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Abstract 

Background: Reportedly, nasopharyngeal carcinoma (NPC) patients with MHC I Class aberration are prone 
to poor survival outcomes, which indicates that the deficiency of tumor neoantigens might represent a 
mechanism of immune surveillance escape in NPC. 
Methods: To clearly delineate the landscape of neoantigens in NPC, we performed DNA and RNA sequencing 
on paired primary tumor, regional lymph node metastasis and distant metastasis samples from 26 patients. 
Neoantigens were predicted using pVACseq pipeline. Subtype prediction model was built using random forest 
algorithm. 
Results: Portraying the landscape of neoantigens in NPC for the first time, we found that the neoantigen load 
of NPC was above average compared to that of other cancers in The Cancer Genome Atlas program. While 
the quantity and quality of neoantigens were similar among primary tumor, regional lymph node metastasis and 
distant metastasis samples, neoantigen depletion was more severe in metastatic sites than in primary tumors. 
Upon tracking the clonality change of neoantigens, we found that neoantigen reduction occurred during 
metastasis. Building a subtype prediction model based on reported data, we observed that subtype I lacked T 
cells and suffered from severe neoantigen depletion, subtype II highly expressed immune checkpoint molecules 
and suffered from the least neoantigen depletion, and subtype III was heterogenous. 
Conclusions: These results indicate that neoantigens are conducive to the guidance of clinical treatment, and 
personalized therapeutic vaccines for NPC deserve deeper basic and clinical investigations to make them 
feasible in the future. 
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Introduction 
Nasopharyngeal carcinoma (NPC), which 

originates from the epithelium of the nasopharynx, is 
epidemic in southeast Asia, especially in Guangdong, 
Guangxi and Hong Kong of China [1-3]. 
Approximately 90% patients have loco-regionally 
advanced (stage II-IVa, AJCC/UICC 8th edition) NPC 

at first diagnosis [4], and chemoradiotherapy is 
recommended as a basic treatment for those patients 
according to the acknowledged National 
Comprehensive Cancer network guidelines for head 
and neck cancer [5]. However, 20~30% of NPC 
patients suffer from metastasis after standard 

 
Ivyspring  

International Publisher 



Theranostics 2021, Vol. 11, Issue 13 
 

 
http://www.thno.org 

6428 

chemoradiotherapy [6-8]. Once metastasis occurs, the 
median overall survival (OS) time is as short as 10-20 
months [9]. For those patients, a novel promising 
treatment strategy is urgently needed. 

Immune checkpoint inhibitors (ICIs) have 
revolutionized the therapy strategy in cancer by 
reinvigorating the potential preexisting anti-tumor 
immune cells [10-13]. Although pilot clinical trials 
show that ICIs do achieve significant survival 
improvement in some recurrent or metastatic NPC 
patients, approximately 60%~70% of patients show no 
durable response [14-16]. Apparently, besides 
upregulation of immune checkpoint molecules, there 
are other pivotal immune escape mechanisms that exit 
in NPC. 

Mechanisms of immune escape in cancer can be 
summarized as loss of immunogenicity, orchestrion of 
immunosuppressive microenvironment and loss of 
antigenicity [17]. Upregulated expression of immune 
checkpoint molecules like PD-L1 and secretion of 
suppressive cytokines like IL-10 are typical examples 
of loss of immunogenicity. Complete tumor 
ecosystem includes not only mutated tumor cells but 
also stromal cells like cancer-associated fibroblasts 
(CAFs) and infiltrated lymphocytes [18]. Intense 
immune pressure imposed by lymphocytes might 
select tumor cells with high antigenicity and 
subsequently influence the intratumor heterogeneity. 
Consequently, complicated and frequent interplays 
between tumor cells and immune cells or stroma cells 
might gradually orchestrate an “immune privilege” 
microenvironment with increased CAFs, regulatory T 
cells (Tregs) and myeloid-derived suppressor cells 
(MDSC) and reduced cytotoxic T cells [19]. For 
instance, active cross-talks between malignant and 
non-malignant cells promote metastasis through a 
partial epithelial-to-mesenchymal transition program 
in head and neck cancer [20]. Loss of antigenicity 
could be achieved by loss of tumor antigens and 
impair antigen presentation. The majority of tumor 
antigens are neoantigens. Neoantigens are 
immunogenic peptides derived from specific 
mutations in tumor or viral open reading frames, and 
serves as the unique identification of tumor cells [21]. 
And Recognition of tumor specific neoantigens by 
immune cells requires intact antigen presentation [22, 
23]. In the classic process of antigen presentation, 
aberrant proteins are degraded by proteasome, and 
then the peptide fragments are delivered into the 
endoplasmic reticulum via transporters associated 
with antigen processing (TAP) proteins and bind to 
the MHC class I peptide-loading complex which were 
subsequently exported to the cell membrane and 
recognized by T cell receptor (TCR). MHC class I 
molecules consist of ɑ chain and β2-microglobulin are 

expressed in almost all somatic cells. Thus, antigens 
presented by cells generating the aberrant proteins 
itself is called direct presentation, while antigens 
presented by dendritic cells (DCs) is called 
cross-presentations which was reported to engender 
strong and stable immune response[24]. Those tumor 
cell clones losing the MHC class I expression or 
neoantigens tend to escape T-cell recognition and then 
metastasize. Previously, Prof. Kwok-Wai Lo et al. 
found that NPC patients with MHC class I aberration 
are prone to poor survival outcomes, which indicates 
that loss of antigenicity may represent a pivotal 
mechanism of immune surveillance escape in NPC 
[25]. 

With the advantage of paired samples, 
preliminary studies found that neoantigen depletion 
occurred during metastasis [26, 27] and ICIs treatment 
[28]. Studies have also proved that neoantigen-based 
vaccines achieved wonderful tumor control in 
refractory melanoma [29, 30]. Moreover, the 
combination of ICIs and neoantigen vaccines could 
further improve treatment efficacy in melanoma in 
pilot studies [31, 32]. Recently, with the advent of 
next-generation sequencing technology and 
algorithms predicting neoantigens in silico, 
identification of ideal neoantigens for vaccine 
generation has become faster and more convenient 
[33-35]. It has been reported that the quantity and 
quality of tumor neoantigens are predictive 
biomarkers of the clinical response of ICIs in variable 
cancers [36-40]. However, studies portraying the 
neoantigen landscape of NPC are lacking. To 
determine the antigenicity status of metastatic NPC 
and its relationship with survival outcomes, we 
performed whole exome sequencing (WES)/whole 
genome sequencing (WGS) and RNA sequencing 
(RNA-seq) on paired primary tumor, regional lymph 
node metastasis and distant metastasis samples, 
identified NPC-specific neoantigens using the 
pVAC-seq pipeline [41], described its characteristics, 
and finally unveiled the association between 
neoantigens and clinical outcomes. 

Methods 
Samples and data collection 

Following the approval of this study by the 
ethics committee of Sun Yat-sen University Cancer 
Center (SYSUCC) (Guangzhou, China), patients at 
SYSUCC were recruited between June 1, 2012, and 
May 1, 2016. All the samples were histologically 
confirmed as nasopharyngeal carcinoma (NPC) 
(WHO I, II, or III). The quality of tumor samples was 
examined by tissue sectioning and hematoxylin & 
eosin (H&E) staining to estimate the tumor content. 
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Only the highest quality samples with ≥ 30% tumor 
content were selected for subsequent study. Full 
clinical characteristics of the sequenced patients are 
provided in Table S3. 

Nucleic acid extraction and WGS/WES/ 
RNA-seq 

Frozen tissues and formalin-fixed and 
paraffin-embedded samples were pulverized using 
CryoPrep (Covaris, Woburn, MA) and homogenized 
in lysis buffer from the AllPrep RNA/DNA/Protein 
Mini Kit (Qiagen, Valencia, CA). DNA, RNA and 
protein were isolated from each sample using the 
respective kits (Qiagen, Valencia, CA) following the 
manufacturer’s protocol. 

For WGS, a total of 0.8 μg of genomic DNA with 
high molecular weight (> 20 kb single band) per 
sample per patient was used for DNA library 
preparation. A sequencing library was generated 
using a TruSeq Nano DNA HT Sample Prep Kit 
(Illumina, USA) following the manufacturer’s 
recommendations, and index codes were added to 
each sample. Briefly, the genomic DNA sample was 
fragmented to a size of ~350 bp by a Covaris 
sonication system. Then, DNA fragments were 
end-polished, A-tailed, and ligated with the 
full-length adapter for Illumina sequencing, followed 
by further PCR amplification. After PCR products 
were purified (AMPure XP system), libraries were 
analyzed for size distribution by the Agilent 2100 
Bioanalyzer and quantified by real-time PCR (3 
nmol/L). Clustering of the index-coded samples was 
performed on a cBot Cluster Generation System using 
a HiSeq X PE Cluster Kit v2.5 (Illumina) according to 
the manufacturer’s instructions. After cluster 
generation, the DNA libraries were sequenced on the 
Illumina HiSeq X platform, and 150-bp paired-end 
reads were generated. 

For WES, qualified genomic DNA from tumors 
and matched peripheral blood was fragmented by 
Covaris technology with resultant library fragments 
of 180-280 bp, and adapters were then ligated to both 
ends of the fragments. Extracted DNA was then 
amplified by ligation-mediated PCR, purified, and 
hybridized to the Agilent SureSelect Human Exome 
V6 for enrichment, and nonhybridized fragments 
were then washed out. Both uncaptured and captured 
LM-PCR products were subjected to real-time PCR to 
estimate the magnitude of enrichment. Each captured 
library was then loaded onto an Illumina HiSeq X 
platform, and we performed high-throughput 
sequencing for each captured library independently 
to ensure that each sample met the desired average 
fold coverage. 

For RNA-seq, 500 ng of total RNA was extracted 

to prepare RNA libraries using the Illumina TruSeq 
Stranded Total RNA Kit. Libraries were barcoded and 
pooled on the Illumina HiSeq X platform. 

SSNV/InDel and SCNA calling from 
WGS/WES 

We used a commercial variant detection pipeline 
named Sentieon [42] (https://www.sentieon.com), 
which improves upon BWA-, GATK-, and Mutect- 
based pipelines, to call somatic single nucleotide 
variants (SSNVs) and short insertion/deletions 
(InDels). Based on this pipeline, the 2×150-bp paired- 
end reads were mapped into the human reference 
genome (UCSC hg38), and SSNVs and InDels were 
called after the bam file was sorted and deduplicated. 

To further reduce false-positive variant calls, 
additional filtering was performed. A single- 
nucleotide variant (SNV) was considered as true 
positive only if the supported read counts for this 
SNV ≥ 5, and the p-value calculated by Fisher’s test of 
composition of mutant and wild-type read count 
between tumor and normal sample should be < 0.05. 
Variants in variant call format were annotated using 
ANNOVAR [43]. 

To detect significantly mutated genes, we first 
filtered mutations frequently detected (minor allele 
frequency > 0.001) in normal databases, including the 
1000 Genome (2015 Aug, http://www.international 
genome.org/), ESP6500 (version esp6500siv2, 
https://esp.gs.washington.edu/drupal/) and ExAC 
(version ExAC03, http://exac.broadinstitute.org/) 
databases. Somatic copy number variants (CNV), 
status of loss of heterogeneity (LOH) and tumor 
purity estimation (Figure S1A) were detected using 
Control-FREEC v11.1 [44]. 

Bulk RNA-seq analysis 
The 150-bp paired-end reads from RNA-seq 

were mapped to the human reference genome (UCSC 
hg38) using STAR v020201 [45]. RSEM v1.3.0 [46] was 
then used to perform gene expression quantification. 
DESeq2 v1.20.0 [47] was used to perform differential 
expression analysis. The log2TPM-normalized data 
were used in the correlation analysis. 

Cancer cell fraction (CCF) estimation of 
variants 

The ABSOLUTE v1.0.6 [48] algorithm was used 
to estimate the tumor sample purity, ploidy, and CCF 
of each SSNV, InDel and CNV. In line with the 
recommended best practice, all ABSOLUTE solutions 
were reviewed by 3 researchers, with solutions 
selected based on majority vote. In this analysis, 
variants (SSNVs, InDels and CNVs) were classified as 
either clonal or subclonal based on the confidence 
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interval of the CCF evaluated by ABSOLUTE. 
Mutations were defined as clonal if the 95% 
confidence interval overlapped by 1 and as subclonal 
otherwise. 

HLA typing and neoantigen prediction 
We used blood sequencing data in FASTQ 

format to type human leukocyte antigen (HLA). 
HLA-HD v1.2.1 [49] was selected for class-I HLA 
genotyping with default parameters. 

To identify neoantigens, we used the pVAC-Seq 
pipeline v4.0.10 [41] with the NetMHC, NetMHCpan 
and PickPocket algorithms to predict 9 and 10 mers 
neoepitopes. The lowest predicted binding strength of 
the three predictors was used to define the binding 
affinity of neoepitopes. Neoepitopes binding stability 
were evaluated using NetMHCstabpan v1.0 [50]. 
Neoepitopes with binding affinity < 500 nM and 
fragments per kilobase per million (FPKM) > 1 were 
predicted as neoantigens. Neoantigens with binding 
strength < 50 nM were defined as strong affinity, < 
150 were medium affinity, while others were weak 
affinity. To quantify the quality of neoantigens, we 
calculated the Cauchy-Schwarz index of Neoantigens 
(CSiN) score [38] and the neoantigen fitness model 
potential [51] as previously described. 

Neoantigen depletion 
Copy number loss-related depletion: All 

nonsynonymous mutations were annotated as either 
in a region of copy number loss or not. Then, we 
calculated the odds ratio comparing nonsynonymous 
mutations that were neoantigens with non-
synonymous mutations that were not predicted to be 
neoantigens to determine whether neoantigens were 
more likely to be in regions of copy number loss. 

Transcriptional depletion: All nonsynonymous 
mutations were annotated as expressed in the 
RNA-seq data or not, using the definitions above. 
Then, we calculated the odds ratio comparing 
nonsynonymous mutations that were neoantigens 
with nonsynonymous mutations that were not 
predicted to be neoantigens to determine whether 
neoantigens were less likely to be expressed. 

T cell receptor (TCR) inference from tumor 
RNA-Seq data 

Identification of TCR complementarity- 
determining region 3 sequences from T cells present 
in the sequenced tumor sections was performed using 
MiTCR v1.0.3 [52]. Briefly, paired-end FASTQ files 
were concatenated into a single file using seqtk v1.3 
(https://github.com/lh3/seqtk) and run through 
MiTCR with recommended parameters to optimize 
extraction from RNA-seq datasets. 

Estimation of the immune cell population 
Estimation of the immune cell population, such 

as CD8 T cells, was performed using CIBERSORT [53] 
tools online with default parameters (https:// 
cibersort.stanford.edu/). 

Gene set variation analysis 
Predominantly, pathway analyses were carried 

out to evaluate activation of Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathways. Then, we 
applied Gene set variation analysis (GSVA) in the 
GSVA package (version 1.30.0) [54] to assign pathway 
activity estimates to each sample. 

Enumeration of Epstein-Barr virus (EBV) DNA 
EBV read counts extracted from WES/WGS 

were performed using BioBloom Tools v2.3.2 [55], 
reporting the number of hits and misses per filter set 
as well as shared and unique reads. 

Plasma DNA was extracted using a QIAamp 
DNA Blood Mini Kit (Qiagen, Dusseldorf Germany). 
The concentration of EBV DNA in the plasma was 
measured using real-time quantitative PCR with 
primers targeting the BamHI-W region of the EBV 
genome using an ABI Prism 7700 Sequence Detection 
Analyzer (Applied Biosystems, FosterCity, CA). 
Fluorogenic PCRs were set up in a reaction volume of 
50 µL using the TaqMan PCR Core Reagent Kit 
(Da-AN Genetic Diagnostic Center, Sun Yat-Sen 
University). Each reaction contained 10 µL of 5× 
buffer (50 mM Tris–HCl, 10 mM MgCl2, 250 mM KCl 
and 1 mg/mL gelatin); 10 pmol of each amplification 
primer and the corresponding fluorescent probes; 
200 µM each of deoxyadinosine triphosphate, 
deoxycytidine triphosphate, deoxyguanine 
triphosphate and deoxyuridine triphosphate; 5 units 
of Ampli Taq Gold, and 5 µL of extracted plasma 
DNA. Amplifications were performed in an Applied 
Biosystems 7700 Sequence Detector and then 
analyzed using the Sequence Detection System 
software (version 1.6.3) developed by Applied 
Biosystems. Thermal cycling was initiated with a 
10 min denaturation step at 95 °C, followed by 10 
cycles at 95 °C for 45 s and 55 °C for 1 min and 30 
cycles at 95 °C for 30 s and at 55 °C for 45 s. Duplicate 
samples were analyzed, and the mean quantity of 
each duplicate was used for further concentration 
calculations. Multiple negative blanks were included 
in every analysis. 

Establishment of the subtype prediction model 
To extract the signature of subtypes of the Zhang 

cohort, we first detected the differentially expressed 
genes (DEGs) between each two subtypes using a 
Wilcoxon signed-rank test, and those highly 
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expressed in one subtype compared to other two were 
used as signatures to build the prediction model. We 
then randomly selected 2/3 (n = 78) of patients in the 
Zhang cohort as the training dataset, with the 
remaining patients in the validation dataset, using the 
mlbench v2.1-1 R package. Using the caret v6.0-84 R 
package (https://github.com/topepo/caret/), we 
selected a random forest algorithm to build the 
subtype prediction model with 100 resampling 
iterations in the training dataset. We then applied the 
prediction model to the validation dataset and 
assessed its accuracy. After validation, we predicted 
subtypes of patients in our cohort using primary 
tumor RNA-seq data. For multiregion samples, the 
mean of probability would be used to classify 
subtypes. Similar probability of each subtype 
indicates unclear classification, so samples with 
prediction probability < 0.4 were filtered to improve 
the prediction accuracy. The code used for subtype 
prediction was available in https://github.com/ 
Meimei2/Prediction_NPC. 

Immunogram score (IGS) calculation of the 
cancer immunity cycle 

Enrichment analyses of anti-tumor T cell 
immunity, T cell priming and activation (activated 
dendritic cells), trafficking and infiltration of T cells 
into tumors, the recognition of cancer cells by T cells, 
inhibitory cells (Tregs and MDSCs), checkpoint 
molecule expression, and other inhibitory molecules 
were performed using signatures previously 
described [56]. The GSVA v1.30.0 [54] R package was 
used to calculate the normalized enrichment score 
(NES) of Gene Set Enrichment Analysis (GSEA), and 
the NES was then converted into a z-score (Z). For 
tumor antigenicity, the z-score of the cancer-predicted 
neoantigen load was calculated. The IGSs of 
anti-tumor T cell immunity, tumor antigenicity, T cell 
priming and activation, trafficking and infiltration of 
T cells into tumors and the recognition of cancer cells 
by T cells of each patient were defined as 3 + 1.5×Z, 
while IGSs of absence of inhibitory cells, absence of 
checkpoint molecule expression and absence of other 
inhibitory molecules were defined as 3 - 1.5×Z. 

Statistics 
R 3.5.0 was used for all statistical analyses. The 

Kolmogorov-Smirnov normality test was performed 
to determine if datasets follow a Gaussian distribution 
in each comparison. If the data were Gaussian, 
parametric tests were performed (two-tailed unpaired 
t-tests, one-way ANOVA with Tukey’s correction for 
multiple comparisons, or Pearson correlation). If the 
data were non-Gaussian, nonparametric tests were 
applied (Wilcoxon rank test, one-way ANOVA using 

Kruskal-Wallis with Bonferroni’s correction for 
multiple comparisons, or Spearman correlation). The 
results were considered statistically significant when 
P < 0.05, or a lower threshold when indicated by the 
appropriate test. Survival analysis was performed 
using the Kaplan-Meier method. A log-rank test was 
used to evaluate the significance of the difference 
between different Kaplan-Meier curves. The hazard 
ratio was determined using a Cox proportional 
hazards model. The test used and the statistical 
significance are reported in each figure and table. 

Results 
Characteristics of neoantigens in 
nasopharyngeal carcinoma 

To delineate the landscape of neoantigens in 
NPC, we performed WES/WGS and RNA-seq in 57 
samples from 26 NPC patients, including 29 primary 
tumors, 16 regional lymph nodes and 12 distant 
metastasis sites (Table S1-S2). For available patients 
(P14, P15, P20, P21, P23), we also included 23 
multiregional samples (Table S1-Table S2). All 
samples (except P07-Met3_P) were obtained before 
treatment. Most patients included in our study were 
de novo diagnosed metastatic NPC patients; the 
detailed clinical information is shown in Table 1. 
Following instructions, we detected the 9 and 10 mers 
MHC class I-associated neoantigens using the 
pVAC-seq pipeline [41]. Neoepitopes with FPKM 
smaller than 1 or predicting affinity greater than 500 
nM were filtered out. In total, we detected 21,174 
neoantigens, which included 3,061 high affinity 
neoantigens (binding affinity < 50 nM) and 1,629 
clonal neoantigens (Figure 1A; Figure S1B; Table S4; 
Supplementary Data). There were 18,861 neoantigens 
derived from missense mutations and 1,783 
neoantigens from frame-shift insertion/deletions 
(InDels) (Figure 1A). On average, missense mutations 
generate 4.5 neoantigens per mutation, and frame- 
shift InDels generate 9.35 neoantigens per mutation, 
which is comparable to neoantigen data of The Cancer 
Genome Atlas (TCGA) program [57] (Table S5) and is 
consistent with previous research reported that 
frame-shift InDels generated more neoantigens than 
missense mutations did [40]. It’s worth noted that 
tumors with relatively low mutations like NPC and 
thyroid cancer might possess high ability of 
generating neoantigens (Table S5), since the number 
of predicted neoantigens was also influence by HLA 
types, binding affinity and expression levels beside 
number of mutations. In NPC, most neoantigens 
originated from missense mutations (Figure 1A). As 
expected, although most nonsilent mutations lead to 
amino acid sequence changes, only approximately 
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57.33% (23.08%-79.03%) can generate neoantigens, 
neglecting whether these neoantigens can be 
recognized by antigen-presenting cells and stimulate 
a T cell response (Figure 1B; Figure S2A). 

 

Table 1. Clinical characteristics of patients (n = 26) 

Characteristics Entire cohort 
Age, Median (IQR) 45.0 (39.0-53.0) 
Gender   
Male, no. (%) 23 (88.46%) 
Female, no. (%) 3 (11.54%) 
Smoking   
Yes, no. (%) 10 (38.46%) 
No, no. (%) 16 (61.54%) 
Pathology (WHO)   
I/II, no. (%) 0 (0%) 
III, no. (%) 26 (100%) 
T stage   
T1-2, no. (%) 5 (19.23%) 
T3-4, no. (%) 21 (80.77%) 
N stage   
N0-1, no. (%) 3 (11.54%) 
N2-3, no. (%) 23 (88.46%) 
M stage   
M0, no. (%) 6 (23.08%) 
M1, no. (%) 20 (76.92%) 
Local-regional radiotherapy   
Yes, no. (%) 12 (46.15%) 
No, no. (%) 14 (53.85%) 
EBV DNA, Median (IQR) 26,050 (8,438-104,500) 

 
 
Compared to the mutation data for tumors in 

TCGA program, the number of nonsilent mutations of 
NPC (median = 65) is relatively low and comparable 
to kidney renal papillary cell carcinoma (KIRP, 
median = 64) and Liver hepatocellular carcinoma 
(LIHC, median = 72) (Figure 1C; Figure S2B-C). We 
also compared the neoantigen load of NPC with other 
cancers using published TCGA data [57]. The number 
of neoantigens of NPC (median = 251) is relatively 
high and comparable to stomach adenocarcinoma 
(STAD, median = 235) and lung adenocarcinoma 
(LUAD, median = 321) (Figure 1D; Figure S2D-E). In 
many other tumors, previous studies found that the 
neoantigen load was positively correlated with tumor 
mutation burden (TMB) and infiltration of T cells [58, 
59]. In NPC, we found that the neoantigen load was 
positively correlated with TMB (R = 0.76, P < 0.001), 
but not correlated with proportion of CD8+ T cells or 
CD4+ T cells (Figure 1E-F; Figure S2F). NPC is closely 
associated with EBV infection, which has been found 
to promote genome instability [60, 61]. Thus, we 
hypothesized that more severe EBV infection might be 
linked to more neoantigens. However, in our study, 
either the clinically detected EBV DNA copy number 
or the EBV infection quantified using BioBloom [55] 
showed no correlation with the neoantigen load 
(Figure 1G; Figure S2G). 

Once TCRs recognize antigens, T cells will be 
activated to destroy the specific enemy. It is rational to 
hypothesize that tumor neoantigen load is associated 
with TCR diversity. Therefore, we used MiTCR[52] to 
extract and quantify the TCR diversity from RNA-seq 
data. However, we found that the neoantigen load 
was not significantly correlated with the number of 
TCR clones (Figure 1H; Figure S2H). Since the extent 
of TCR selection and clonal expansion is an important 
indicator of local T cell activation and replication, this 
phenomenon indicates that due to posttranslational 
modification or other reasons, many predicted 
neoantigens cannot stimulate T cells. We further 
explored the relationship between intratumor 
heterogeneity (ITH) of neoantigens and ITH of TCR 
using multiregion samples. We defined the ITH of 
neoantigens as the proportion of branch neoantigens 
that are not shared by all samples from different 
regions [62]. Similarly, the proportion of branch TCR 
represents the ITH of TCR. We observed that ITH of 
neoantigens was positively correlated with ITH of 
TCR (Figure 1I-M). It indicated that ITH of 
neoantigens might influence the function of T cells. 
We further explored genes with high ability of 
generating neoantigens across all samples. TP53, 
KIF1A, SUN1, ARID1B and KCNMA1 were found to 
be able to generate more neoantigens compared to the 
others (Figure S2I). Across all predicted neoantigens, 
only 8% (1,697/21,174) were found to be shared by 
samples from the same patient, and no neoantigen 
was found to be shared by different patients. For 
example, TP53 a well-known driver gene reported in 
NPC [63], was mutated in 31% samples, but it 
generated distinctly different neoantigens in two 
samples. It is difficult to identify ubiquitous 
neoantigens that can serve as biomarkers or treatment 
targets for NPC (Figure S2J). 

Distinct neoantigen characteristics among 
primary tumor, regional lymph node 
metastasis and distant metastasis samples 

Many studies have confirmed that immune 
suppression promotes the metastasis of tumor cells 
[64-67]. Since neoantigens are unique identifications 
of different tumor cell clones, fewer neoantigens are 
supposed to associate with weaker immune 
surveillance. Thus, we asked whether neoantigen 
characteristics were distinct among primary tumors, 
regional lymph node metastasis and distant 
metastasis in NPC. Genomic instability is supposed to 
be correlated with neoantigen load. Firstly, we 
assessed the weighted genome instability index 
(wGII) and a threshold of 0.2 accurately distinguished 
cancer chromosomal instability+(CIN+) from CIN- as 
previously defined[68].  
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Figure 1. Landscape of neoantigens in nasopharyngeal carcinoma (NPC). (A) Bar plot shows the composition of variants types that produced neoantigens. Pie plot on the top left 
shows the composition of variant types and the different binding affinities of all neoantigens. (B) Bar plot and pie plot show the proportions of nonsilent mutations that produced neoantigens. 
(C-D) Comparison of the number of nonsilent mutations (C) and neoantigen load (D) between NPC and other cancers using published The Cancer Genome Atlas program data. THCA: 
Thyroid carcinoma; PRAD: Prostate adenocarcinoma; LGG: Brain Lower Grade Glioma; BRCA: Breast invasive carcinoma; OV: Ovarian serous cystadenocarcinoma; KIRC: Kidney renal clear 
cell carcinoma; GBM: Glioblastoma multiforme; UCEC: Uterine Corpus Endometrial Carcinoma; KIRP: Kidney renal papillary cell carcinoma; CRC: Colon adenocarcinoma/Rectum 
adenocarcinoma Esophageal carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; LIHC: Liver hepatocellular carcinoma; HNSC: Head and Neck squamous 
cell carcinoma; STAD: Stomach adenocarcinoma; NPC: nasopharyngeal carcinoma; LUAD: Lung adenocarcinoma; BLCA: Bladder Urothelial Carcinoma; LUSC: Lung squamous cell carcinoma; 
SKCM: Skin Cutaneous Melanoma. (E) Correlations between tumor mutation burden (TMB) and neoantigen load. (F) Correlations between proportion of CD8+ T cells and neoantigen load. 
(G) Correlations between clinical detected EBV DNA and neoantigen load. (H) Correlations between proportion of clonal TCR-α and neoantigen load. (I-J) Correlations between 
intratumor heterogeneity (ITH) of TCR-α (I) or TCR-β (J) and ITH of neoantigens. (K-M) Proportions of branch neoantigens (K), TCR-α (L) and TCR-β (M) of multiregion samples. 
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The CIN status was similar among primary 
tumor, regional lymph nodes and distant metastasis 
(Figure S3A). And CIN+ tumors tended to possess 
more neoantigens compared to CIN- tumors although 
didn’t reach the significance probably due to small 
sample size (Figure S3B). In addition, microsatellite 
instability (MSI) was also assessed using MANTIS 
[69]. All samples were MSI stable, and there was no 
difference of MSI score among primary, regional 
lymph nodes and distant metastasis (Figure S3C). In 
addition, the MSI score wasn’t correlated with 
number of neoantigens in NPC (R = 0.099, P = 0.46; 
Figure S3D). Then we compared the neoantigen load 
and proportion of high-affinity neoantigens among 
primary tumors, regional lymph node metastasis and 
distant metastasis. Consist with genomic instability 
comparison, there were no significant differences in 
neoantigen load or proportion of high-affinity 
neoantigens among different sites (Figure 2A-B). 
Additionally, the neoantigen load in primary tumors 
was positively correlated with the neoantigen load of 
distant metastasis (R = 0.56, P = 0.058; Figure 2C). 
There was a trend that the neoantigen load at primary 
sites was correlated with that at regional lymph 
nodes, albeit without statistical significance (R = 0.25, 
P = 0.4; Figure 2D). Compared with neoantigen load, 
the neoantigen quality exhibited a more important 
role in survival outcome prognosis in some cancers 
[37-39]. Therefore, we intended to define the 
characteristics of the quality of neoantigens among 
primary tumors, regional lymph node metastasis and 
distant metastasis. We quantified the quality of 
neoantigens using the Cauchy-Schwarz index of 
neoantigens (CSiN) score [38] and neoantigen fitness 
model potential [51]. There were no significant 
differences in the quality of neoantigens among 
primary tumors, regional lymph node metastasis and 
distant metastasis (Figure 2E-F). Taken together, our 
results inferred that the quantity and quality of 
neoantigens were similar among primary tumors, 
regional lymph node metastasis and distant 
metastasis. 

Immune suppression promotes tumor metastasis 
[64-67], and immune suppression has been commonly 
characterized by neoantigen depletion, which 
impedes the presentation and recognition of tumor 
cells. In general, neoantigen depletion may occur at 
the DNA level through copy-number loss, at the RNA 
level through suppression of transcripts containing 
neoantigens, or through posttranslational 
mechanisms [36]. At the DNA level, we quantified the 
extent of neoantigen depletion due to copy-number 
loss by comparing the odds ratios between 
neoantigens and nonneoantigenic, nonsynonymous 
mutations (Methods) [36]. And odds ratio greater 

than 1 means that neoantigens were more likely to 
occur on genomic segments with copy number loss. 
At the RNA level, we measured whether neoantigens 
were preferentially subject to reduction in expression 
compared to nonneoantigens in the same manner 
(Methods). And odds ratio less than 1 means that 
transcripts of neoantigens were more likely to be 
reduced. We found that CNV loss related neoantigen 
depletion occurred in 13.79% of primary tumors, 0% 
of regional lymph nodes and 25% of distant 
metastases, and transcriptional neoantigen depletion 
occurred in 51.72% of primary tumors, 37.5% regional 
lymph nodes and 66.67% distant metastases, which 
indicated that immune suppression characterized by 
neoantigen depletion might facilitate distant 
metastasis in NPC (Figure 2G-H). 

Besides, MHC class I antigen presentation 
deficiency is also a major tumor escape mechanism 
from lymphocytes surveillance [23]. Previous 
genomic-wide association study found that 
single-nucleotide polymorphisms (SNPs) in HLA 
were independently associated with NPC [70]. In the 
present study, the frequency of mutated MHC class I 
related genes (including HLA-A, HLA-B, HLA-C, B2M, 
NLRC5, TAP1 and TAP2) was relatively low, only two 
samples (P14-Met2 and P45-Pri) were detected. And 
the expression of MHC class I related genes except 
NLRC5 which was lowest expressed in primary 
tumor, were similar among primary tumor, regional 
lymph nodes and distant metastasis (Figure 2I). As 
expected, the expression of HLA-A and HLA-B were 
weakly correlated with proportion of clonal TCR-α 
and TCR-β, respectively (Figure S3E-F). Furthermore, 
we evaluated whether loss of heterogeneity (LOH) 
happened in HLA genes. LOH of HLA were detected 
in 8 samples in all, and the frequency of LOH of HLA 
didn’t seem to be correlated with different sites or 
different type of neoantigens depletion (Figure S3G). 
Samples with HLA LOH seemed to possess higher 
neoantigens load compare to those with intact HLA, 
although didn’t reach the statistically significance 
probably due to small sample size (Figure 2J). As 
expected, expression of HLA genes was significantly 
higher in sample with intact HLA compared to those 
with HLA LOH (Figure S3H). As for immune 
microenvironment, M0 macrophages and activated 
mast cells enriched in samples with HLA LOH, while 
CD8 T cells, Tregs, M1 and M2 macrophages were 
enriched in samples with intact HLA (Figure 2K). 
Furthermore, we identified four tumor 
microenvironment immune types (TMITs) based on 
expression of CD8A and PD-L1 as previous described 
[71]. TMIT I (high PD-L1 and CD8A) represent 
inflamed tumor that might respond favorably to ICIs, 
TMIT II (low PD-L1 and CD8A) and TMIT III (high 
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PD-L1 and low CD8A) might represent non-inflamed 
tumors, while TMIT IV (low PD-L1 and high CD8A) 
stands for tumors with immune excluded micro-
environment [71, 72]. In all, 35.1% (20/57), 33.3% 
(19/57), 15.8% (9/57) and 15.8% (9/57) samples were 
classified into TMIT I, TMIT II, TMIT II and TMIT IV, 
respectively (Figure S3I). Intriguingly, almost all 
tumors (87.5%, 7/8) with HLA LOH belongs to TMIT 
II (Figure S3I). All these results indicated that HLA 
LOH seemed to be related with relatively inactivated 
immune microenvironment, which might be 
convenient for tumor cells to proliferate and 
metastasize. 

Neoantigen reduction happened during 
metastasis 

With the assumption that tumor cells without 
clonal neoantigens are privileged to escape immune 
surveillance and metastasize, we compared the 
clonality of neoantigens between primary and 
metastatic sites in paired samples using cancer cell 
fraction (CCF), which quantifies the clonality of 
mutations, with CCF = 1 indicating that each tumor 
cell contains this mutation (Methods) [48]. According 
to the dynamic change of CCF, we could categorize 
neoantigens into three groups: a reduced group, an 
increased group and a persistent group. The reduced 
group refers to neoantigens that exist in primary 
tumors but disappear in metastatic tumors or those 
that were clonal in primary tumors but subclonal in 
metastatic tumors. In contrast, the increased group 
represents neoantigens that were absent in primary 
tumors but present in metastatic tumors or those that 
were subclonal in primary tumors but clonal in 
metastatic tumors. The least common are the 
persistent group. To determine whether a tumor cell 
would be prone to discarding mutations that generate 
neoantigens to escape immune surveillance, we also 
categorized nonneoantigenic mutations into a 
reduced group, an increased group and a persistent 
group, as previously described. As expected, we 
found that reduction was prone to occur in mutations 
that produced neoantigens compared to 
nonneoantigenic mutations during metastasis (Figure 
3A). It’s rational to assume that tumor cells tended to 
lose neoantigens with high immunogenicity. Binding 
affinity and stability to MHC class I molecules 
represent the immunogenicity of antigens, we 
calculated proportion of strong/medium affinity 
neoantigens (affinity < 150 nM) and high stability 
neoantigens (half lift time > 2 h) in the reduced group, 
as compared to the increased group. Neoantigens 
with strong immunogenicity are prone to be reduced 
during process of tumor metastasis (Figure 3B). 

We then calculated the neoantigen reduction 

ratio, which was defined as the increased group 
minus the reduced group and divided by the 
neoantigen load in primary tumors, to evaluate the 
extent of neoantigen reduction. We found that 
neoantigen reduction occurred in 57.69% metastatic 
tumors (15/26) and tended to occur in metastatic 
regional lymph nodes (71.43%, 10/14) compared to 
distant metastasis (41.67%, 5/12) (Figure 3C-D). Gene 
set variation analysis (GSVA) indicated that primary 
immunodeficiency pathway was enriched in tumors 
with reduced neoantigens (Figure 3E). Immune 
inhibitors like PD-1, BTLA and CTLA-4 were 
significantly highly expressed in metastatic tumors 
with reduced neoantigens, which further supported 
that reduction of neoantigens was associated with 
functional deficiency of immune cells (Figure 3F). 
Furthermore, B cells and immune regulatory T cells 
like Tregs and follicular helper T cells were enriched 
in metastatic tumors with neoantigen reduction, while 
macrophages and resting dendritic cells were 
enriched in those without neoantigen reduction 
(Figure 3G). Also, we strived to explore the functional 
orientation of the immune infiltration via comparing 
the ratio between Tregs vs CD8 T cells and M2 vs M1 
macrophages (Figure 3H). As supposed, higher Tregs 
vs CD8 T cells ratio was observed in metastatic 
samples with neoantigens reduction compared to 
those without (Figure 3H). Neoantigen reduction 
which means less antigen stimulation signals might 
induce the functional suppression of immune cells. 
The enrichment of immune inhibitors and immune 
cells indicated that ICIs might obtain supreme tumor 
control in metastatic tumors with neoantigens 
reduction. 

Degree of neoantigen depletion is distinct 
among different subtypes 

Conceivably, tumor cells with abundant 
neoantigens would be easily recognized and 
eliminated by the immune system, and studies 
proved that high TMB or high neoantigen load or 
high neoantigen quality was associated with 
favorable treatment response in some cancers [36-38, 
40, 73]. We found that tumor mutation burden was 
similar among primary tumor, regional lymph nodes 
and distant metastasis (Figure S4A). When patients 
were categorized into high and low groups based on 
the median of TMB of primary tumor, we found that 
low TMB was associated with worse progression-free 
survival (PFS) rate (HR = 2.98, 95% CI = 1.1-8.4, P = 
0.029), while TMB was not correlated with overall 
survival (OS) outcome (HR = 3.2, 95% CI = 0.8-12.2, P 
= 0.074) (Figure S4B-C). These results were consistent 
with previous reported results [74]. Next, to 
determine whether the characteristics of neoantigens 
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can predict survival outcomes of NPC patients, we 
categorized patients into high and low groups based 
on the median of neoantigen load, CSiN score and 
neoantigens fitness model potential, respectively. 

Unfortunately, we found that neither neoantigen load, 
CSiN score nor fitness model potential group were 
associated with patients’ PFS or OS (Figure 4A-C; 
Figure S4D-F). 

 

 
Figure 2. Characteristics of neoantigens among primary tumors, regional lymph node metastasis and distant metastasis. (A-B) Neoantigen load (A) and proportion of 
high-affinity neoantigens (B) were similar among primary tumors, regional lymph node metastasis and distant metastasis. (C-D) Scatter plot showing the relationship between the neoantigen 
loads of primary tumors and distant metastasis (C) or regional lymph node metastasis (D). (E-F) CSiN score (E) and fitness model potential of neoantigens (F) were similar among primary 
tumors, regional lymph node metastasis and distant metastasis. (G-H) Bar plot showing the different proportions of copy number loss related (G) and transcriptional (H) neoantigen depletion 
among primary tumors, regional lymph node metastasis and distant metastasis. (I) Violin plot showing the expression of MHC class I related genes among different sites. Wilcoxon signed-rank 
test: ns: P > 0.05, *: P < 0.05. (J) Box plot comparing the number of neoantigens between samples with HLA LOH and those with intact HLA. (K) Comparison of proportion of immune cell 
between samples with HLA LOH and those with intact HLA. Wilcoxon signed-rank test: *: P < 0.05, **: P < 0.01, ***: P < 0.001. Pri: primary tumor; Lyn: regional lymph nodes; Met: distant 
metastasis. 
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Figure 3. Neoantigens reduction occurred during metastasis. (A) Bar plot showing the proportion of the reduced group between neoantigenic mutations and nonneoantigenic 
mutations. Fisher’s exact test: *: P < 0.05, **: P < 0.01. (B) Odds ratios of binding affinity and stability compared between the reduced group and increased group. Values > 1 indicates that 
higher antigenicity neoantigens are more likely to be in the reduced group. (C) Distribution of the neoantigen reduction ratio of regional lymph node metastasis and distant metastasis. The 
Wilcoxon signed-rank test was used. (D) Waterfall plot showing the dynamic status of neoantigen reduction of metastatic tumors. (E) Results of gene set variation analysis between metastatic 
tumors with and without neoantigens reduction. (F) Box plot shows the expression of immune inhibitor molecules in metastatic tumors with or without neoantigens reduction. (G) 
Comparison of proportion of immune cell between metastatic tumors with and without neoantigens reduction. Wilcoxon signed-rank test: *: P < 0.05, **: P < 0.01. (H) Box plot showing the 
ratio of Tregs/CD8 T cells (left) and M2/M1 macrophages (right) between metastatic tumors with and without neoantigens reduction. The Wilcoxon signed-rank test was used. 
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Figure 4. Signatures of distinct neoantigen depletion among different subtypes. (A) Kaplan-Meier (KM) curves of progression-free survival (PFS) of patients in high and low 
neoantigen load groups. (B) KM curves of PFS of patients in high and low CSiN score groups. (C) KM curves of PFS of patients in high and low neoantigen fitness model potential groups. (D) 
Subtype prediction model probability of different subtypes. ***: P < 0.001, Kruskal-Wallis test. (E) Gene signature expression levels (z-normalized) by subtypes. *: P < 0.05, ***: P < 0.001, 
Kruskal-Wallis test. (F) Comparison of the neoantigen loads among different subtypes. (G-H) Comparison of the CSiN scores (G) and neoantigen fitness model potential (H) among different 
subtypes. (I) Odds ratios of copy number loss-related neoantigens depletion. Values > 1 indicates that neoantigens are more likely to be in regions of copy number loss compared to 
nonsynonymous mutations that are not neoantigens. (J) Odds ratios of transcriptional neoantigen depletion are shown. Values < 1 indicates that neoantigens are less likely to be expressed 
compared to nonsynonymous mutations that are not neoantigens. (K) Comparison of expression of MHC class I related genes among different subtypes. *: P < 0.05, **: P < 0.01, 
Kruskal-Wallis test. 

 
To date, clinicians make therapy strategy 

decisions mainly based on clinical information, 
especially tumor stage and the count of EBV DNA 

segments [5, 75-77]. A verified reliable molecular 
subtype of NPC for application in the clinic is lacking. 
Using the largest clinical RNA-seq cohort of primary 
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tumors reported to date, Prof. Zhang et al. proposed 
three molecular subtypes of treatment-naïve NPC 
mainly based on different immune cell gene 
expression profiles, but didn’t establish the subtype 
prediction model [78]. It has been reported that the 
PFS of subtype I is worst among the three subtypes, 
perhaps due to its low immune infiltration and high 
proliferation. We then asked whether tumor cells 
from different subtypes also escape immune 
surveillance through neoantigen depletion. Aiming to 
answer this question, we built a robust prediction 
model that could precisely categorize patients into 
different subtypes. We randomly selected 2/3 
patients in the Zhang cohort as the training cohort, 
and the remaining as the validation cohort. We then 
built a subtype prediction model based on differential 
expression genes of the Zhang cohort using a random 
forest algorithm (Figure S4G-I; Table S6; Methods). 
The prediction accuracy was 85.71%, and the area 
under receiver operating characteristic (ROC) curve 
further confirmed the sensitivity and specificity of our 
model (Figure S4I). 

We then applied the prediction model to 
primary tumors of our cohort. For multiregion 
samples, the mean of the prediction probability would 
be used to classify subtypes. Samples with a 
probability less than 0.4 were filtered to improve the 
prediction accuracy (P14-Pri1, P21-Pri2 and P22-Pri1 
were removed). Finally, 17.4% (n = 4), 30.4% (n = 7), 
and 52.2% (n = 12) patients were categorized into 
subtype I, subtype II and subtype III, respectively 
(Table S3). The distribution of prediction probability 
evaluated the accuracy of our prediction model 
(Figure 4D). Consistent with previous reports, 
patients in subtype II were characterized with high 
immune infiltration and low proliferation (Figure 4E). 
Using the mutant-allele tumor heterogeneity (MATH) 
score [79] to quantify ITH, we found that ITH is 
highest in subtype I and lowest in subtype III among 
different subtypes (Figure S4J). We further explored 
the neoantigen characteristics among subtypes. The 
neoantigen load of subtype I was significantly lower 
than that of subtype III (P = 0.013), while no 
significant differences in neoantigen quality were 
detected among subtypes (Figure 4F-H). The 
proportion of high-affinity neoantigens was also 
similar among subtypes (Figure S4K-L). Then we 
calculated the odds ratio to evaluate the extent of copy 
number loss related neoantigen depletion and 
transcriptional depletion in different subtypes. As 
expected, both CNV loss related neoantigens 
depletion and transcriptional depletion were severe in 
subtype I (Figure 4I-J). Consistently, expression of 
MHC class I related genes in subtype II were higher 
than other subtypes (Figure 4K). These results 

showed that patients in subtype I lacked effective 
immune cells and suffered from severe neoantigen 
depletion, which might indicate dismal survival 
outcomes. 

As expected, patients in subtype I suffered from 
worse 2-year PFS compared to patients in subtypes II 
and III (P = 0.049; Figure 5A-C). Due to the similar 
survival between subtypes II and III (Figure 5A-B), 
we merged patients of subtypes II and III as a new 
subtype II. Patients in subtype I suffered from worse 
2-year OS and PFS compared to those in new subtype 
II (Figure 5C-D). Moreover, we found that the merged 
subtype can better predict PFS (C index: 0.77 vs 0.68) 
of patients compared to the old one subtype 
definitions in our cohort. 

To help clinicians make precise treatment 
decisions for each patient, we calculated the 
immunogram score (IGS) of the cancer immunity 
cycle, including anti-tumor T cell immunity, tumor 
antigenicity, T cell priming and activation, trafficking 
and infiltration of T cells into tumors, the recognition 
of cancer cells by T cells, absence of inhibitory cells, 
absence of checkpoint molecule expression, and 
absence of other inhibitory molecules, as previously 
reported [56, 80] (Figure 5E). We then visualized the 
cancer immunity cycle status of each sample using a 
radar plot (Figure 5F). We found that patients in 
subtype I lacked T cells and were weak in tumor 
antigenicity, antigen presentation and recognition of 
tumor cells, which might lead to resistance of 
immunotherapy (Figure 5G); thus, novel target 
treatments for these patients are urgently needed. For 
example, P40 belonged to subtype I, T cells, tumor 
antigenicity and recognition of tumor cells were 
scarce in this patient (Figure S5A). Although P40 
achieve remission after chemotherapy, tumor 
progressed and the patient died 21 months later 
(Table S3). In contrast, patients in subtype II highly 
expressed immune checkpoint molecules (Figure 5G), 
indicating that ICIs might be effective for those 
patients. For example, P20 from subtype II highly 
expressed immune inhibitor molecules, and inhibitor 
cells were enriched in this patient (Figure S5B). This 
patient was free of tumor progression after receiving 
curative chemotherapy and radiotherapy (Table S3). 
Using ImmuCellAI to predict response of ICIs therapy 
[81], we found that the proportion of responders 
was highest in Subtype II (47.6%) and lowest 
in Subtype I (12.5%) (Figure S5C). Subtype III is the 
most heterogenous group among the three subtypes 
since no obviously ubiquitous drawbacks were 
observed directly. Thus, treatment decisions for 
patients in subtype III need more attention, with 
comprehensive considerations of clinical information, 
immune status and molecular subtypes. 
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Figure 5. Clinical outcomes and characteristics of the tumor immunity cycle among different subtypes. (A-B) Kaplan-Meier curves of progression-free survival (A) and overall 
survival (B) of patients in different subtypes. (C-D) Kaplan-Meier curves of progression-free survival (C) and overall survival (D) of patients in subtype I and new subtype II. (E) Heatmap 
showing the normalized enrichment score of the putative existence of T cell immunity in tumors, priming and activation of T cells, trafficking and infiltration of immune cells, recognition of 
tumor antigens, enrichment of inhibitor immune cells, expression of immune checkpoint molecules and expression of other immune inhibitor molecules such as IDO1. (F) Radar plot of cancer 
immunity-cycle of tumors from subtype I (left), subtype II (medium) and subtype III (right). Axis 1 represents putative existence of T cell immunity in tumors, axis 2 represents tumor 
antigenicity (neoantigen load), axis 3 represents priming and activation of T cells, axis 4 represents trafficking and infiltration of immune cells, axis 5 represents recognition of tumor antigens, 
axis 6 represents absence of inhibitor immune cells such as Tregs, axis 7 represents absence of immune checkpoint molecules such as PD-1 and CTLA-4, and axis 8 represents the absence of 
other immune inhibitor molecules such as IDO1. The circles from inner to outer represent levels from 1 to 5. (G) Box plot comparing the difference of normalized enrichment score (NES) 
of cancer immunity-cycle of primary tumors among different subtypes. 
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Discussion 
Based on DNA and RNA sequencing of paired 

primary tumor, regional lymph node metastasis and 
distant metastasis samples, for the first time, we 
portrayed the landscape of neoantigens in NPC. We 
found that the neoantigen load of NPC is above 
average compared to other cancers in TCGA. The 
quantity and quality of neoantigens is similar among 
primary tumors, regional lymph node metastasis and 
distant metastasis, but neoantigen depletion was 
more severe at metastatic sites compared to primary 
tumors. Tracking the clonality change of neoantigens 
during metastasis, we found that neoantigen 
reduction occurred in metastatic tumors, especially in 
regional lymph node metastasis. And enrichment of 
immune checkpoint molecules and immune cells were 
seen in metastatic tumors with neoantigens reduction. 
To stratify patients into distinct risk subgroups, we 
built a subtype prediction model based on previous 
reported data. Visualizing the tumor immunity cycle 
using a radar plot, we found that subtype I lacked T 
cells and suffered from severe neoantigen depletion, 
subtype II highly expressed immune checkpoint 
molecules and suffered from the least neoantigen 
depletion, while subtype III was heterogenous. 

The relationship between neoantigen load and 
survival is controversial. Higher neoantigen load has 
been associated with better survival in breast cancer 
[58] and melanoma [82], but worse survival in 
multiple myeloma [83]. For NPC, the neoantigen load 
fails to predict the clinical survival outcomes of 
patients. Higher TMB, which is linked to higher 
neoantigen load, has been associated with response of 
ICI therapy [84, 85], and tumor antigenicity is a crucial 
part of the tumor immunity cycle, prompting the 
hypothesis that a higher neoantigen load is also 
associated with the efficacy of immunotherapy. 
Previous studies demonstrated that neoantigen load 
can predict the response of ICIs [36, 40]. However, 
although the neoantigen load of NPC is comparable to 
that of LUAD, the response rate of ICIs is lower in that 
in NPC patients [14-16]. Identification of ICI-sensitive 
patients and the combination of traditional 
radiotherapy or other target therapies, such as anti- 
vascular endothelial growth factor receptor treatment, 
are promising strategies to improve the therapy 
efficacy of ICIs in NPC, and related preliminary 
clinical trials are underway (NCT04073784). Building 
a prediction model with previously published data, 
we found that patients in subtype II highly expressed 
immune checkpoint molecules, indicating that ICIs 
might be effective for those patients, especially for 
patients with high neoantigen load. Since patients in 
subtype I lack immune cells and suffer from severe 

neoantigen depletion, immune therapies are prone to 
fail in these patients; thus, novel target therapies are 
urgently needed. In addition, a radar plot of IGS 
allows clinicians to clearly visualize immunity cycle 
status and help them make precise treatment 
decisions. 

In addition to ICIs, another important 
immunotherapy for NPC is therapeutic vaccines. 
Since the tumorigenesis of NPC is closely associated 
with EBV, the viral antigens are considered surrogate 
neoantigens in NPC [1, 86]. Low frequency of 
mutations, an immature neoantigen prediction 
system, and the high associated expense hinder the 
development of individualized mutation-based 
vaccines. Therefore, therapeutic vaccines for NPC 
have mainly focused on EBV proteins in the past few 
years, such as autologous DCs incubated with LMP2 
peptides [87], total RNA derived from a C666-1 cell 
line retaining EBV [88], and a fusion protein 
containing the carboxyl terminus of EBNA-1 fused to 
LMP2 [89]. Due to the low immunogenicity of viral 
antigens and the defective antigen presentation, the 
efficacy of an EBV vaccine has been limited. With the 
advent of next-generation sequencing and the 
development of multiple algorithm to predict the 
structure and binding affinity of neoepitopes with 
improved accuracy, it has become possible to 
customize neoantigen vaccines more quickly and less 
expensively, which has shown promising therapeutic 
value in melanoma [29, 32]. There are sufficient 
unique candidate neoantigens for vaccine generation 
in NPC patients, and personalized vaccines might 
shed light on patients with sufficient immune cells but 
low tumor antigenicity. Since the effects of 
posttranslational modification might influence the 
biological function of neoantigens, mass 
spectrometry-based proteomics which was not 
available in the present study because of the limit of 
tissue is an important method to verify the stable 
existence of neoantigens and should be applied in the 
following researches. Additionally, to design reliable 
customized vaccines for patients in the clinic, verify 
whether the predicted neoantigens could stimulate T 
cells using autologous immune cells is necessary. 

Inefficient tumor antigenicity has been proved to 
be one of the mechanisms of limited ICI efficacy in 
non-small cell lung cancer [90]. Since we observed 
neoantigen depletion in our study, it is rational to 
hypothesize that deficiency of tumor antigens might 
be one of the key mechanisms of ICI resistance in 
NPC. However, since no patients in our cohort have 
received ICIs, we failed to define the direct 
relationship between neoantigen characteristics and 
the response of ICIs; we will explore this question in 
our subsequent studies. 
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In summary, for the first time, we delineated the 
characteristics of neoantigens in NPC by leveraging 
multiomics sequencing of paired samples. Compared 
to primary tumors, metastatic sites suffered from 
more severe neoantigen depletion. In addition, 
neoantigen reduction occurred during metastasis. 
Using a radar plot, we visualized the characteristics of 
the tumor immunity cycle for each patient to guide 
clinical decision making. All these results indicate that 
neoantigens are conducive to the guidance of clinical 
treatment, and personalized therapeutic vaccines for 
NPC deserve deeper investigations in basic and 
clinical studies to make them feasible in the future. 
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