation)
to support synaptic transmission. It has been reported that glucose metabolism is defec-
tive in a variety of neurodegenerative disorders including AD, FTD and Mild Cognitive
Impairment [25–27]. This defect results from the oxidative damage to key proteins in the
aforementioned metabolisms and leads to a decreased ATP intake with the consequent
changes in brain function and survival.

Indeed, most glycolytic proteins were upregulated in homozygotes, while proteins
related to redox activity, TCA and the Respiratory electron transport chain, were down-
regulated in heterozygote. Among the proteins identified, both ALDOC and ENO1 have
been previously associated with psychiatric disorders [28–30]. ALDOC is a brain-specific
glycolytic enzyme that, in agreement with previous reports on mood disorders [31,32], was
found to be upregulated in diseased subjects.

The upregulation of the proteins implicated in the cell cycle, JAK-STAT cascade [33],
DNA repair and proteasome in both He and Ho, confirmed the effects of TREM2 mutations
on cell proliferation [34,35]. These findings were coherent with the observed downregula-
tion of the chromatin assembly sub-network and the activation of actin-related proteins and
HSP processes. In particular, the sub-network of heat shock proteins (HSP) were completely
down-expressed in healthy subjects in comparison with He and/or Ho. This observation
agrees with the results reported by Stefano at al. [36] about the importance of HSP60 (also
called HSPD1) as an activation agonist of TREM2 through the induction of all critical
processes (phagocytosis, proliferation, activation and migration, and apoptosis) governed
by the receptor in myeloid cells, osteoclasts, and microglia. The upregulation of HSP60
was also reported by Koh et al. [37] in a proteomic work investigating the implication of
this protein in osteoclast bone resorption. Our data are also supported by a recent work
by Ferrari et al. [38], who reported in FTD individuals a co-expression network of FTD
cluster genes that revealed a specific enrichment for DNA metabolism (i.e., transcription
regulation and chromatin remodeling), immune processes and protein meta/catabolism.

Of note, the recognition of the role of an innate immune activation in the pathogenesis
of many neurodegenerative diseases, including Parkinson’s disease (PD), amyotrophic
lateral sclerosis (ALS), Huntington’s disease (HD) and frontotemporal dementia (FTD), is
growing [39]. It is interesting to note that the TREM2 gene is allocated on chromosome
6, where 100 genes codifying the immunological system are organized. In this context,
the sub-network related to T- and B-cell activation were anomalously upregulated in He
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subjects. In particular, NCKAP1L, CD74 and LCP1 were upregulated in He vs. Ho while
only CD38 was upregulated in diseased subjects. An increase in the CD74 protein, a
chaperone involved in antigen presentation during immune response, was associated with
an increase in the neurodegeneration process. Furthermore, in studies on patients with
diabetes, CD74 was also identified as a microglial activation marker [40,41]. Given the role
of CD38 in neuroinflammation and repair processes, Blacher et al. [42] investigated the
effect of its deletion on AD pathology and, in agreement with our data, they demonstrated
that CD38 mice exhibited significant reductions in Aβ plaque in AD.

Finally, to evaluate the behavior of TREM2’s activation method in diseased vs. healthy
conditions, the investigation was focused on TREM2’s protein network and on some dys-
regulated proteins involved in TREM2 activation among those identified in the groups
investigated (Wt, He, and Ho). Three proteins associated with the TREM2 network were
identified, although at low levels: Ras-related C3 botulinum toxin substrate 1 (RAC1),
Guanine nucleotide exchange factor (VAV2), and 1-Phosphatidylinositol 4,5-Bisphosphate
Phosphodiesterase Gamma-2 (PLCG2). In particular, PLCG2 was a crucial enzyme in
transmembrane signalling and in osteoclasts, since it formed a complex with the regulatory
adapter molecule GAB2, modulating GAB2 recruitment to RANK and inducing osteoclas-
togenesis [43]. It is interesting to note that the three identified proteins showed a positive
trend, increasing their expression at similar levels in both He and Ho. The fact that NHD
occurs in Ho, may only be considered a confirmation that PLCG2, RAC1 and VAV2 were
not correlated to the disease. While DAP12, the co-receptor of TREM2, was not detected
in our analysis, it was possible to identify one of its interactors, Sialic acid-binding Ig-like
lectin 14 (SIGLEC14), an additional protein linked to the chaperonin pathway.

The data reported at present support the hypothesis that events occurring in LCLs
could mirror the events in the districts where the pathology is localized, e.g., microglia and
osteoclast cells.

Limitations and Advantages of This Study

A limitation of the present study could be the sample size of the individuals examined.
However, the apparently low number of subjects enrolled in this study (n = 7; 2/7 kin
NHD subjects), considering the rare pathology that they are suffering, is a strength when
compared with the individual cases so far discussed in the literature [44].

It may be also argued that the use of the Lymphoblastoid cells line (LCL) to investigate
a pathology that manifests its symptoms in districts (brain and bones) different from blood,
represents a limitation of the study. However, it is important to note that, together with
human-induced pluripotent stem cell (iPSC)-derived neurons, human LCLs have been
employed in biomedical research for decades, and they are increasingly being used as
in vitro research tools for personalized medicine for the treating of brain diseases [45,46].

In our case, their use brought more advantages than limitations, especially consid-
ering the rarity of the disease and the inability to proceed with frequent sampling on
NHD patients.

The preparation of human LCLs is simple, inexpensive and reliable, and could derive
from a great number of peripheral blood lymphocytes, resulting in the polyclonal nature
of cell lines. In fact, they can be maintained in continuous in vitro growth over many
months and their genome remains stable during subsequent cell divisions. By contrast,
is the phenotype of these cells that is likely to be considered a pitfall of the use of B-
lymphocytes. However, based on the proof reported by Giuliano et al. [11] that LCLs
express the homozygous mutation of the TREM2 gene, the decision was made to select and
immortalize a sub-group of cells derived from blood to be investigated in the present work.

4. Materials and Methods
4.1. Subjects

All individuals considered in this study belonged to the same family native to a
restricted area of northern Italy. The family consisted of seven members: two patients with
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homozygous C-to-T mutation at position 97 in exon 2 of TREM2 gene (Ho); four healthy
carriers with heterozygous mutation (He); and one healthy individual (Wt). The family
pedigree is reported by Giuliano et al. [11]. Based on the available data, it was possible to
exclude the consanguinity in the last five generations. Moreover, during the early 2000s,
all subjects were submitted to neuropsychological tests which covered a wide range of
cognitive functions. The complete medical report was described by Soragna et al. [47].
The Ethics Committee of the Neurological Institute “C. Mondino”, Pavia (Italy) and the
“Laura Fossati Foundation”, Montesegale, Pavia (Italy), reviewed and authorized studies
on these patients.

4.2. Lymphoblastoid B-Cell Line and Protein Extraction

The proteomic analysis described in this study was performed on Lymphoblastoid cell
lines (LCLs) immortalized from B-Lymphocytes collected from each subject, as previously
detailed by Giuliano et al. [11]. For each subject, about 30 × 106 Lymphoblastic B-cells were
used. Cells were maintained in suspension culture in RPMI 1640 medium supplemented
with 10% fetal bovine serum, 4 mM glutamine, streptomycin, and penicillin. To obtain total
extracts, cells were harvested by centrifugation (13,006× g for 5 min at 4 ◦C), resuspended
into 100 µL of 0.1 M NH4HCO3 pH 8.0, and homogenized. The pellets were treated with
0.25% (v/v) of MS-compatible detergent (RapigestTM SF, Waters Co., Milford, MA, USA) and
incubated for 20 min at 100 ◦C [48]. Finally, mixtures were chilled to room temperature and
after centrifugation (2.2 g for 10 min at room temperature) the supernatant was recovered.
Protein concentration was determined by using the SPNTM-Protein assay (G-Biosciences,
St. Louis, MO, USA) kit. Each sample was then digested overnight at 37 ◦C by adding
sequencing grade-modified trypsin (Promega, Madison, WI, USA) at an enzyme/substrate
ratio of 1:50 (w/w). An additional aliquot of trypsin at 1:100 ratio (w/w) was added in the
morning and digestion was then prolonged for 4 h. The addition of 0.5% trifluoroacetic acid
stopped the enzymatic reaction and subsequent incubation at 37 ◦C for 45 min completed
the acidic hydrolysis of RapiGest. The water-insoluble degradation products were removed
by centrifuging at 13,000× g for 10 min and supernatants containing the resulting peptide
mixtures were desalted with PierceTM C-18 spin columns (Thermo Fisher Scientific, San
Josè, CA, USA) and resuspended in 0.1% (v/v) formic acid (FA).

4.3. LC-MS/MS Analysis

The whole proteome of samples under investigation was produced by applying the
multidimensional protein identification technology (MudPIT) [12,13]. This consisted of a
2dLC-MS/MS platform, composed of a two dimensional micro-high performance liquid
chromatography system (Surveyor HPLC; Thermo Fisher Scientific, Inc., San Jose, CA,
USA) coupled online to a mass spectrometer, using ProteomeX-2 configuration (Thermo
Fisher Scientific, Inc.).

Briefly, the peptide mixture (5 µg) was loaded onto a strong cation exchange col-
umn (PolyLC-SCX 0.3 i.d. × 100 mm, 5 µm, 300 Å, PolyLCINC, Columbia, MD, USA);
eluted stepwise with ammonium chloride injections of increasing molarity (10, 20, 40, 80,
120, 200, 400, 600, 700 mM) and captured in turn onto peptide traps (Zorbax 300 SB-C18,
0.3 i.d. × 5 mm, 5 µm, 300 Å; Agilent Technologies, Santa Clara, CA, USA) for concentra-
tion and desalting prior to further separation on a reverse phase C18 column (Biobasic-C18,
0.18 i.d. × 100 mm, 5µm, 300 Å, Thermo Fisher Scientific, CA, USA). Peptides were grad-
ually eluted from this column using a 65 min linear gradient from 5 to 95% acetonitrile
(ACN) containing 0.1% FA. Flow rate was set at 130 µL/min and was split to achieve a
final flux of 2 µL/min at the end of the column.

Then, eluting peptides were electrosprayed directly into an LTQ-OrbitrapXL mass
spectrometer (Thermo Fisher Scientific, Massachusetts, CA, USA) equipped with a nanospray
ion source. The spray capillary voltage was set at 1.7 kV and the ion transfer capillary
temperature was held at 220 ◦C. For each step of peptide elution from the C18 column, full
MS spectra were recorded over a 400–1600 m/z range in positive ion mode, with a resolving
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power of 60,000 FWHM (full width at half-maximum) and a scan rate of 2 spectra. This
step was followed by five low-resolution MS/MS events that were sequentially generated
in a data-dependent manner for the top five ions selected from the full MS spectrum,
using dynamic exclusion of 0.5 min for MS/MS analysis when a peptide ion was analysed
twice. In particular, the MS/MS scans were acquired by CID fragmentation, setting a
normalized collision energy of 35% on the precursor ion. Mass spectrometer scan functions
and high-performance liquid chromatography solvent gradients were controlled by the
Xcalibur data system version 1.4 (Thermo Fisher Scientific, Massachusetts, CA, USA).

As described in the previous paragraph, three different groups of samples were
examined in this study: 2 Ho subjects, 4 He subjects and only 1 WT subject. Therefore, to
obtain a significant and, at the same time, a comparable number of data for each category,
more technical and/or biological replicates were considered. In fact, each of the two Ho
samples was injected three times, two of the four He samples were injected twice, while
the only available WT sample was injected seven times, producing a total of 19 protein
lists. The MS data were deposited to the ProteomeXchange Consortium via the PRIDE [49]
partner repository (ftp://massive.ucsd.edu/MSV000087622/ accessed on 3 July 2021).

4.4. Data Handling and Protein Profile of LCLs

Data handling was performed using the 3.3.1 SP1 Bioworks version based on SE-
QUEST algorithm (University of Washington, licensed to Thermo Fisher San Jose, CA,
USA) [50]. The experimental MS/MS spectra were correlated to tryptic peptide sequences
by comparison with the theoretical mass spectra obtained by in-silico digestion of the Homo
sapiens protein database (about 228763 entries), downloaded January 2013 from the Na-
tional Centre for Biotechnology Information (NCBI) website (http://www.ncbi.nlm.nih.gov
accessed on 3 July 2021).

The following criteria were used for the identification of peptide sequences and related
proteins: trypsin as enzyme, three missed cleavages per peptide were allowed, and mass
tolerances of 50 ppm for precursor ions and 0.8 Da for fragment ions were used. Moreover,
to assign a final score to proteins, the SEQUEST output data were filtered by setting the
peptide probability to 1 × 10−3, the minimum correlation score values (Xcorr) were chosen
as greater than 1.5, 2.0, 2.5, and 3.0 for single-, double-, triple-, and quadruple-charged ions
respectively, and a consensus score higher than 10. Validation based on separate target
and decoy searches and subsequent calculation of classical score-based false discovery
rates (FDR) were used for assessing the statistical significance of the identifications. False-
positive peptides ratio, calculated through reverse database, was less than 1%. For decoy
searches a reversed version of the target human protein database was generated using the
reverse database function in Bioworks 3.3.1 software (Thermo Fisher Scientific, Waltham,
MA, USA).

To convert the NCBI Accession code of the identified proteins into Gene Name, an in-
house script was realized in Python programming language. In addition, the GI accession
numbers of identified proteins were correlated to those downloaded January 2019 from the
UniProt repository (http://www.uniprot.org/ accessed on 3 July 2021).

Individual cellular location was assigned to each protein according to the UniProt
database. It should be noted that some proteins may have multiple cellular locations: in
these cases, the most typical and representative cellular location was manually assigned.
Proteins that could not be assigned a cellular location were not included.

4.5. Label-Free Differential Analysis

To improve the identification of differentially expressed proteins, two different and
complementary label-free approaches were adopted: an in-house algorithm, Multidi-
mensional Algorithm Protein Map (MAProMa) [14,15] and Linear Discriminant Analysis
(LDA) [16].

ftp://massive.ucsd.edu/MSV000087622/
http://www.ncbi.nlm.nih.gov
http://www.uniprot.org/
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4.5.1. MAProMa

The 19 protein lists obtained from the SEQUEST algorithm were aligned and compared
by means of the average spectral counts (aSpC) [15], corresponding to the average of all
the spectra identified for a protein and, consequently, to its relative abundance, in each
analyzed condition (Ho, He, and Wt). In depth, to select differentially expressed proteins,
the three subgroups were pairwise compared (He vs. Ho; He vs. Wt; Wt vs. Ho), applying
a threshold of 0.4 and 15 on the two MAProMa indexes DAve (Differential Average) and
DCI (Differential Confidence Index), respectively. DAve, which evaluates changes in
protein expression, was defined as (X − Y)/(X + Y)/0.5, while DCI, which evaluates the
confidence of differential expression, was defined as (X + Y) × (X − Y)/2. The X and Y
terms represented the SpC of a given protein in two compared samples.

4.5.2. Linear Discriminant Analysis and Hierarchical Clustering

To reduce data dimensions, protein lists obtained by MudPIT replicate analyses were
processed by means of Linear Discriminant Analysis (LDA) [16]. Specifically, a matrix mxn
consisting of 3458 proteins and 19 replicates grouped into three subgroups (Ho, He, Wt),
was considered. LDA was applied by using a common covariance matrix for all groups
and the Mahalanobis distance [51] from each point to each group’s multivariate mean
(proteins derived from the same gene were grouped). To select proteins that distinguished
the subgroups analyzed, those with the largest F ratio (>3.4) and the smallest p-value (<0.05)
were considered. Specifically, the F ratio represented the model mean square divided by
the error mean square, whereas the p-value indicated the probability of obtaining an F
value greater than that calculated, provided that no difference could be observed between
the population group means. The RapidMiner software was used.

All 19 lists were evaluated by means of unsupervised learning methods, such as
hierarchical clustering [52], using in-house R-scripts, based on the XlsReadWrite, and clue
and clValid libraries (http://cran.r-project.org downloaded 3 January 2013). In particular,
the Euclidean distance metric was applied, and an agglomerative coefficient was calculated
(Agglomerative Nesting—AGNES).

4.6. Network Analysis

A Global Mammalian Protein Interactomic (GMPI) network was built by means of
Cytoscape [17,18,53] and its plugin, combined data retrieved from major interactomic
repositories, including HPRD, MINT, BioGrid, IntAct, DIP, BIND and Pathway Commons
online database. In addition, it was complemented by in-house manually curated data derived
from literature. The combined dataset included only manually curated protein–protein binary
interactions inferred by two to six independent methods. Functional, protein–DNA, protein–
RNA, protein–metabolite and protein–drug interactions, as well as duplicates and self-
interactions that could lead to miscalculations of topological parameters, were removed.

Briefly, the human PPI network retrieved by PESCA plugin was matched to all dif-
ferentially expressed proteins and a subnetwork of 469 nodes and 5628 interactions was
obtained. This network was evaluated at topological and functional level to identify topo-
logical and functional modules/clusters. In particular, MCODE [54] plugin was used to
find highly interconnected regions in the network, while BINGO 2.44 [55] plugin was used
to evaluate the most represented GO terms: Homo sapiens organism, hypergeometric test,
Benjamini & Hochberg FDR correction, and a significance level ≤0.001 were applied.

4.7. Western Blotting

To validate TREM2-interactor protein VAV 2, Western blotting analysis was carried
out. A weight of 50 µg of proteins from Wt, He and Ho were separated on mini-PROTEAN
TGX stain-free Precast gels for SDS-PAGE (8–16% gradient). At the end of the run, proteins
were transferred onto PVDF membranes by means of a Trans-Blot Turbo Transfer System
(Bio-Rad), applying up to 2.5 V for 7 min. After 1h incubation in 5% BSA/milk (10 mL) in
TBS/PBS and three washes with TBST/PBST (0.1% Tween in 10 mL), the membranes were

http://cran.r-project.org
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incubated overnight in 1% BSA/milk (at 4 ◦C) with the relative monoclonal antibodies
(Thermo Fischer/Abcam, Waltham, MA, USA) at a dilution of 1:5000. After washing the
membranes three times with TBST/PBST (10 mL), incubation with the second antibody
(polyclonal anti-rabbit/anti-mouse immunoglobulin) diluted 1:8000 (Cell Signaling Tech-
nology, Danvers, MA, USA) was performed in 1% TBST/PBST for 1 h at room temperature
for each Western blot. The membranes were finally washed three times with TBST/PBST
and incubated in ECL Prime Solution (GE, Healthcare, Chicago, IL, USA). Immunoblots
were acquired with the ImageQuant LAS 4000 analyzer (GE Healthcare, Chicago, IL, USA).

4.8. Statistical Analysis

Identified proteins were evaluated by LDA (F ratio > 3.4 and a p-value < 0.05) [15] and
MAProMa (confidence thresholds were set as DAve ≥ |0.4| and a DCI ≥ |15|) [16] platforms.

5. Conclusions

Nasu-Hakola Disease, while being a very rare pathology, can be considered, due to
its anomalous features, as a good model for a deeper understanding of Frontotemporal
TREM2-based diseases. Given the absence of reports dealing with the application of
shotgun proteomics to NHD investigation, this work represents a proof of principle in this
field. The combination of 2D-LC and MS/MS technologies, in a completely automated
way, allows for an extensive characterization of complex biological matrices and does not
suffer from interferences exerted by highly expressed proteins (even in a wide dynamic
range of protein expression), that may affect the detection of biomarkers, usually present
in low amounts.

This approach was useful to characterize metabolic pathways potentially involved in
functional alterations of this pathology, as a model for studying the effect of neurological
disorders. Sure enough, for the first time, a complete set of expressed proteins by LCLs
belonging to similar NHD subjects was investigated.

Moreover, our results open the way to new investigations aiming to unravel the rea-
sons for the differences between healthy carriers and sick subjects. By means of network
analysis, the possible metabolic pathways involved in functional alterations caused by
NHD were widely characterized. In addition, our study may help to set up new exper-
iments to identify possible circulating biomarkers. This work contributed to obtaining
a broader understanding of the protein perturbations involved in NHD, a starting point
for the discovery of new biomarkers of TREM2-based dementias. Given the similarity
with other FTDs, our approach could significantly contribute, in the future, to managing
these diseases. In fact, this approach could represent a new non-invasive early diagnostic
method to investigate neurodegenerative diseases, for which only post mortem analyses
are feasible.

Of course, more investigations are needed to confirm the correlation of the described
pathways with the TREM2-related loss of functions disease, including frontotemporal
dementia, but our approach has aptly demonstrated that it can contribute to managing
NHD and other FTD diseases in the future. Our main focus was the discovery of potential
biomarkers which have the ability to diagnose these diseases early on or to characterize
different pathological phenotypes, to unravel new underlying molecular pathways, and to
monitor patient responses to new therapies.
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