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Abstract

Dysregulation of gene expression in Alzheimer’s disease (AD) remains elusive, especially at

the cell type level. Gene regulatory network, a key molecular mechanism linking transcription

factors (TFs) and regulatory elements to govern gene expression, can change across cell

types in the human brain and thus serve as a model for studying gene dysregulation in AD.

However, AD-induced regulatory changes across brain cell types remains uncharted. To

address this, we integrated single-cell multi-omics datasets to predict the gene regulatory net-

works of four major cell types, excitatory and inhibitory neurons, microglia and oligodendro-

cytes, in control and AD brains. Importantly, we analyzed and compared the structural and

topological features of networks across cell types and examined changes in AD. Our analysis

shows that hub TFs are largely common across cell types and AD-related changes are rela-

tively more prominent in some cell types (e.g., microglia). The regulatory logics of enriched net-

work motifs (e.g., feed-forward loops) further uncover cell type-specific TF-TF cooperativities

in gene regulation. The cell type networks are also highly modular and several network mod-

ules with cell-type-specific expression changes in AD pathology are enriched with AD-risk

genes. The further disease-module-drug association analysis suggests cell-type candidate

drugs and their potential target genes. Finally, our network-based machine learning analysis

systematically prioritized cell type risk genes likely involved in AD. Our strategy is validated

using an independent dataset which showed that top ranked genes can predict clinical pheno-

types (e.g., cognitive impairment) of AD with reasonable accuracy. Overall, this single-cell net-

work biology analysis provides a comprehensive map linking genes, regulatory networks, cell

types and drug targets and reveals cell-type gene dysregulation in AD.
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Author summary

Alzheimer’s Disease (AD) is the leading cause of dementia. It affects parts of the brain that

control language, behavior, and memory. The human brain is comprised of tens of bil-

lions of cells, such as neuronal cells that transmit information via electrical and chemical

signals, and glial cells that maintain the brain’s immune system. Researchers have found

that AD causes changes in the expression of genes within the brain cells. Gene expression

is a tightly regulated process involving interconnected networks of multiple genes. Under-

standing how these gene networks change in AD is critical to identifying genetic biomark-

ers and potential drug targets. Using genomic data of post-mortem brains diagnosed with

AD and healthy individuals, we identified gene networks that play a crucial role in regulat-

ing biological processes within neuronal and glial cells. We utilized these gene networks

to make predictions on existing FDA approved drugs that could potentially be repurposed

for AD. Furthermore, we used a machine learning strategy to identify novel genes that are

more likely to be involved in AD pathology. The systems-level approach lends itself to

analysis of single-cell genomics data of other human diseases.

Introduction

Alzheimer’s Disease (AD) is a brain disorder that progresses into memory loss, a decline in

cognitive skills, and ultimately dementia. The mechanistic causes of AD are not yet fully

understood, especially at the cell type level, although the abnormal accumulation of neuronal

tangles and amyloid plaques in the AD brain have become potential hallmarks of the disease.

The genetic factors that possibly lie upstream of various AD phenotypes have now been exten-

sively studied from next generation sequencing data, such as genome-wide gene expression

changes. A variety of computational analyses have been applied to those data for understand-

ing abnormal gene expression and regulation in AD. However, most studies have been per-

formed on bulk tissue data and missed cell type specific signals. The neurovascular unit as a

whole could drive AD progression [1], and recent studies have verified that molecular changes

in AD are highly cell type-specific [2]. Thus, it is imperative to investigate the contribution of

individual cell types in the brain to the progression of AD along with clinical phenotypes.

Emerging single-cell RNA-seq (scRNA-seq) enables such an analysis, as it captures the tran-

scriptomic landscape of individual cells, offering a rich source of data for the analysis of dysre-

gulated molecular systems within individual cells.

Several studies have highlighted strong links between molecular connectivity and human

diseases, suggesting that disease risk genes often work together as a coherent biological net-

work. Thus, it is critical to study broken functional relationships between genes, rather than

individual genes, to better understand the molecular mechanisms associated with the disease.

Network biology offers a powerful computational framework that transcends individual gene

investigation that uses univariate methods, such as differential expression analysis. For exam-

ple, gene regulatory networks (GRNs) provide information about regulatory interactions

between regulators, e.g., transcription factors (TFs), and their potential target genes. Such

GRN models can be used to derive novel biological hypotheses about dysregulated disease

pathways. With scRNA-seq data quickly accumulating in open repositories, single-cell net-

work biology is now leading a shift from the traditional bulk RNA-seq mediated analyses [3–

7]. Although GRNs in AD have been previously explored using expression data from bulk
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tissues [8–13], cell type level GRN in AD remains under-investigated, especially via network

biology approaches.

Network biology has been successfully applied to prioritize novel disease genes. The basic

idea is to identify regulatory genes that have more influence over the network by virtue of their

network position. Naturally, a more prominent position in the network is occupied by hubs or

genes with a relatively larger number of connections and those that facilitate signalling

between distant genes in the network. Hubs play a central role in modulating the expression of

many genes and thus biological processes and pathways. Network biologists have adopted vari-

ous classical metrics from graph theory to identify hubs in GRNs. Network-based indicators of

gene importance have also been useful for the analysis of disease at the cell type level. For

example, Iacono et al. analyzed healthy and diabetic pancreatic cell networks and found that

genes involved in type-2 diabetes differ in their centralities scores [14]. In addition, single-cell

network analyses have revealed genes that rewire with exposure to differentiation cues [15]

and cancer-causing perturbations [16]. In the context of brain diseases, single-cell gene net-

works have indicated a potential cell type preference of neuropsychiatric and neurodegenera-

tive disorders [17] and neurodevelopmental disorders (NDDs) [18]. The authors in the later

study estimated coexpression between sets of known NDD-risk genes and demonstrated that

most gene sets have higher coexpression in neural progenitor cells, suggesting a convergent

role of these cell types in NDDs [18].

The structure of gene regulatory networks can also help understand coordinated gene regu-

lation. Recurring sub-graphs, called network motifs, are patterns that appear in real networks

more often than random networks. Network motifs are the building blocks of biological net-

works. Therefore, comparing network motifs in, for example, control and disease states of the

transcriptome can unravel how the disease affects the structural design of the GRN. For exam-

ple, the feed-forward loop (FFL) is a three-node motif particularly interesting for analysis

directed networks [19,20]. FFLs comprise a master regulator, which regulates an intermediate

TF, and both TFs directly regulate the expression of a common target gene. This information

can help gauge changes in ‘regulatory pressure’ on downstream TFs through coordinated

activities between upstream TFs. Network motifs can also be helpful in applying digital com-

puting ideas such as logic gates in synthetic biology [21,22].

Network-medicine is an upcoming field to solve the problem of drug repurposing by find-

ing new uses of existing drugs by linking them to drug targets which are also implicated in

human diseases [23–26]. Network-medicine approaches have been applied to repurpose drug

candidates for cancers [27], tuberculosis [28], and, more recently, respiratory illnesses like

COVID-19 [29,30]. We have also previously developed network-medicine strategies for AD.

For example, we recently proposed an endophenotype network-based drug repurposing

framework for AD [31]. Our approach uses disease-associated modules (modules enriched

with disease genes) and network proximity analysis for in silico drug repurposing. Using this

approach, we discovered sildenafil as a new candidate drug for AD, tested it using insurance

record data, and validated it using iPSCs from patients with AD [31]. Our study shows that

quantifying the network distance between AD modules and drug targets in the human interac-

tome can significantly improve in silico drug discovery.

In this study, we analyzed and compared GRN characteristics of the human brain cell types

and examined regulatory changes that occur in AD (Fig 1). We integrated available single-

nucleus gene expression (snRNA-seq), single-cell chromatin interaction, and open-chromatin

(ATAC-seq) data to predict cell type GRNs. Specifically, we linked TFs to TGs if the putative

DNA binding motif of a given TF is located in the open and interacting promoter or enhancer

region of the TG, and if the TF has a certain degree of coexpression with the TG in a given cell

type. Thus, TFs are linked to TGs via enhancers and promoters in two neuronal and two glial
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cell types in control and AD conditions (Fig 1A). Then, we compared topological features such

as gene centrality, structural features such as network motifs and logic gates, and the modular

organization of each cell type GRN. We adopted a network-proximity strategy to demonstrate

the utility of network modules for identification of likely drug candidates for AD (Fig 1B).

Finally, we utilized known AD genes from the published literature in a machine-learning anal-

ysis to generate a ranking of genes according to their potential association with AD. We vali-

dated these rankings on an independent RNA-seq dataset (ROSMAP) (Fig 1C).

Results

We applied our analytic framework to single-cell multi-omics data for four cell types, excit-

atory and inhibitory neurons, microglia, and oligodendrocytes from human brains diagnosed

with Alzheimer’s disease (AD) and healthy controls [2]. All detailed descriptions on datasets

and data processing are available in Methods and Materials. The dataset consists of single-

nucleus RNA-sequencing (snRNA-seq) samples from the prefrontal cortex of 24 individuals

diagnosed with AD and 24 age-matched controls with no AD pathology. In addition, we also

obtained cell-type chromatin interactions [32], cell-type open chromatin regions [33], and

human transcription factor binding site information [34]. We predicted GRNs for four major

each cell types for which all three data modalities were available. First, we predicted all possible

interactions between enhancers and promoters for each cell type using the chromatin interac-

tion data. Then, we inferred the transcription factor binding sites (TFBS) based on consensus

binding site sequences in the interacting enhancers and promoters. We connected TFs to TGs

via enhancers only if the enhancers are highly accessible in the ATAC-seq data. Subsequently,

Fig 1. An integrative network-biology framework for analyzing cell type gene regulatory mechanisms in Alzheimer’s disease (AD).

(A) Predicting neuronal and glial cell type GRNs from multi-omics data in AD and control by integrating snRNA-seq with chromatin

interaction data and TF binding site information. (B) Analyses of cell type GRN characteristics include identification of hub genes,

regulatory hierarchy, network motifs, regulatory logics, modules of co-regulated genes, and drug-module associations. (C) Machine

learning based prioritization of novel AD genes using network interaction patterns and prediction of clinical phenotypes using machine

learning.

https://doi.org/10.1371/journal.pcbi.1010287.g001
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we retained TF-TG links that have high gene expression relationships in snRNA-seq data.

Overall, we created separate control and AD GRNs for each cell type. Additionally, we also

obtained single-cell transcriptomic data of healthy cells from an independent study [35] to

check the reproducibility of our results.

Hubs of the brain cell type gene regulatory networks

We linked transcription factors (TFs), non-coding regulatory elements, and target genes to

predict cell type GRNs in control and AD. On average, ~17% of all edges in the cell type GRNs

link TFs to TG via promoters, ~68% via enhancers, and ~15% via both, enhancers, and pro-

moters (Fig A1 in S1 File). GRNs typically have a nonuniform distribution of links (edges)

[36], system biologists are often interested in identifying ‘hub’ nodes (genes) for practical

applications [37]. Hubs represent highly connected genes that have a greater influence over

the network. Such highly connected hub genes often play a crucial role in modulating gene

expression changes, and thus disease-associated pathways. Given that gene expression pheno-

type in AD is highly cell type specific [2], we asked if distinct or similar sets of genes act as

hubs across cell type networks.

We used three standard centrality metrics to quantify the influence of a given TF over each

cell type’s control and AD network. The out-degree centrality calculates the number of targets

for each TF, in-degree indicates how strongly a TF is under the regulatory influence of other

TFs, and the betweenness centrality of a TF is a function of its out-degree and in-degree and

estimates its ability to act as a communication channel between upstream regulators and

downstream pathway genes. We observed that TFs with the highest out-degrees (top 10% of

the sorted list) are largely common (173 TFs) across all cell types (Fig 2A and S1 Data). How-

ever, distinct TFs represent betweenness centralities of different cell type GRNs. Moreover, the

overlap of such TFs is relatively higher between neuronal than glial cell types (Fig 2B). We

noted that TFs that have the greatest regulatory influence of other TFs (high in-coming

degrees) also vary across cell types (Fig A2 in S1 File). The overlap of such TFs is also larger

between neuronal than glial cell types (Fig A2 in S1 File; see discussion). However, it is impor-

tant to note that the chromatin interaction data source we used does not resolve between the

neuronal cell types. Therefore, the observed variation between excitatory and inhibitory neu-

ron GRNs are purely based on differences in gene expression patterns, unlike other cell types

for which changes could also be attributed to distinct E-P interactions.

Although the normalized gene centralities (including non-TF genes) between control and

AD GRNs across all cell types are largely correlated, there is a clear differential in the in-

degrees, with the most prominent scatter in microglia (Fig 2C). For example, the DNER,

RHOU, and SLC1A2 genes have fewer regulators in AD compared to control, whereas

RUNDC3A and NPTX1 are regulated by more TFs in AD than in control (Fig 2D). DNER

activates the NOTCH1 pathway which is linked to AD [38,39]. SLC1A2 mediates cellular

uptake of glutamate, and loss of function of glutamate transporters has been linked to AD [40].

NPTX1 is a member of the pentraxin family, known to modulate synaptic transmission in nor-

mal conditions [41]. Also, we noted that microglia GRNs have the largest number of distinct

high betweenness TFs. Therefore, we were interested to investigate if the subnetworks around

these central TFs have identical or disjoint node- and edge-sets. Visualizing the network neigh-

borhoods of the 23 high betweenness microglia TFs, we observed a considerable difference

between the control and AD networks (Fig 2E). This indicated presence of a disease-driven

regulatory apparatus governed by the same TFs.

Overall, genes with the largest in-degree changes are significantly enriched in (1% FDR

based on hypergeometric tests) in gene ontology (GO) biological process (BP) terms related to
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the immune system such as ‘neutrophil-mediated immunity’ and ‘leukocyte migration’ in

microglia, development-related processes such as ‘autonomic nervous system development’

and ‘anterior-posterior pattern specification’ in oligodendrocytes, and synapse related pro-

cesses such as ‘synapse organization’, ‘regulation of synaptic transmission’, and ‘modulation of

chemical synaptic transmission’ in neuronal cell types (Fig 2F).

Fig 2. Centrality analysis reveal hub gene changes of cell-type gene regulatory networks in AD. (A) An upset plot showing overlaps between the top 10%

genes with largest out-degree and (B) betweenness centralities. The filled dots in the center matrix indicate the comparison between the respective sets

(along the x-axis), and the bars on the top show size of the intersection. Blue and red rows indicate control and AD, respectively. (C) Scatter plots showing

normalized gene centralities distribution and (D) the distribution of in-degrees in microglial AD and control networks. Genes with large changes in in-

degree between AD and control are labelled. (E) Visualization of the subnetwork of 9 TFs with high betweenness centrality in microglia. Grey circles around

the periphery of the network indicate target genes. Symbols of the nine central TFs are shown and the rest hidden for clarity. Blue and red edges indicate

interaction in the control and AD networks, respectively. (F) A dot plot showing enrichment of gene ontology biological processes (y-axis) among genes

with the most extensive changes in the in-degree centrality across all cell types (x-axis). The dot size is set according to the FDR-corrected p values, as shown

in the key.

https://doi.org/10.1371/journal.pcbi.1010287.g002
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To check if our centrality analysis is reproducible in an independent dataset, we obtained

data from an earlier study that analyzed gene expression in healthy brain cell types [35]. We

applied our GRN inference pipeline and centrality analysis to microglia and oligodendrocytes

in this secondary dataset and found that the top central genes (top 20% across all centralities)

show high and statistically significant overlaps (permutation-test P-value < 0.001) with the

main dataset (Fig A3 in S1 File). Because the secondary dataset has samples only from healthy

brain cells, we could only compare the overlap with our control networks. Nevertheless, the

high overlaps indicated that the top central genes we identified are indeed independent of the

dataset specificity. Furthermore, the correlation in centrality scores of TFs is high between the

full dataset and a reduced dataset comprising of only 50% of the samples from the original

snRNA-seq dataset (Fig A4 in S1 File).

The regulatory hierarchy of brain cell type gene regulatory networks

Given that GRNs are typically hierarchical in structure [42–44], we asked if AD induces

changes to the regulatory hierarchy of cell type GRNs. We wanted to identify TFs that act as

master regulators, and other TFs that function downstream of the master regulators. Master

regulators are defined as TFs at the top of the network hierarchy with no regulatory influence

from other TFs [45].

To classify TFs at different levels of regulatory hierarchy, we used the standard hierarchy

height (hh) metric [44]. According to the hh metric, TFs at the top levels of the hierarchy

exhibit many outgoing edges but no incoming edges (master regulators not regulated by other

TF), TFs at the middle levels exhibit both incoming and outgoing edges (regulators and regu-

lated by other TFs) and TFs at the bottom levels exhibit no outgoing edges to other TFs (highly

regulated by other TFs). We found the distribution of normalized hh to be trimodal across all

GRNs and significantly different from random networks (estimated using the KS test of 1000

random networks) (Fig 3A and S2 Data), indicating that the brain cell type GRNs are indeed

hierarchical. We also noted that the hh of TFs is not significantly different in control and AD

networks (Fig B1 in S1 File). We found 85 (27.6%) master regulators common across all cell

type AD GRNs, with the most unique master regulators in excitatory neurons (37 TFs; 12%)

(Fig B2 in S1 File). Some common master regulators include known AD genes, such as

CREB1, ESR1, HSF1, PPARG, NFE2L2, SPI1, TCF3, TCF7L2, TP53, CLOCK, and GLIS3.

However, we found very few TFs in the middle-level (5 TFs in microglia, 3 in excitatory neu-

rons, 1 in inhibitory neurons, and none in oligodendrocytes; Fig B3 in S1 File; see Discussion).

We were interested in knowing if the readjustment of the targets of TFs at various levels of

the regulatory hierarchy contributes to AD. We estimated the rewiring score of TFs based on

the overlap between their predicted targets in control and AD networks (see Methods). Within

the four cell types we analyzed, we found that TFs are least rewired in inhibitory neurons and

most in microglia (Fig 3B). Interestingly, neuronal TFs at all levels seem to target a relatively

larger number of promoters than glial types (Fig 3C), but the change in expression of genes

targeted by microglial TFs is more prominent than other cell types (Fig 3D). To draw a biologi-

cal interpretation of the regulatory hierarchy, we performed enrichment analysis of the most

confidently predicted targets (high edge-weights) of TFs using functional annotations biologi-

cal process category of the human gene ontology. Interestingly, we found the top-level master

regulators and the bottom-level TFs in the neuronal cell type GRNs functionally converge to

regulate trans-synaptic signalling in neuronal cell types and cellular component morphogene-

sis in oligodendrocytes (Fig 3E). Master regulators in microglia seem to regulate small GTPase

mediated signal transduction and secretion. We found that the middle-level TFs target distinct

processes; synaptic signalling and neuron differentiation in excitatory neurons, secretion in
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Fig 3. Hierarchy analysis of cell type gene regulatory networks in AD. (A) The distribution of TFs in three levels of hierarchy in AD, control and 1000

random GRNs across all four cell types. (B) The rewiring scores of TFs (x-axis) across all three levels of hierarchies (y-axis). The distributions of (C) number

of promoters targeted by TFs (y-axis) and (D) the fold change values (log scale; y-axis) of target genes (AD versus healthy controls) of TFs at the three levels

of hierarchy (x-axes). (E) Enrichment of gene ontology biological processes (y-axis) within targets of top, middle and bottom layers of the regulatory

hierarchy across cell type networks (x-axis).

https://doi.org/10.1371/journal.pcbi.1010287.g003
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inhibitory neurons, and regulation of cell motility and cellular component movement in

microglia (Fig 3E).

Regulatory network motifs and regulatory logics

The hierarchy of our cell-type GRNs suggests that the master regulators (top TFs) regulate cru-

cial brain-related biological functions by regulating downstream TFs, which is a highly coordi-

nated process. For instance, various network motifs have been found in GRNs, showing such a

coordination pattern in which multiple TFs co-regulate target genes. To explore the extent of

coordinated TF activities in our cell type GRNs, we computed the level of over or under-repre-

sentation of all possible three-node network motifs (a triplet consisting of two TFs co-regulat-

ing a target gene, previously found to be enriched in many GRNs).

As depicted in Fig 4A, our brain cell type GRNs in AD and control broadly differ in their

motif composition, and AD affects some of this composition (S3 Data). For example, triplets

in which two TFs target the same gene is over-represented in the microglial AD network rela-

tive to the control counterpart. On the other hand, enrichment of the motif in which two TFs

are co-regulated by the same TF appears to be over-represented in microglia but under-repre-

sented in oligodendrocytes (Fig 4A), suggesting a possible disparity of TF-TF coordination

across cell types. We were particularly interested in the feed-forward loops (FFL;

TF1!TF2!TF3 TF1), as they have been often found to be biologically relevant in gene reg-

ulatory networks [19]. We found that FFLs are most conspicuous in the excitatory neurons

and oligodendrocytes, but weakly enriched in inhibitory neurons and microglia (Fig 4A).

Interestingly, a zinc-finger transcription factor specificity protein 2 (SP2) is frequently found

in FFLs (Fig 4B). SP2 has been identified as a neural development gene [46], but its role in AD

has not yet been elucidated. Other TFs frequently found in FFLs across most cell type GRNs

include FOXP1, RFX3, ZBTB18, and PPARA (Fig 4B).

In addition to network motifs, we also investigated the cooperative logics of TFs that further

reveal the TF-TF coordination mechanistically (beyond network structures like motifs). To

this end, we applied our previous approach, Loregic [22], to represent gene expression rela-

tionships in FFLs using logic gate models. In particular, logic gates describe gene regulation as

a two-input one-output logical process [47,48], where the expression level of regulatory factors

(RFs) such as TFs are inputs and expression of target gene is the output. The logic gate has

been a useful framework for studying cooperativity among RFs in human cancers, yeast and E.

coli [19]. Thus, it would be interesting to investigate the logics behind TF cooperation in FFLs

we discovered in our cell type GRNs. Fig 4C shows that AND (high target expression only

when both RF1 and RF2 are high) and OR (high target expression only when either RF1 and

RF2 are high) represent more than 80% of all logics across all cell types, except in microglia.

Microglia has more diverse logics than other cell types, many of which involve cooperative log-

ics (i.e., RF1 and RF2 must be particular values to activate/repress target gene). For example,

compared to other cell types, a larger fraction of logics in microglia involve RF1+~RF2, which

means that target expression is low only when RF1 is low and RF2 is high is (see Table S1 in

[22] for explanation of these logics). An example of cooperative logics is the FFL consisting of

PPARG-NFYA-CREBP which switches from uncooperative (OR) in control to cooperative

(AND) in AD in the microglia network. In other words, PPARG and NFYA could be both

required to active CREBP in AD, whereas either PPARG or NFYA can activate CREBP in

healthy controls (Fig 4D). PPARG is a ligand-activated nuclear receptor that coordinates lipid,

glucose and energy metabolism and is upregulated in AD [49]. A GWAS study suggests that

NFYA gene associates with late-onset AD [50], and the CREBP gene functions in synaptic

plasticity and memory formation and has been previously implicated in AD [51,52]. Thus, our
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Fig 4. Network motifs and regulatory logic across cell types in AD. (A) Barplots showing the enrichment (x-axis; Z-

score estimates from random networks) of various three-node triplets (y-axis) in AD (red) and control (blue)

conditions across all four cell types. (B) Genes that frequently occur in feed-forward loops in cell type AD GRNs are

depicted and colored uniquely for each cell type. (C) Barplot showing the frequency (x-axis) of various logic gates (y-

axis) active within the feed-forward loops in AD (red) and control (blue) conditions across all four cell type networks.

(D) Logic gate diagram showing PPARG-NFYA-CREBP triplet’s AND logic in AD and OR logic in control networks

of microglia.

https://doi.org/10.1371/journal.pcbi.1010287.g004
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logic analysis can further decipher the disease mechanisms of gene regulatory coordination of

AD genes.

Coregulated gene modules for AD pathology and drug repurposing

Our analysis revealed features of the regulatory hierarchy and patterns of coordinated TF

action in cell type GRNs, and changes in AD. It is important to also investigate non-TF genes,

as they represent the larger component of the transcriptome. These genes lie at the bottom-

most layer of the regulatory hierarchy as they have no outgoing links. We reasoned that inter-

rogating this highly regulated core of target genes could illuminate dysregulated AD pathways

and provide a handle on network modules.

We transformed the directed GRNs into undirected networks by connecting target

genes that show high levels of ‘coregulation’ (estimated by calculating the overlap between

the predicted regulators of every pair of target genes; see Methods). Using these networks

of co-regulated target genes, we tested the extent to which AD disrupts functional links

between genes. We calculated the density (i.e., the ratio of observed to expected links) of

the subnetworks induced by genes within carefully selected non-redundant GO BP terms.

Then, comparing the densities of each GO BP term in control and AD networks allowed

us to quantify the level of gain or- loss of ‘cohesiveness’ (i.e., interactions between GO BP

genes became stronger or weaker in AD). This analysis highlighted several BP terms that

significantly changed (permutation-based P-value < 0.001) densities across all cell types,

with most in microglia (Fig 5A). For example, in microglia, interactions between genes

annotated to protein-membrane transport, lipid phosphorylation, cell aging, and other

sugar metabolism related terms became stronger. Whereas GO BP terms that lost cohe-

siveness include actin cytoskeleton organization, regulation of interleukin-2 production,

and B cell proliferation, among others (Fig C in S1 File). In oligodendrocytes, interactions

between genes involved in protein complex assembly, cytoskeleton organization, and neu-

ron apoptosis became stronger, whereas interactions between genes involved in the Notch

signalling pathway and transport activity became weaker (Fig D in S1 File). In inhibitory

neurons, genes involved in segmentation, cell cycle, and acid transport lost cohesiveness

(Fig E in S1 File). Whereas in excitatory neurons, genes involved in the cell cycle and

response to biotic stimulus gained cohesiveness, while genes involved in apoptosis and

response to fibroblast growth factor lost cohesiveness (Fig F in S1 File).

To explore the organization of target genes in cell type GRNs in more detail, we extracted

network modules. We reasoned that the identification of modules will allow the use of mod-

ules rather than individual genes as units in our investigation of novel AD risk genes. Rather

than the typical approach of directly clustering gene expression data, we leveraged TF-target

gene relationships embedded in our cell type GRNs to find functionally homogenous modules.

Based on stringent evaluations of two clustering parameters (Fig G, Fig H, and Fig I in S1 File;

see Methods), we found on average 8 modules across all cell types, and these modules are sig-

nificantly enriched (1% FDR) with several GO BP terms (Fig J1 and Fig J2 in S1 File and S4

and S5 Data). We also teased out AD modules as those that were significantly enriched (1%

FDR) in disease ontology terms related to AD (S6 Data). We found three AD modules each in

excitatory and inhibitory neurons, and these modules are enriched in genes involved in pro-

cesses related broadly to synaptic signalling, axonogenesis, and myelination (S5 Data). The

two AD modules in microglia are comprised of genes involved in the regulation of GTPase

activity and various immune-related processes. However, we did not detect any AD module in

oligodendrocytes. Nevertheless, our analysis shows that many AD-risk genes functionally con-

verge into common pathways with cell type specificity.
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Fig 5. Coregulated gene modules reveal cell type-specific drug-repurposed targets and gene functions in AD. (A) Illustration depicting the

concept of gene set cohesiveness in a network. The bar plot below shows the number of gene ontology biological process terms (y-axis) that gain

(blue) or lose (red) cohesiveness between control and AD networks across all cell types (x-axis; see Methods). (B) A heatmap showing the

enrichment of co-regulated modules of the microglia AD network within differentially expressed genes in various AD pathologies. The average fold-

change of genes within each module was transformed to a Z-score to derive the enrichment score. Negative and positive Z-scores indicate down-
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We next wanted to check the response of genes within these modules in three different AD

pathologies; no pathology versus pathology, no pathology versus early pathology, and early

pathology versus late pathology. We focused on modules in microglia for this analysis, as it

showed a more extensive change in the cohesiveness of functional gene sets (Fig 5A). We

found that genes in microglia submodules 1 (M1) and 4 (M4) are more upregulated in the late

stage of AD pathology compared with other microglia submodules (Fig 5B). At the same time,

the disease enrichment analyses (see Methods) demonstrated that M1 and M4 are significantly

associated with AD (M1with q = 3.15E-02, M4 with q = 3.59E-02). M1 is enriched with genes

involved in regulation of small GTPase mediated signal transduction and immune related pro-

cesses according to the GO BP annotations. Interestingly, we found TREM2 as a part of M1,

including other known AD-risk genes such as PLCG2, BIN1, IKBKB, DPYSL2, SPPL2A, and

HLA-DRB5 (Fig 5C). Triggering receptor expressed on myeloid cells 2 (TREM2) is a type I

transmembrane protein expressed on the surface of microglia, binds to phospholipids [53] and

is hypothesized to be triggering the phagocytosis of Aβ plaques [54]. A recent study showed

that TREM2 deficiency results in inhibition of FAK and Rac1/Cdc42-GTPase signalling critical

for microglial migration [55], testifying to the validity of M1. Neuroinflammation was pro-

posed as one of the main mechanisms that were tightly associated with AD development [56].

KEGG pathway enrichment analysis showed that M1 was enriched with 12 immune pathways,

including Fc gamma R-mediated phagocytosis, natural killer cell mediated cytotoxicity, toll-

like receptor signalling pathway (Fig K1 in S1 File). Fc gamma R-mediated phagocytosis has

been shown to play a role in β-amyloid dependent AD pathology [57]. Toll-like receptor 4

(TLR4) activation was previously found positively correlated with the amount of accumulated

β-amyloid [58]. Furthermore, we found module M4 (Fig L in S1 File) to be enriched with

genes related to immune processes, such as response to chemokines, regulation of T cell migra-

tion, cytokine regulation (Fig K2 in S1 File).

Given the valid biological link of M1 and M4 to AD pathology, we next decided to predict

drug candidates based on AD-related microglia submodules M1 and M4. With the well-

defined network proximity approach [59], we identified 170 and 34 candidate drugs with

z_score < -2 and q< 0.05 from the total 2,891 U.S. FDA-approved or clinically investigational

drugs (see Methods; S7 Data). Interestingly, one of the drugs that show significant enrichment

of its targets in M1 is Donepezil (q value 0.008), an approved AD drug that reversibly inhibits

the acetylcholinesterase enzyme. Given that the Rho GTPase activity regulates the formation

of Aβ peptides during disease progression [60], our analysis raises an interesting hypothesis

that the effect of Donepezil in improving the cognitive and behavioral signs and symptoms of

AD might be executed via regulating GTPase signaling. Sildenafil, another top predicted drug

from M1, has recently been demonstrated as one promising treatment options that showed

69% reduction in developing AD after analysing MarketScan Medicare supplemental database

which included 7.23 million individuals [31]. Everolimus, an mTOR inhibitor, was another

top predicted drug from M1. Everolimus was discovered to bring down both human Aβ and

tau levels in the mouse model study [61]. Module M1 suggested that Everolimus’s target

MTOR was directly connected with multiple key AD pathology regulators, such as inhibitor of

nuclear factor kappa B kinase subunit beta (IKBKB), FKBP prolyl isomerase 5 (FKBP5) (Fig

and up-regulation, respectively, of co-regulated modules (x-axis) in AD pathologies (y-axis). The grids of the heatmap are colored accordingly, with

red indicating down-regulation and blue indicating up-regulation of the module. (C) Visualization of genes in module 1 of the microglia AD

coregulatory network. Each circle in the plot is a gene, with TFs depicted as triangles, known AD-genes in octagons, and other genes as ellipses.

Nodes are colored according to fold change values in AD pathology (early versus no pathology) as shown in the key. (D) Proposed mechanism-of-

action for treatment of AD by everolimus using drug-target network analysis with microglia M1. (E) Proposed mechanism-of-action for treatment

of AD by Rifampcian using drug-target network analysis with microglia M4.

https://doi.org/10.1371/journal.pcbi.1010287.g005

PLOS COMPUTATIONAL BIOLOGY Single-cell network biology for drug repurposing and phenotype prediction in Alzheimers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010287 July 18, 2022 13 / 31

https://doi.org/10.1371/journal.pcbi.1010287.g005
https://doi.org/10.1371/journal.pcbi.1010287


5D). One study in AD mouse model concluded that inhibiting IBKBK could help ameliorate

activation of inflammatory and thus rescued cognitive dysfunction [62]. Level of FKBP5 was

found to be positively correlated with AD development and FKBP5’s interaction with Hsp90

accelerated tau aggregation [63]. The same study also observed that decreased amount of tau

in FKBP5-/- mice. Rifampcian, one antibiotic drug, was top recommended according to mod-

ule M4. One study found that Rifampcian was favourable for halting AD based on observations

from both Aβ and tau mouse models [64]. According to our protein-protein interaction net-

work (see Method), similarly, multiple targets of Rifampcian were the direct neighbours of

multiple proteins involved in AD development (Fig 5E). CCCAT enhancer binding protein

beta (CEBPB) was reported to modulate APOE’s gene expression and regulated APOE4 which

was one major genetic risk factor for AD in one mouse model study [65]. Protein kinase C

delta (PRKCD) which was one key protein in Fc gamma receptor-mediated phagocytosis path-

ways was found to regulate β-amyloid dependent AD pathology [66].

Network-based machine learning prioritizes cell-type AD-risk genes and

predicts clinical phenotypes

Our analysis shows several similarities and differences in cell type GRN structures patterns

across cell types and between control and AD conditions. Decomposing the GRNs into indi-

vidual components using standard network analysis metrics of centrality, hierarchy and mod-

ularity outlined key genes that potentially drive changes in cell type GRNs that underpin

transcriptional phenotypes of AD. However, we were still lacking a uniform scoring to rank

genes according to their potential association to AD using our cell type GRNs. To facilitate

this, we leveraged known AD genes in the literature and asked if the regulatory patterns that

characterize these could be learned. We reasoned that our GRNs are essentially high-level fea-

tures extracted by integrating single-cell multi-omics data. Thus, regulatory patterns in these

GRNs can be used to train machine learning (ML) algorithms. For example, this technique of

using inferred network relationships as features for a learning algorithm has helped prioritize

autism and hypertension genes in humans [67,68] and stress-response TFs in plants [69].

We used the random forest algorithm to train models that learned to discriminate between

known AD genes and genes unrelated to AD using their interaction patterns with TFs as fea-

tures (see Methods). We wanted to compare the accuracies in predicting known AD-risk

genes across cell types and between control and AD networks. The distribution of balanced

accuracies in 10 independent five-fold cross-validation tests indicates that the microglia AD

network most accurately predicted known AD genes compared to other networks (Fig 6A).

The difference in mean accuracy between the control and AD networks of microglia is also the

largest (Fig 6A). The average accuracies of these models range between 57% to 68%. The

ranked lists of genes in each cell type model based on their predicted probabilities of being

associated with AD can be found in S8 Data. Further, the average probability of genes that

were declared as differentially expressed in control versus AD by the original authors of the

dataset [2] is also relatively larger in microglial GRNs compared to other cell types (Fig M in

S1 File). Genes within the top 20% of the rankings in microglia AD network are involved in

immune-related processes and hemopoietic functions, cell development, and lipid metabolism

(Fig 6B). These observations corroborate with previous findings. For instance, an increase of

oxidative stress, changes in neuronal lipid metabolism, and synaptic dysfunction have been

previously linked to early stage or overall AD pathology [70–72].

To evaluate these rankings more stringently, we asked if the expression levels of the top-

ranked genes could be used to predict clinical phenotypes of AD. We utilized RNA-seq data

from the ROSMAP cohort [73] to predict AD phenotypes, including Braak stages that measure

PLOS COMPUTATIONAL BIOLOGY Single-cell network biology for drug repurposing and phenotype prediction in Alzheimers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010287 July 18, 2022 14 / 31

https://doi.org/10.1371/journal.pcbi.1010287


Fig 6. AD Gene prioritization and clinical phenotype prediction using network-based machine learning. (A)

Boxplots showing the distribution of balanced accuracies (y-axis; obtained from 10 independent runs of five-fold

cross-validation) in predicting known AD genes using interaction patterns in cell type GRNs as features (x-axis). (B)

Gene ontology biological process terms enriched within the top 20% predictions in the microglia AD machine learning

(ML) model. The terms are depicted along the y-axis, and the FDR corrected p-values are shown along the x-axis. (C)
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the severity of neurofibrillary tangle (NFT) pathology, CERAD scores that measure neuritic

plaques, diagnosis of cognitive status (DCFDX), and cognitive status at the time of death

(COGDX). Fig 6C shows the distributions of accuracy scores in predicting these phenotypes

using top 5% genes in our rankings from the microglial AD model as features. Our model

shows that these genes can classify AD phenotypes with more than 60% accuracy, larger than

the model built using randomly selected genes (Fig 6C).

By analyzing TFs separately, we observed that those in the middle layer of the regulatory

hierarchy record the highest feature importance scores (served as the best predictors in the

model; Fig 6D), indicating their prominent role in regulation of gene expression in AD (S9

Data). Visualization of the subnetwork among these TFs revealed known AD genes and inter-

action patterns (Fig 6E). For example, we found two genes from the peroxisome proliferator-

activated receptors (PPARG and PPARA) in this subnetwork. PPARs function in inflamma-

tion and immunity [74], coordinate glucose and energy metabolism [75,76], and are known to

positively influence AD pathology. In addition to this, PPARA regulates genes involved in

fatty acid metabolism and activates hepatic autophagy [77]. Other interesting TFs in this sub-

network include SPI1, a well-known TFs involved in microglial development and activation

[78] and has been implicated in AD in GWAS [79]. Interestingly, our analysis prioritized sev-

eral TFs with no previous direct associations to AD in databases. Some such examples include

TAL1, RFX2, LEF1, SP2, STAT2, ZNF263, MAFG, and EBF1.

Furthermore, we found that TFs in the top of our rankings participate in a significantly

larger number of feed-forward loops than expected by chance (Fig 6F). We also observed

many AND and OR gates involving these TFs (Fig 6G), indicating that some of these TFs coor-

dinate their activities to activate target gene expression. Furthermore, we found that genes at

the top of our rankings are mostly overrepresented in module 4 (M4) in microglia (Fig 6H).

This is interesting because M4 was also identified as disease-module with a significant number

of known drug targets (Fig 5E).

Discussion

We applied a single-cell network biology approach to compare brain cell type GRNs and

examine regulatory changes that occur in AD. We obtained multi-omics data from published

resources and linked TFs to TGs if the putative DNA binding motif of a given TF is located in

the open and interacting promoter or enhancer region of the TG (Hi-C loops plus ATAC-seq

data), and if the TF has a certain degree of coexpression with the TG in a given cell type

(snRNA-seq data). We identified cell-type-specific changes in network characteristics, such as

hub genes, TF hierarchies, motifs, regulatory logics, and coregulated gene modules. Further,

we revealed that using those cell type networks also improved the prediction of potential novel

drug targets and AD genes, which can in turn be useful in drug repurposing and predicting

clinical phenotypes of AD.

Genes were sorted according to their probability of being associated with AD in the microglia ML model, and the top

5% of the sorted list was used as features to predict AD phenotypes in an independent dataset (ROSMAP). The

boxplots show the distribution of balanced accuracies (y-axis) obtained from testing four AD phenotypes (see

Methods) and a set of randomly selected samples (x-axis). (D) Average feature importance scores of TFs at the three

hierarchy levels in the microglia AD network. (E) Visualization of the subnetwork connecting top 10% TFs with

highest feature importance scores in microglia AD network. Each grey node depicts a TF with border color set along a

red gradient according to the disease-gene association score given in the DisGeneNet database (based on preliminary

evidence collected from independent studies). (F) Feed-forward loops observed within top-ranked TFs in the microglia

ML model (red line) and the distribution in 1000 random networks (grey bars). (G) Regulatory logics observed within

top-ranked TFs in the microglia. (H) Enrichment of top-ranked genes within coregulated genes modules in microglia

(�Permutation p value< 0.001).

https://doi.org/10.1371/journal.pcbi.1010287.g006
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Our analysis of gene centrality metrics suggests that different cell types employ a different

regulatory apparatus governed by ‘master regulators’ that contributes to cell viability, and

therefore overall brain fitness by regulating the expression of many target genes. This appara-

tus does not seem to be severely disrupted by the occurrence of AD, which makes sense con-

sidering previous studies on gene essentiality and lethality. Interestingly, distinct TFs with

high betweenness centralities seem to modulate cell type-specific signals. Furthermore, non-

TF genes, or in-degree centralities exhibit the most prominent differences between AD and

control brains, indicating that these genes may contribute to pathway-level changes in AD pro-

gression. Enrichment of critical brain-specific biological processes, such as synapse organiza-

tion and immune-related processes, within these genes also reflects characteristics of AD

pathology. Overall, centrality analysis can delineate ‘master regulators’ that are potentially

involved in maintaining biological processes essential for cell type function in healthy and AD

individuals.

Our analysis shows that the brain GRNs are hierarchical in structure and uncovered the

hierarchy height of brain TFs for the first time. Our analysis suggests that the levels on which

TFs operate are generally robust to AD, and subtle changes in the expression of TFs at the top

and bottom levels seem to modulate cellular signals underlying typically observed AD pheno-

types. GO BP enrichment analysis also suggests that TFs in the bottom layer are involved in

relevant processes like ‘synapse organization’, ‘neuron projection development’ and ‘axon

development’ in neuronal cell types, ‘neutrophil immunity’, ‘endocytosis’, ‘cell-cell adhesion’

and ‘actin organization’ in microglia, and ‘neuron projection development’, ‘cell morphogene-

sis’ and ‘axonogenesis’ in oligodendrocytes. However, the middle-level TFs seem to be most

active and perhaps cooperate and coordinate with other TFs to target a relatively larger num-

ber of genes. We noted that hierarchy height for TFs estimated using ChIP-seq datasets better

reflected a tri-modal distribution [44]. In our analysis, we found fewer TFs in the middle layer

and many TFs at the top layer. This could perhaps be due to many indirect TF-TG correlations

that naturally arise in expression data. Another strategy to infer regulatory hierarchies more

accurately would be to apply a simulated annealing procedure to the full network (including

non-TF genes) to get better estimates on the actual number of hierarchies in a given network

[80]. Such an analysis requires a considerable amount of computational runtime beyond our

dedicated timeframe. Nevertheless, the distribution of TF hierarchies from our analysis is sta-

tistically significant compared to random networks. Moreover, whether the occurrence of

fewer TFs in the middle levels is a feature of single-cell GRNs or just noise due to indirect cor-

relations could only be evaluated based on new data from cell type-specific TF-DNA binding

data.

Our TF-centric analysis indicates extensive dysregulation in the microglia network. For

example, microglia has a unique set of TFs with high betweenness centrality (Fig 2B) and the

largest rewiring between control and AD networks (Fig 3B). Therefore, we wanted to investi-

gate dysregulation at the level of non-TF genes, as these genes represent the core brain path-

ways. Indeed, using coregulation levels as a proxy for functional relatedness, we confirmed

that biological processes are most dysregulated in microglia networks (Fig 5A). This also testi-

fies that our approach of utilizing known functional gene sets (e.g., GO terms) as biologically

coherent components and using subnetwork density as a metric to gauge gene set activity is an

excellent approach to highlight individual cell types. We found that the cell type networks are

highly modular, and the organization of modules is largely distinct. We chose to investigate

microglial module 2 further as this was the only module explicitly upregulated in the early

stages of AD and statistically enriched with genes that support known AD biology. Lipid

metabolism has been previously implicated in AD [70], and the role of microglia in lipid

metabolism is also previously suggested [81].
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Our network-proximity-based drug repurposing strategy predicted candidate AD drugs

from microglial modules. We anticipate that these modules could potentially have pharmaco-

logic applications for early intervention and drug research to target specific bio-mechanisms.

Our strategy does not allow us to determine if the candidate drugs have inhibiting or activating

effects on the target genes due to unsigned TF-TG edges. In future, integrating directionality

such as activation or inhibition in gene regulation may help deeper understand dysregulation

of gene expression in AD. Also, it is important to note that drug responses can be highly per-

sonalized. Currently, our networks are simply abstractions of high-level multi-omics data

across the cohorts, and the information contained within these networks does not resolve

brain-specific rewiring. Furthermore, there are many other variables that need to be accounted

for (e.g., genetic susceptibility, pharmacokinetics, comorbidities, etc.) on an individual basis

through extensive clinical trials. Nevertheless, our results provide a resource on cell-type regu-

latory networks for AD, allowing the community to further generate hypotheses and design

experimental validations.

The cell type GRNs we inferred in this study, together with extensive prior genetic knowl-

edge on AD, presented us with a unique opportunity to identify patterns of regulatory interac-

tions that characterize AD. Inspired by previous network-based machine learning approaches,

we developed an approach that leverages regulatory interactions of known AD genes as the

ground truth to find other similar yet uncharacterized AD genes. Our approach correctly pri-

oritized microglial genes related to lipid metabolism and hemopoietic function; these are well-

known biological processes disrupted in AD. However, the average accuracy of our best model

(~0.68) is lower than what is typically expected from such models. This lower than expected

accuracy of our analysis could have arisen because we utilized network data from a single-cell

type to train the models, effectively neglecting the possible functional role of other cell types in

AD [82]. This could also be because our cell type networks lack chromatin interaction data in

AD. Nevertheless, our gene prioritization strategy is validated using independent data from

the ROSMAP study. We showed that the top 5% of genes within our ranking in the microglia

network (most accurate in terms of model accuracy among all cell types) can predict clinical

AD phenotypes in ROSMAP with>62% accuracy, on average of multiple five-fold cross-vali-

dation runs. We believe this is a respectable accuracy considering we made predictions on AD

genes using data from a single cell type of the brain. We anticipate a further refinement of this

technique in the future.

Overall, our integrated single-cell network analysis approach identified key genes and cellu-

lar themes that corroborate many aspects of AD biology. This shows that gene regulatory net-

works extracted from single-cell data can reveal molecular systems often hidden in gene

networks derived from bulk datasets. For example, our networks revealed extensive network

rewiring disrupting key biological processes mainly in microglia. As such, our approach can

pinpoint cell type-specific genes that could potentially play a key role in governing disease-

induced changes of pathways (e.g., lipid metabolism). As the single-cell technology further

advances our ability to capture multi-modal genomic data with unprecedented precision, we

anticipate that network biology applied to such single-cell functional genomics data will

enhance precision medicine. Single-cell sequencing assays offer solutions to two main requi-

sites for statistical inference of reliable gene networks; large sample size and context-specificity

(unifying biological theme defined by the underlying datasets). While bulk RNA-seq datasets

could provide researchers with a large enough sample size, the context-specificity is often

ambiguous in publicly available datasets [83]. Single-cell technology, by design, generates vol-

umes of data from each individual in the study. As such, pooling cell type samples from indi-

viduals is currently recommended by not required for cell type network inference. Thus,

patient-specific gene networks could be possible in the coming years, which will enable us to
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predict a clinical outcome better (e.g. drug response) based on network activity of target com-

ponents (e.g. drug targets) [3]. Furthermore, since we already collect patient-specific data from

other modalities (e.g., imaging, behavioral and clinical), fusing genetic network models with

models from non-genomic modalities could resolve overlapping disease features better. Our

network biology approach provides a method to investigate disease genes from single-cell data

and lends itself to be used as a template for genomic feature engineering for advanced AI-

based integrative models.

Methods and materials

Single-cell data sources and data processing

We obtained previously published single-cell gene expression data for major cell types includ-

ing excitatory and inhibitory neurons, microglia, and oligodendrocyte from individuals with

Alzheimer’s disease pathology and healthy controls [2]. Precisely, the dataset consists of single-

nucleus RNA-sequencing (snRNA-seq) of samples from the prefrontal cortex of 24 individuals

diagnosed with AD pathology and 24 age-matched controls with no AD pathology. We

obtained the snRNA-seq gene count matrix from synapse (Synapse: syn23446265). The origi-

nal authors of the snRNA-seq dataset aggregated all 48 libraries and equalized the read depth

between libraries using the CellRanger aggr pipeline before merging the data into a gene count

matrix [2]. We downloaded this count matrix and further removed genes that were expressed

in less than 100 cells and normalized the data using Seurat 4.0 [84]. We then applied MAGIC

[85] to address dropout events by imputing the missing gene expression values and filtered

lowly expressed genes to create cell type gene expression matrices. In addition, we also

obtained other omics data, including cell type chromatin interaction maps (Table S5 [32]),

transcription factor binding sites [34], and cell type open chromatin regions (S9 Data [33]).

Note that two of these data sources (snRNA-seq and ATAC-seq) contain data for six cell types.

However, the chromatin interaction data was available for only four cell types (combined for

all neuronal types). Therefore, we chose to predict cell type GRNs for only the four major cell

types for which all three data modalities could be obtained, as it would otherwise be difficult to

tell if any observed changes between GRNs arise due to biological variation or technical

variation.

Gene regulatory network inference for brain cell types from multi-omics

We sought to integrate single-cell transcriptomic, chromatin interaction, TF binding sites, and

open-chromatin regions to predict directed edges from transcription factors (TFs) to target

genes (TGs). We used our scGRNom (single-cell gene regulatory network prediction from

multi-omics) pipeline to perform this integration [86]. First, the scGRNom function scGRNo-
m_interaction was supplied with cell type chromatin interaction data to predict all possible

interactions between enhancers and promoters. Then, reference networks for each cell type

were obtained by locating human TF binding sites (TFBS) within the identified interacting

regions using the function scGRNom_getTF. Subsequently, the reference networks along with

the single-cell gene expression matrix were supplied to the scGRNom_getNt function to predict

TF-target genes for each cell type. The scGRNom_getNt uses elastic net regression to infer TF-

target gene edges. These unsigned edges are directed from TFs to TGs and weighted according

to the strength of coexpression between the given pair of TF-TG. To identify the most optimal

threshold for pruning edges, we removed links with mean squared error (MSE) from elastic

net regression > 0.1 and tested a range of absolute coefficients to further trim the edges. We

found that larger values of the coefficient yield very sparse networks (very few edges and low

network density), making them unsuitable for downstream analysis (Fig N in S1 File).
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Therefore, we filtered the target genes with mean squared error> 0.1 and absolute

coefficient < 0.01 and worked with absolute coefficient as edge weights for further analysis.

Analysis of cell type GRN characteristics

Centrality analysis. Three measures of network centrality were used to gauge the impor-

tance of genes in each network. The indegree and outdegree of genes in a given network were

calculated as the number of incoming TFs for each target gene and the number of target genes

for each TF, respectively. The betweenness centrality was calculated by counting the number

of times a given gene appears within the shortest paths of two other genes in a given network.

The centrality scores for each network were scaled between 0 and 1 to make the scores compa-

rable across cell types. To calculate fold change in centrality scores in AD versus control net-

work of each cell type, we first replaced missing values (genes found in AD network but not in

control or vice-versa) with the number that equals 1% of the smallest observed centrality score

in both the networks to avoid dividing by 0. The fold change of a given gene was then calcu-

lated as the binary logarithm of the gene’s normalized centrality score in the AD network

divided by the control network. Genes with absolute scores> 0.5 were used for functional

enrichment analysis (described below). All networks were treated as directed and the igraph R

library was used to estimate gene centrality scores.

Hierarchy analysis. We used the hierarchy height (h; outdegree—indegree) of TFs to

probe the direction of information flow in each network. The following analysis was per-

formed on only TF-TF networks (TG is also a TF). The normalized h metric was calculated as

[44]

h ¼
O � I
Oþ I

;

where O = outdegree and I = in-degree of a TF. With this metric, TFs with h between 1 and

0.33 were classified as the top-level regulators, TFs with h between 0.33 and -0.33 were classi-

fied as the middle-level regulators, and TFs with h between -0.33 and -1 were classified as bot-

tom-level regulators. The significance of the distribution of h metric of TFs, which was

trimodal across most cell types, was calculated from the distribution of h in 1000 random net-

works (KS tests). The random networks were generated by preserving the observed edge den-

sity in each network.

TF rewiring analysis. To quantify the difference between sets of predicted targets of a TF

in control versus AD networks, we calculated the rewiring score as [44]

scorerewiring ¼ 1 �
jTc
T

Taj
jTc
S

Taj
;

where |.| is the number of the set, Tc and Ta are the target gene sets of the control and AD net-

works, respectively. Thus, a high rewiring score of a TF means that its targets in the control

network (Tc) and AD network (Ta) exhibit little overlap.

Network motifs and regulatory logic analysis

Motif analysis was used to identify specific interaction patterns in the networks. We focused

on subgraphs containing three genes, which were collated into 13 isomorphic classes. The

number of times each class occurred in each network was recorded using the mfinder tool

[87]. The Z score of the distribution was estimated from 1000 random networks. Due to the

large number of networks, we set the sampling parameter to 100 to obtain a fast approximate

motif analysis of the networks. To characterize TF more of action in feed-forward loops, we
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applied logic circuit models using the Loregic algorithm [22]. Loregic classifies TFs into regu-

latory triplets (two TFs and a target gene forming an FFL in our analysis) and identifies the

logic gate model (e.g. AND, OR, XOR etc.) most consistent with the cross-sample expression

of each triplet. Loregic requires a binarized form of expression data as input to score the logic

gate models. For each cell type gene expression matrix, we selected 100 cells with the highest

variance as inputs to Loregic. 100 cells were selected to account for the uneven distribution of

different cell types in the full expression matrix. This also allowed us to reduce the overall run-

time of the Loregic algorithm. Loregic outputs a gate consistency score for each of the 16 possi-

ble logic gate models. For each triplet, we selected the gate model with the highest consistency

score as the gate consistent for the triplet. Gates with ties in the consistency score were

regarded as gate inconsistent. The statistical significance of consistent gates was estimated by

replacing the target gene in each triplet with a random gene from the corresponding network

and calculating the fraction of time the gate consistency score of the randomized triplet was

greater than or equal to the empirical score. Consistent gates with P< = 0.01 were reported.

Calculation of gene-set cohesiveness and identification of co-regulated gene

modules

Our network dataset contained directed networks in which TFs are one set of nodes with out-

going links and target genes as another set of nodes with incoming links. Because TFs can also

have incoming links, the networks we had at hand were essentially structured as mixed bipar-

tite graphs. We transformed these directed graphs into undirected graphs by connecting target

gene pairs if they had a considerable overlap between their predicted regulators. The overlap

between the predicted regulators of a given gene pair was estimated using the Jaccard’s Index

(JI) and set the edge-weight. Using these weighted graphs, the gain or loss of cohesiveness

within functional gene sets (GO BP terms) was estimated as follows. First, for a given gene set,

a subnetwork depicting edges within the gene set was extracted. Then, the normalized network

density of the subnetwork was calculated as the sum of edge weight divided by the total genes

in the gene set. These operations were performed across control and AD networks of all cell

types. Finally, change in gene set cohesiveness was calculated as the log ratio of density in the

AD network divided by density in the control network. The statistical significance of Δ cohe-

siveness was calculated by randomly sampling the gene set from the background of all genes in

the AD networks and calculating the picking genes from all gene sets with a fold-change

greater than 0.5 were reported in Fig 5A.

Then, the adjacency matrix holding target genes in rows and columns and JI values in the

cells was supplied to the WGCNA algorithm to detect coregulated gene modules [88]. The

detection of reliable modules will depend on two critical parameters: the edge-weight thresh-

old (EWT) to maintain high scoring edges and filter noise arising due to indirect regulations

and the minimum module size (MMS) parameter. We wanted the MMS to be large enough

(atleast 10 genes) to objectively test the functional relevance of resulting modules using statisti-

cal enrichment but not too large to include bifurcated components of large metabolic pathways

into the same modules. Therefore, we tested a range of EWT (between 0.1 and 0.9) and MMS

values (between 10 to 100) for every cell type network to obtain the best possible solution. We

asked what combination of EWT and MMS detects the largest number of functionally relevant

gene modules while retaining as many original genes as possible to avoid information loss.

The functional relevance was tested by counting the fraction of detected modules that could be

annotated using statistical enrichment of GO BP terms. Based on these evaluations, we found

an EWT of 0.2 (20% overlap between predicted regulators of a TG-pair) and an MMS of 30

yields the best network clustering solution (Fig G, Fig H, and Fig I in S1 File). The blockwise
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module function of WGCNA was invoked with ‘agglomerative clustering using average linkage’

as the clustering algorithm.

Functional and disease gene enrichment analysis

The human gene ontology biological process (GO BP) annotations [89], propagated along

‘is_a’ and ‘part_of’ relationships were obtained [90]. Enrichment of query genes (e.g., top cen-

tral genes, module genes etc.) within a given functional geneset (GO BP term or modules) was

calculated using hypergeometric tests, using all genes present in the corresponding network as

the background. The resulting p-values were corrected for multiple testing using the Benja-

mini–Hochberg method [91]. Note that for GO, apart from propagating parent-child relation-

ships, we also removed geneset terms that annotate more than 500 and less than 10 genes for

enrichment analysis.

Network proximity for drug prediction

We assembled drugs from the DrugBank database relating to 2,891 compounds [92]. To pre-

dict drugs with interested modules, we adopted the closest-based network proximity measure

[59] as below

dclosest X;Yð Þ ¼
1

kXk þ kYk

X

x2X

min
y2Y

dðx; yÞ þ
X

y2Y

min
x2X

dðx; yÞ
� �

where d(x,y) is the shortest path length between gene x and y from gene sets X and Y, respec-

tively. In our work, X denotes the interested modules, Y denotes the drug targets (gene set) for

each compound. To evaluate whether such proximity was significant, the computed network

proximity is transferred into z score form as shown below:

Zdclosest
¼

dclosest � md

sd

Here, μd and σd are the mean and standard deviation of permutation test with 1,000 random

experiments. In each random experiment, two random subnetworks Xr and Yr are constructed

with the same numbers of nodes and degree distribution as the given 2 subnetworks X and Y

separately, in the protein-protein interaction network.

Protein-protein interactome (PPI) network

To build the comprehensive human interactome from the most contemporary data available,

we assembled 18 commonly used PPI databases with experimental evidence and the in-house

systematic human PPI that we have previously utilized: (i) binary PPIs tested by high-through-

put yeast-two-hybrid (Y2H) system [93]; (ii) kinase-substrate interactions by literature-derived

low-throughput and high-throughput experiments from KinomeNetworkX [94], Human Pro-

tein Resource Database (HPRD) [95], PhosphoNetworks [96], PhosphositePlus [97], DbPTM

3.0 and Phospho.ELM [98]; (iii) signaling networks by literature-derived low-throughput

experiments from the SignaLink2.0 [99]; (iv) binary PPIs from three-dimensional protein

structures from Instruct [100]; (v) protein complexes data (~56,000 candidate interactions)

identified by a robust affinity purification-mass spectrometry collected from BioPlex V2.0

[101]; and (vi) carefully literature-curated PPIs identified by affinity purification followed by

mass spectrometry from BioGRID [102], PINA [103], HPRD [104], MINT [105], IntAct [106],

and InnateDB [107]. Herein, the human interactome constructed in this way includes 351,444

PPIs connecting 17,706 unique human proteins.
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Machine-learning model for AD-gene prioritization

We sought to utilize network connectivity patterns in cell type regulatory networks to make

predictions on disease-gene associations. First, we downloaded known disease-gene associa-

tions listed in the DisGenNet database [108] and extracted all genes linked with the keyword

‘Alzheimer’. The DisGenNet database ranks gene-disease associations using a metric that

quantifies the level of evidence in published literature. 16% (3481 out of 21666) of all genes in

the database are linked with AD, with gene-disease associations scores ranging from 0.01 (not

strong evidence) to 0.9 (strong evidence). We selected AD genes with scores greater than 0.1

(top 20%) as positive examples to build the binary classifiers. Then, rather than randomly

selecting negative samples, we further analyzed the DisGenNet database to identify genes that

are likely not associated with AD. To do this, we calculated overlaps between diseases and

selected genes strongly associated with diseases that have minimal overlaps with AD (disease-

disease Jaccard’s overlap < 0.1). From this pool of ‘likely not AD-associated’ genes, we ran-

domly selected negative examples equal to the number of positive examples to build classifiers

not biased by class-size. Then, each GRN was transformed into a non-symmetrical adjacency

matrix A, with TFs (i) in columns and TGs (j) in rows and the cell Aij containing the predicted

edge score (absolute coefficient of elastic net regression from scGRNom) of the corresponding

TF-TG pair. The subset of A with rows containing our positive and negative samples was

extracted as the feature matrix, F. To include TFs that do not have any in-degrees (not regu-

lated by other TFs in our networks) in F, we assigned an edge score equal to 1% of the mini-

mum edge score in the corresponding network. This allowed us to label TFs with no upstream

regulators and include them in prediction models. Then, using the vector of edge scores of

each sample in F as the feature vector, we trained a random forest classifier to discriminate

between positive and negative samples. The balanced accuracy of the model was tested using

10 independent runs of five-fold cross-validation. The average balanced accuracy (total 50 tri-

als) was recorded and plotted. The predicted probability of class output from the classifier was

used to rank all genes. The feature importance score was measured as the Gini impurity. The

Gini impurity metric estimates the probability of classifying a sample incorrectly, and is calcu-

lated as

G ¼
XC

i¼1

pðiÞð1 � pðiÞÞ;

where C is the total number of classes (2 in our case) and p(i) is the probability of picking a

sample in class i. The accuracy and G were recorded for each cell type GRN in both conditions.

The most accurate cell type model was chosen as the one with the highest average accuracy

(AD microglia network in our study) and used to predict the probability of AD association of

the remaining unlabelled genes along with TFs with the largest feature importance scores.

Prediction of clinical phenotypes

To predict AD phenotypes, we utilized the original RNA-seq data from the ROSMAP study

(55,889 Ensembl gene ids for 640 post-mortem human samples) on an Alzheimer’s disease

case-control cohort for the Dorsolateral Prefrontal Cortex (DLPFC) brain region. We obtained

permission from ROSMAP to use this data (available on synapse.org (ID: syn3219045). We

mapped the Ensembl genes ids to Entrez gene identifiers, averaged the gene expression values

for Ensembl gene identifiers that mapped to the same Entrez identifiers, and removed

unmapped Ensembl identifiers. Ultimately, we found 26,017 genes (with unique Entrez IDs).

Only 638 out of 640 individual RNA-Seq samples mapped to population phenotypes. Our final
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DLPFC dataset thus contained gene expression values for 26,017 genes for 638 samples. Then,

using normalized gene expression values of top 5% ranked genes from the microglia AD-gene

classification model (described above) as the feature vectors, we trained random forest classifi-

ers to predict various AD phenotypes. The following coding was used: cogdx (4 and 5 versus

1), braak (0,1,2 versus 5,6), and cerad (1 versus 3,4). The classifier accuracy was evaluated

using 10 independent runs of five-fold cross-validations, as described above.
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S1 File. Figs A-N. Fig A. (1) Distribution of different edge types within cell type GRNs. (2)

An upset plot showing overlaps between the top 10% genes with largest in-degree. The filled

dots in the centre matrix indicate the comparison between the respective sets (along the x-

axis), and the bars on the top show size of the intersection. Blue and red rows indicate control

and AD, respectively. The red arrow at the bottom shows overlaps between both neuronal

types across the two phenotypes. (3) Overlaps between central genes in two independent data-

sets (Mathys et al. and Lake et al.). (4) Heatmaps depicting correlation in gene centrality scores

between the full dataset and a reduced dataset consisting 50% of the original samples in the

snRNAseq dataset. Fig B. Hierarchy analysis of cell type GRNs. (1) Sankey plots showing

overlaps between regulatory hierarchies of cell type control and AD GRNs (Blue: top-level,

green: middlelevel, red: bottom-level). Overlaps between (2) top-level, and (3) middle-level

TFs across cell types. Fig C. Barplot showing GO BP terms that gain or loss cohesiveness mea-

sured as change in network density between control and AD networks of microglia. Fig D.

Barplot showing GO BP terms that gain or loss cohesiveness measured as change in network

density between control and AD networks of oligodendrocytes. Fig E. Barplot showing GO BP

terms that gain or loss cohesiveness measured as change in network density between control

and AD networks of inhibitory neurons. Fig F. Barplot showing GO BP terms that gain or loss

cohesiveness measured as change in network density between control and AD networks of
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excitatory neurons. Fig G. Barplots showing the number of co-regulated gene modules (left y-

axis) detected at various levels of edge-weight threshold (right y-axis) and minimum module

size cut-off (top x-axis) across cell types (x-axis). Fig H. Barplots showing the number of genes

included in modules (left y-axis) detected at various levels of edge-weight threshold (right y-

axis) and minimum module size cut-off (top x-axis) across cell types (x-axis). Fig I. Barplots

showing the fraction of functionally annotated modules (left y-axis) detected at various levels

of edge-weight threshold (right y-axis) and minimum module size cut-off (top x-axis) across

cell types (x-axis). Fig J. Barplots showing (1) the number of modules detected in cell type AD

and control networks, and (2) the number of enriched GO BP within those modules. Fig K.

(1) KEGG pathway enrichment of module M1 and (2) GO BP enrichment analysis of module

M4 in microglia. Pathways/processes are shown on the y-axis and the adjusted pvalue of

enrichment is shown along the x-axis. Fig L. Genes in module M4 of microglia AD network.

Fig M. Predicted probabilities of differentially expressed genes (DEG) being associated with

AD based on the random forest-based classifier. Fig N. Distribution of (1) edges, (2) TFs and

(3) TGs within various threshold of absolute coefficients from the elastic net regression.

(PDF)
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