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a b s t r a c t 

The properties and activities of chemicals are strongly related to their molecular structures. Topological 

indices defined on these molecular structures are capable to predict those properties and activities. In 

this article, a new topological index named as neighborhood Zagreb index ( M N ) is presented. Here the 

chemical importance of the M N index is investigated and it is shown that the newly introduced index is 

useful in predicting physico-chemical properties with high accuracy compared to some well-established 

and often used indices. The isomer-discrimination ability of M N is also examined. To demonstrate how 

the computational formula of the novel index for chemical compounds is simple and convenient, the 

chemical structures of favipiravir and hydroxychloroquine are used. In addition, some explicit results for 

this index of different product graphs such as Cartesian, tensor and wreath product are derived. Some of 

these results are applied to obtain the M N index of some special structures. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

A molecular graph [12,32] is a connected graph where loops

nd parallel connections are not allowed and in which nodes and

dges are supposed to be atoms and chemical bonds of compound

espectively. Throughout this work, we use only molecular graphs.

or the node and edge sets of a graph G , we consider the nota-

ions V ( G ) and E ( G ), respectively. The degree (valency) of a node u ,

ritten as deg G ( u ), is the total count of edges associated with u .

he set of neighbors of a node u is written as N G ( u ). For molecular

raph, | N G ( u )| = deg G ( u ). 

In mathematical chemistry, molecular descriptors play a lead-

ng role specifically in the field of quantitative structure prop-

rty relationship/quantitative structure activity relationship model-

ng. Amongst them, an outstanding area is preserved for the well-

nown topological indices or graph invariants. A real valued map-

ing considering graph as an argument is called a graph invari-

nt if it gives the same value to isomorphic graphs. The order(total

ount of nodes) and size(total count of edges) of a graph are exam-

les of two graph invariants. In mathematical chemistry, the graph

nvariants are named as topological indices. Some familiar topolog-

cal indices are Wiener index, Randi ́c index, connectivity indices,

agreb indices etc. The idea of topological indices was initiated

hen the eminent chemist Harold Wiener found the first topolog-

cal index, known as Wiener index [6] , in 1947 for searching boil-
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ng points of alkanes. Amidst the topological indices invented on

nitial stage, the Zagreb indices are associated with the most pop-

lar molecular descriptors. It was firstly presented by Gutman and

rinajesti ́c [14] , where they investigated how the total energy of

-electron depends on the structure of molecules and it was rec-

gnized on [13] . The first ( M 1 ) and second ( M 2 ) Zagreb indices are

s follows: 

 1 (G ) = 

∑ 

u ∈ V (G ) 

deg G (u ) 2 , (1)

 2 (G ) = 

∑ 

u v ∈ E(G ) 

d eg G (u ) d eg G (v ) . (2)

For more discussion regarding the Zagreb indices, see the arti-

les [4,5,11,22] . In addition to the Zagreb indices, there are some

ther well-established and most used degree based topological

ndices such as forgotten topological index ( F ) [8,14] , Randi ́c in-

ex ( R ) [30] , sum connectivity index ( SCI ) [35] and symmetric

ivision degree index ( SDD ) [33] to model different structure-

roperty/structure-activity relationships, which are defined as fol-

ows. 

 (G ) = 

∑ 

u ∈ V (G ) 

deg G (u ) 3 , (3)

 (G ) = 

∑ 

u v ∈ E(G ) 

1 √ 

d eg G (u ) d eg G (v ) 
, (4) 

CI(G ) = 

∑ 

u v ∈ E(G ) 

1 √ 

deg G (u ) + deg G (v ) 
, (5) 

https://doi.org/10.1016/j.molstruc.2020.129210
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Fig. 1. Linear fitting of M N with acentric factor for octane isomers. 
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SDD (G ) = 

∑ 

u v ∈ E(G ) 

[ 
deg G (u ) 

deg G (v ) 
+ 

deg G (v ) 
deg G (u ) 

] 
. (6)

Let the degree sum of all nodes connected to u in G be denoted by

δG ( u ), i.e. 

δG (u ) = 

∑ 

v ∈ N G (u ) 

deg G (v ) . (7)

Following the construction of first Zagreb index as described in

Eq. (1) , we present here a novel index known as the neighborhood

Zagreb index( M N ) which is defined below. 

M N (G ) = 

∑ 

u ∈ V (G ) 

δG (u ) 2 . (8)

In mathematical chemistry, graph operations are very significant

since certain graphs of chemical interest can be evaluated by var-

ious graph operations of different simple graphs. H.Yousefi Azari

and co-authors [3] derived some exact formulae of PI index for

Cartesian product of bipartite graphs. P. Paulraja and V.S. Agnes

[28] evaluated some explicit expressions of the degree distance for

the Cartesian and wreath products. De et al. [25] found explicit

expressions of the F -index under several graph operations. For fur-

ther illustration on this area, interested readers are suggested some

articles [1,2,9,10,15,19,24,26,29] . We continue this progress for M N 

index. The objective of this work is to determine the usefulness of

the newly designed index defined in Eq. (8) and compute some

exact results for the index under different product graphs. Also

we intend to apply that results to some special graphs and nano-

materials. 

2. Materials and methods 

Our main outcomes are organized in two parts. In the first part,

the chemical applicability of the newly designed index is inves-

tigated. We consider the benchmark data set of octane isomers

for such testing and corresponding experimental values of physico-

chemical properties are collected from www.moleculardescriptors.

eu/dataset/dataset.htm . Different topological indices of octanes are

obtained using Dev-C++ software. All the properties are correlated

with the index by MATLAB. After that a regression analysis for well

correlated properties is performed using MATLAB and Excel data

analysis tools. Linear fittings of the obtained models are plotted

by MATLAB basic fitting tools. The degeneracy of the indices are

checked using ”unique” command in MATLAB. In the second part,

some explicit expressions of the novel index for different product

graphs are computed. We consider combinatorial computing, graph

theoretic tools and mathematical induction to obtain the results.

Different com posite graphs are drawn using Latex tikzpicture envi-

ronment. 

3. Results and discussion 

Laboratory testing of chemicals to understand their different

properties is very expensive. To overcome this, lots of topologi-

cal indices have been presented in the theoretical chemistry. To

introduce a topological index, one should check two aspects: On

the one hand, it should correlate well with at least one physico-

chemical properties for a benchmark data set, while on the other

hand its formulation should be simple and give some theoretical

insight. We split this section into two subsections. Firstly, we es-

tablish the applicability of M N index for octane isomer. We study

the following linear regression model 

P = I(±2 E) + S(±2 E) T , (9)

where P, I, E, S , and T are properties, intercept, standard error of

coefficients, slope, and topological index respectively. The results
re interpreted graphically using MATLAB software. Later, we study

he index for some product graphs. Throughout this section, for

he graph G i , we use V i and E i for the node and the edge sets, re-

pectively. Also for path, cycle and complete graphs with n nodes,

e use P n , C n and K n , respectively. From the definition (8) , it is

lear that M N (P n ) = 16 n − 38 (n ≥ 4) , M N (C n ) = 16 n (n ≥ 3) , and

 N (K n ) = n (n − 1) 4 (n ≥ 1) . Since various significant graphs can be

btained from different product of P n , C n and K n , the M N index of

hem are also obtained in the second subsection. 

.1. Chemical significance of the neighborhood Zagreb index ( M N ) 

According to the instruction of the International Academy of

athematical Chemistry (IAMC), to investigate the effectiveness of

 topological index to model physico-chemical attributes, we use

egression analysis. Usually octane isomers are helpful for such

nvestigation, since they represent a sufficiently large and struc-

urally diverse group of alkanes for the preliminary testing of in-

ices [16,31] . Furtula et al. [8] derived that the correlation coeffi-

ient of both M 1 and F for octane isomers is greater than 0.95 with

centric factor and entropy. They also enhanced the skill of predic-

ion of these indices by devising a linear model (M 1 + λF ) , where

was varied from -20 to 20. 

In this article, we find the correlation of entropy (S) and acen-

ric factor with the neighborhood Zagreb index for octane iso-

ers. The data related to octanes are listed in Table 1 . Here we

ave computed that the correlation coefficient ( r ) between acen-

ric factor and M N is -0.99456 and between entropy (S) and M N is

0.95261. Thus M N can help to predict the entropy ( r 2 = 0 . 90746 )

nd acentric factor ( r 2 = 0 . 98915 ) with powerful accuracy. These

esults confirm the suitability of the indices in QSPR analysis. The

q. (9) yields the following regression models for the M N index. 

centric factor = 0 . 51918(±0 . 00977) − 0 . 00137(±7 . 16964 × 10 −5 ) M N , 

 

2 = 0 . 98915 , S e = 0 . 00381 , F = 1457 . 77859 , SF = 3 . 8081 × 10 −17 , 

(10)

 = 127 . 80036(±3 . 63605) − 0 . 16707(±0 . 02667) M N , 

 

2 = 0 . 90746 , S e = 1 . 41645 , F = 156 . 92469 , SF = 1 . 1012 × 10 −9 , 

(11)

here S e , F and SF are the statistical parameters: standard error of

odel, F-test and significance F, respectively. The linear fittings of

he models are depicted in Figs. 1 and 2 . In both the figures, the

olid circles represent the data point ( x, y ), where x, y denote the

 N value and the physico-chemical property for octane isomers,

espectively and the blue line represents the regression line. The

ig. 1 reveals the strength of structure property relationship be-

ween M N and acentric factor and the Fig. 2 shows that between

 and acentric factor. If we round the r 2 values to two digits,
N 

http://www.moleculardescriptors.eu/dataset/dataset.htm
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Table 1 

Experimental values of the acentric factor, entropy(S) and the corresponding values of different topological indices for oc- 

tane isomers. 

Octane isomers Acentric factor S M N M 1 M 2 F SCI R SDD 

n-octane 0.397898 111.67 90 26 24 50 3.6547 3.9142 15 

2-methyl heptane 0.377916 109.84 104 28 26 62 3.5246 3.7701 17.3333 

3-methyl heptane 0.371002 111.26 108 28 27 62 3.5491 3.8081 16.6667 

4-methyl heptane 0.371504 109.32 110 28 27 62 3.5491 3.8081 16.6667 

3-ethyl hexane 0.362472 109.43 114 28 28 62 3.5737 3.8461 16 

2,2-dimethyl hexane 0.339426 103.42 138 32 30 92 3.3272 3.5607 21.75 

2,3-dimethyl hexane 0.348247 108.02 126 30 30 74 3.4328 3.6807 18.6667 

2,4-dimethyl hexane 0.344223 106.98 124 30 29 74 3.419 3.6639 19 

2,5-dimethyl hexane 0.35683 105.72 118 30 28 74 3.3944 3.6259 19.6667 

3,3-dimethyl hexane 0.322596 104.74 146 32 32 92 3.3656 3.6213 20.5 

3,4-dimethyl hexane 0.340345 106.59 130 30 31 74 3.4574 3.7187 18 

2-methyl-3-ethyl pentane 0.332433 106.06 132 30 31 74 3.4574 3.7187 18 

3-methyl-3-ethyl pentane 0.306899 101.48 152 32 34 92 3.404 3.682 19.25 

2,2,3-trimethyl pentane 0.300816 101.31 162 34 35 104 3.2442 3.4814 22.8333 

2,2,4-trimethyl pentane 0.30537 104.09 156 34 32 104 3.1971 3.4165 24.0833 

2,3,3-trimethyl pentane 0.293177 102.06 164 34 36 104 3.258 3.504 22.25 

2,3,4-trimethyl pentane 0.317422 102.39 144 32 33 86 3.3165 3.5535 20.6667 

2,2,3,3-tetramethyl butane 0.255294 93.06 194 38 40 134 3.0368 3.25 27.5 

Fig. 2. Linear fitting of M N with S for octane isomers. 

Table 2 

The square of correlation coefficient of different topological indices with acentric 

factor and entropy. 

M 1 M 2 F SCI R SDD 

Acentric factor 0.9468 0.973 0.9313 0.8647 0.8176 0.8118 

S 0.9107 0.8868 0.9077 0.8518 0.8205 0.8276 
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Table 3 

Sensitivity of different indices for octane isomers. 

Indices Sensitivity ( S T ) 

M 1 0.333 

M 2 0.722 

F 0.389 

R 0.889 

SCI 0.889 

SDD 0.889 

Neighborhood Zagreb index ( M N ) 1.000 

Table 4 

The square of correlation coefficient of M N with some existing indices. 

M 1 M 2 F SCI R SDD 

M N 0.9716 0.9646 0.9657 0.891 0.8471 0.8539 
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hen it is clear that 99% and 91% of our observations fit the mod-

ls (10) and (11) respectively and are shown visually in Figs. 1 and

 respectively. The data points in Fig. 1 are more closed to the best

tting line compared to the Fig. 2 . It confirms that the linear fitting

f the model (10) is more accurate that the model (11) . The smaller

he S e values, the more confident we are regarding the regression

quation. The S e values of both the equations are significantly low.

he average distance of the data points to the regression line is

lso very low in Figs. 1 and 2 . In fact, Fig. 1 yields a lower aver-

ge distance than Fig. 2 . The consistency of the model improves as

he F-value increases. In each model, F-value is considerably high.

hen the SF value is less than 0.05, then the model is considered

o be statistically reliable. In each case, SF value is far less than

.05. Correlation of some well-established and most used degree

ased indices like first ( M 1 ) and second ( M 2 ) Zagreb indices [14] ,

orgotten topological index ( F ) [8,14] , connectivity index ( R ) [30] ,

um connectivity index ( SCI ) [35] and symmetric division degree in-

ex ( SDD ) [33] with acentric factor and S is shown in Table 2 . It

eveals the supremacy of M N compared to the indices in Table 2 in

odelling acentric factor. Sometimes the novel index shows better

redictive capability than the existing indices for S . 
In addition to their application to different structure-property

nd structure-activity correlations, topological indices are also used

or discrimination against isomers. The discrimination ability of

n index has remarkable importance for the coding and the com-

uter processing of chemical structures. Most of the indices have a

aw that more than one isomers occupy the same index which is

nown as degeneracy. But this novel index is exceptional for octane

somers. Konstantinova [21] proposed the sensitivity, the measure

f degeneracy, formulated as 

 T = 

N − N T 

N 

, (12) 

here N and N T are the total number of isomers and the count

f isomers that cannot be discriminated by the descriptor T , re-

pectively. The isomer discrimination ability of an index is directly

roportional to S T . Clearly, its maximum value is 1. Therefore, S T 
lays a major role in the discriminating power of an index. The in-

ices having good discrimination ability captures more structural

nformation. For octane isomers, M N index exhibits better response

 S T = 1 ) compared to some well established and most utilized de-

ree based indices that are reported in Table 3 . 

Correlation of M N with some existing indices are shown in

able 4 . 

Apart from chemical importance, an effective topological in-

ex should have a convenient and straightforward computational

ormula. To show how the computation of M N index for chemi-

al compound is clear and easy, we consider chemical structures

avipiravir and hydroxychloroquine in Fig. 3 . Favipiravir has been
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Fig. 3. Chemical structures of favipiravir and hydroxychloroquine from left to right. 

Fig. 4. Hydrogen deleted molecular graphs of favipiravir and hydroxychloroquine 

from left to right. 
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researched for the treatment of life-threatening pathogens such as

Ebola, Lassa, and now COVID-19. Hydroxychloroquine is an anti-

malarial drug. It is one of the antiviral agents that is being inves-

tigated currently to prevent COVID-19. The hydrogen suppressed

molecular graphs of the aforesaid compounds are shown in Fig. 4 .

Let G 1 and G 2 be the hydrogen deleted molecular graphs of favipi-

ravir and hydroxychloroquine, respectively. Then, we have 

M N (G 1 ) = 

∑ 

u ∈ V (G 1 ) 

δG (u ) 2 = 4(3) 2 + 4(5) 2 + 2(6) 2 + (8) 2 = 272 , 

M N (G 2 ) = 

∑ 

u ∈ V (G 2 ) 

δG (u ) 2 = 2(2) 2 + 2(3) 2 + 5(4) 2 + 8(5) 2 + 2(6) 2

+ 2(7) 2 + (8) 2 = 540 , 

3.2. M N Index of some product graphs 

Product graphs are applicable in a number of areas, includ-

ing automata theory, communication networks, information theory,

computer architecture, algebraic structures and chemistry. They

help to construct many network topologies for interconnection

networks. In this section, we evaluate the newly introduced index

for different product graphs such as Cartesian, wreath and tensor

product of graphs. We proceed with the following lemma directly

followed from definitions. 

Lemma 3.1. If G be a graph, then we have 

(i) 
∑ 

u ∈ V (G ) 

δG (u ) = M 1 (G ) , 
ii) 
∑ 

u ∈ V (G ) 

deg G (u ) δG (u ) = 2 M 2 (G ) , 

where M 1 ( G ), M 2 ( G ) are formulated in Eqs. (1) , (2) and δG ( u ) is

efined in Eq. (7) . 

.2.1. Cartesian product 

efinition 3.2. The Cartesian product of G 1 , G 2 , written as G 1 

⊗
 2 , containing node set V 1 × V 2 and ( u 1 , v 1 ) is connected to ( u 2 ,

 2 ) iff [ u 1 is connected with u 2 in G 1 and v 1 = v 2 ] or [ v 1 is con-

ected with v 2 in G 2 and u 1 = u 2 ]. We consider the symbol × for

he Cartesian product of two sets. 

Clearly the above definition yield the lemma stated below. 

emma 3.3. For graphs G 1 and G 2 , we have 

(i) δG 1 
⊗ 

G 2 
(u, v ) = δG 1 

(u ) + δG 2 
(v ) + 2 d eg G 1 (u ) d eg G 2 (v ) , 

ii) | E(G 1 

⊗ 

G 2 ) | = | V 2 || E 1 | + | V 1 || E 2 | . 
In [18,20] different topological descriptors were studied for

artesian product. Here we intend to go forward for the M N index.

roposition 3.4. The M N index of Cartesian product of G 1 and G 2 is

iven by 

 N (G 1 

⊗ 

G 2 ) = 6 M 1 (G 1 ) M 1 G 2 ) + | V 2 | M N (G 1 ) + | V 1 | M N (G 2 ) 

+16[ | E 2 | M 2 (G 1 ) + | E 1 | M 2 (G 2 )] . (13)

roof. From definition of neighborhood Zagreb index and applying

emma 3.3 and Lemma 3.1 , we get 

 N (G 1 

⊗ 

G 2 ) = 

∑ 

(u 1 ,u 2 ) ∈ V 1 ×V 2 

δ2 
G 1 

⊗ 

G 2 
(u 1 , u 2 ) 

= 

∑ 

u 1 ∈ V 1 

∑ 

u 2 ∈ V 2 
[ δG 1 (u 1 ) + δG 2 (u 2 ) + 2 d eg G 1 (u 1 ) d eg G 2 (u 2 )] 2 

= 6 M 1 (G 1 ) M 1 G 2 ) + | V 2 | M N (G 1 ) + | V 1 | M N (G 2 ) + 16[ | E 2 | M 2 (G 1 )

+ | E 1 | M 2 (G 2 )] . 

ence the result. Using the Eq. (13) , we have the following

esults. �

xample 3.5. The Cartesian product of P 2 and P n +1 produces the

adder graph L n ( Fig. 5 ). By the above proposition, we derive the

ollowing result. 

 N (L n ) = 162 n − 130 , n ≥ 3 . (14)

Carbon nanotube is the most popular nanomaterial having low

eight, high strength, and very well thermal and electric con-

uctivity. It has diverse usage in electromagnetic devices, Coat-

ngs and films, water and air filtration, bio-medical industry etc.
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Fig. 5. The ladder graph L n . 

Fig. 6. The grid graph P 5 
⊗ 

P 4 . 

Fig. 7. The example of n -Prism graph ( n = 6 ). 
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Fig. 8. The rook’s graph K 6 
⊗ 

K 6 . 
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) 
he M N index for C 4 − nanotorus and C 4 − nanotube are obtained in

qs. (15) and (16) , respectively. 

xample 3.6. For a C 4 − nanotorus T C 4 (m, n ) = C m 

⊗ 

C n , the M N in-

ex is given by 

 N (T C 4 (m, n )) = 256 mn. (15) 

xample 3.7. The Cartesian product of P m 

and C n yields a C 4 −
anotube T UC 4 (m, n ) = P m 

⊗ 

C n . Its M N index is as follows: 

 N (T UC 4 (m, n )) = 256 mn − 374 n, m ≥ 4 . (16) 

xample 3.8. The M N index of the grid (P n 
⊗ 

P m 

) ( Fig. 6 ) is given

y 

 N (P n 
⊗ 

P m 

) = 256 mn − 374 m − 374 n + 472 , m, n ≥ 4 . (17) 

xample 3.9. For a n -prism ( K 2 

⊗ 

C n ) ( Fig. 7 ), the neighborhood

agreb index is given below. 

 N (K 2 

⊗ 

C n ) = 162 n. (18) 

xample 3.10. The Cartesian product of K n and K m 

yields the

ook’s graph ( Fig. 8 ). All legal move of a rook on a chessboard

an be represented by a rook’s graph. Its each node correspond to

 square of the chessboard and edges correspond to legal moves

rom one square to another. Applying the Proposition 3.4 , we have

omputed the M N index of rook’s graph as follows. 

 N (K m 
⊗ 

K n ) = mn [2(m − 1)(n − 1)(2 m 

2 + 2 n 2 + 3 mn − 7 m − 7 n + 7) 

+ (m − 1) 4 + (n − 1) 4 ] . (19) 

Now we generalize the Proposition 3.4 . We begin with the fol-

owing lemma. 
emma 3.11. If G 1 , G 2 , ...., G n be n graphs and V = V ( 
n ⊗ 

p=1 

G p ) , E =

( 
n ⊗ 

p=1 

G p ) , then we have 

i) | E( 
n ⊗ 

p=1 

G p ) | = | V | n ∑ 

p=1 

| E p | 
| V p | , 

ii) M 1 ( 
n ⊗ 

p=1 

G p ) = | V | n ∑ 

p=1 

M 1 (G p ) 

| V p | + 4 | V | n −1 ∑ 

p� = q,p,q =1 

| E p || E q | 
| V p || V q | , 

ii) M 2 ( 
n ⊗ 

p=1 

G p ) = | V | 
[ ∑ n 

p=1 
M 2 (G p ) 

| V p | + 4 
∑ n 

p� = q � = r,p,q,r=1 
| E p || E q || E r | 
| V p || V q || V r | 

] 
+ 3 

∑ n 
p=1 M 1 (G p )( 

| E| 
| V p | −

| V || E p | 
| V p | 2 ) . 

roof. Applying Lemma 3.3 (ii) and an inductive argument, (i) is

lear. In order to proof (ii) and (iii), we refer to Khalifeh et al.

19] . �

roposition 3.12. If G 1 , G 2 , ..., G n be n graphs, then we have 

 N ( 
n ⊗ 

p=1 

G p ) = | V | 
[ 

n ∑ 

p=1 

M N (G p ) 

| V p | + 3 

n ∑ 

p� = q, p,q =1 

M 1 (G p ) M 1 (G q ) 

| V p || V q | 

+ 24 

n ∑ 

p� = q � = r, p,q,r=1 

M 1 (G p ) | E q || E r | 
| V p || V q || V r | + 16 

n ∑ 

p� = q, p,q =1 

M 2 (G p ) | E q | 
| V p || V q | 

+ 16 

n ∑ 

p� = q � = r � = s, p,q,r,s =1 

| E p || E q || E r || E s | 
| V p || V q || V r || V s | 

] 

. (20) 

roof. We derive the formula by mathematical induction. Evi-

ently the result holds for n = 2 . Let us take the proposition to be

rue for ( n − 1 ) graphs. Then we obtain 

 N 

( 

n ⊗ 

p=1 

G p 

) 

= M N 

( 

n −1 ⊗ 

p=1 

G p 
⊗ 

G n 

) 

= 6 M 1 

( 

n −1 ⊗ 

p=1 

G p 

) 

M 1 ( G n ) + | V n | M N 

( 

n −1 ⊗ 

p=1 

G p 

) 

+ | V 
( 

n −1 ⊗ 

p=1 

G p 

) 

| M N ( G

+16 

[ 

M 2 

( 

n −1 ⊗ 

p=1 

G p 

) 

| E n | + M 2 ( G n ) | E 
( 

n −1 ⊗ 

p=1 

G p 

) 

| 
] 

. (21
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Fig. 9. Example of Hypercube. 
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Using Lemma 3.11 in Eq. (21) , we get 

M N 

( 

n ⊗ 

p=1 

G p 

) 

= 6 | V | M 1 ( G n ) 

| V n | 

[ 

n −1 ∑ 

p=1 

M 1 ( G p ) 

| V p | + 4 

n −1 ∑ 

p� = q, p,q =1 

| E p || E q | 
| V p || V q | 

] 

+ | V | 
[ 

n −1 ∑ 

p=1 

M N ( G p ) 

| V p | + 3 

n −1 ∑ 

p� = q, p,q =1 

M 1 ( G p ) M 1 ( G q ) 

| V p || V q | 

+24 

n −1 ∑ 

p� = q � = r, p,q,r=1 

M 1 ( G p ) | E q || E r | 
| V p || V q || V r | + 16 

n −1 ∑ 

p� = q, p,q =1 

M 2 ( G p ) | E q | 
| V p || V q | 

+16 

n −1 ∑ 

p� = q � = r � = s, p,q,r,s =1 

| E p || E q || E r || E s | 
| V p || V q || V r || V s | 

] 

+ | V | M N ( G n ) 

| V n | 

+16 
| V | 
| V n | 

[ 

| E n |{ 
n −1 ∑ 

p=1 

M 2 ( G p ) 

| V p | + 3 

n −1 ∑ 

p=1 

M 1 ( G p ) 

| V p | 

( 

n −1 ∑ 

q =1 

| E q | 
| V q | −

| E p | 
| V p | 

)

+4 

n −1 ∑ 

p� = q � = r, p,q,r=1 

| E p || E q || E r | 
| V p || V q || V r | } + M 2 ( G n ) 

n −1 ∑ 

p=1 

| E p | 
| V p | 

] 

. 

After simplification, we have 

M N 

( 

n ⊗ 

p=1 

G p 

) 

= | V | 
[ 

n ∑ 

p=1 

M N ( G p ) 

| V p | + 3 { 
n −1 ∑ 

p� = q, p,q =1 

M 1 ( G p ) M 1 ( G q ) 

| V p || V q | 

+2 
M 1 ( G n ) 

| V n | 
n −1 ∑ 

p=1 

M 1 ( G i ) 

| V p | } + 24 { 
n −1 ∑ 

p� = q � = r, p,q,r=1 

M 1 ( G p ) | E q || E r | 
| V p || V q || V r | 

+ 

n −1 ∑ 

p� = q, p,q =1 

M 1 ( G n ) | E p || E q | 
| V n || V p || V q | + 2 

( 

n −1 ∑ 

p,q =1 

M 1 ( G p ) | E q || E n | 
| V p || V q || V n | 

−
n −1 ∑ 

p=1 

M 1 ( G p ) | E p || E n | 
| V p || V p || V n | 

) 

} + 16 

{ 

n −1 ∑ 

p� = q, p,q =1 

M 2 ( G p ) | E q | 
| V p || V q | 

+ 

n −1 ∑ 

p=1 

M 2 ( G n ) | E p | 
| V n || V p | + 

n −1 ∑ 

p=1 

M 2 ( G p ) | E n | 
| V p || V n | 

} ] 

+16 | V | 
n ∑ 

p� = q � = r � = s, p,q,r,s =1 

| E p || E q || E r || E s | 
| V p || V q || V r || V s | . (22)

Thus, the result (20) can be obtained easily from the Eq. (22) . �

Definition 3.13. Consider the graph G containing m -tuples

b 1 , b 2 , . . . , b m 

with b p ∈ { 0 , 1 , . . . , n p − 1 } , n p � 2 , as vertices and let

whenever the difference of two tuples is exactly one place, the cor-

responding two vertices are adjacent. This graph is known as Ham-

ming graph. The necessary and sufficient criteria for a graph G to

be a Hamming graph is that G = 

m ⊗ 

p=1 

K n p and that is why such a

graph G is naturally written as H n 1 ,n 2 , ... ,n m . 

Hamming graph is very useful in coding theory specially in er-

ror correcting codes. Also such type of graph is effective in asso-

ciation schemes. Applying the result (20) , we have the corollary

stated below. 

Corollary 3.14. The neighborhood Zagreb index of Hamming graph is

obtained as follows: 

M N (G ) = 

m ∏ 

p=1 

n p 

[ 

m ∑ 

p=1 

(n p − 1) 4 + 3 

m ∑ 

p� = q,p,q =1 

(n p − 1) 2 (n q − 1) 2 

+6 

m ∑ 

p� = q � = r,p,q,r=1 

(n p − 1) 2 (n q − 1)(n r − 1) + 4 

m ∑ 

p� = q,p,q =1 

(n i − 1) 3 (n j − 1

+ 

m ∑ 

p� = q � = r � = s,p,q,r,s =1 

(n p − 1)(n q − 1)(n r − 1)(n s − 1) 

] 

. 

Example 3.15. When n 1 , n 2 , ...., n m 

are all equal to 2, the graph

H n 1 ,n 2 , ... ,n m is known as a hyper cube ( Fig. 9 ) with dimension m

and written as Q m 

. We compute the following. 

m 4 
M N (Q m 

) = 2 m . (23) 
.2.2. Tensor product 

efinition 3.16. The tensor product of G 1 , G 2 , written as G 1 �G 2 ,

ontains the node set V 1 × V 2 and ( u 1 , v 1 ) is connected to ( u 2 , v 2 )

ff u 1 u 2 ∈ E 1 and v 1 v 2 ∈ E 2 . 

Clearly the definition gives the lemma as follows: 

emma 3.17. For graphs G 1 and G 2 , we have 

G 1 � G 2 (u, v ) = δG 1 (u ) δG 2 (v ) . (24)

The tensor product was thoroughly studied in terms of graph

oloring, graph identification and decomposition, graph embed-

ing, matching theory and graph stability in [17] . Z. Yarahmadi

tudied about degree based indices for tensor product in [34] . Also

n [23,27] various topological descriptors of tensor product graphs

re calculated. Here we continue this journey for the M N index. 

roposition 3.18. The M N index of tensor product for G 1 , G 2 is given

y 

 N (G 1 � G 2 ) = M N (G 1 ) M N (G 2 ) . (25)

roof. By the definition of the M N index and applying Eq. (24) , we

et 

 N (G 1 � G 2 ) = 

∑ 

(u 1 ,u 2 ) ∈ V 1 ×V 2 

δ2 
G 1 � G 2 

(u 1 , u 2 ) 

= 

∑ 

u 1 ∈ V 1 

∑ 

u 2 ∈ V 2 
[ δG 1 (u 1 ) δG 2 (u 2 )] 2 

= M N (G 1 ) M N (G 2 ) . 

hich is the required result. �

xample 3.19. Using the result (25) , we have the following com-

utations. 

(i) M N ( P n �P m 

) = (16 n − 38)(16 m − 38) , m, n ≥ 4, 

ii) M N ( C n �C m 

) = 256 mn , 

ii) M N ( K n �K m 

) = mn (m − 1) 4 (n − 1) 4 , 

v) M N ( P n �C m 

) = 16 m (16 n − 38 ), n ≥ 4, 

v) M N ( P n �K m 

) = m (m − 1) 4 (16 n − 38) , n ≥ 4, 

i) M N ( C n �K m 

) = 16 mn (m − 1) 4 . 

.2.3. Wreath product 

efinition 3.20. The wreath product (also known as composition)

f G 1 and G 2 having V 1 and V 2 as vertex sets with no common

ertex and edge sets E 1 and E 2 is the graph G 1 [ G 2 ] containing node

et V 1 × V 2 and ( u 1 , v 1 ) is connected to ( u 2 , v 2 ) iff ( u 1 u 2 ∈ E 1 ) or

 u 1 = u 2 and v 1 v 2 ∈ E 2 ). 

From the definition, we have the following obvious lemma. 
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Fig. 10. Fence graph ( P n [ P 2 ]) and closed fence graph ( C n [ P 2 ]). 
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emma 3.21. For graphs G 1 and G 2 , we have 

G 1 [ G 2 ] (u, v ) = | V 2 | 2 δG 1 (u ) + δG 2 (v ) + 2 | E 2 | deg G 1 (u ) 

+ | V 2 | d eg G 1 (u ) d eg G 2 (v ) . (26) 

In [7,25] different topological indices for wreath product of

raphs are derived. Here we proceed for the M N index of wreath

roduct. 

roposition 3.22. The M N index of wreath product for G 1 , G 2 is ob-

ained as follows: 

 N (G 1 [ G 2 ]) = | V 2 | 5 M N (G 1 ) + | V 1 | M N (G 2 ) + 12 | V 2 || E 2 | 2 M 1 (G 1 ) + 8 | E 1 || E 2 | M 1 (G 2 )

+16 | V 2 | 3 | E 2 | M 2 (G 1 ) + 8 | V 2 || E 1 | M 2 (G 2 ) + 3 | V 2 | 2 M 1 (G 1 ) M 1 (G 2 ) . 

(27) 

roof. From definition of neighborhood Zagreb index and using

q. (26) , we have 

 N (G 1 [ G 2 ]) = 

∑ 

(u, v ) ∈ V 1 ×V 2 

δ2 
G 1 [ G 2 ] 

(u, v ) 

= 

∑ 

u ∈ V 1 

∑ 

v ∈ V 2 
[ | V 2 | 2 δG 1 (u ) + δG 2 (v ) + 2 | E 2 | deg G 1 (u ) 

+ | V 2 | d eg G 1 (u ) d eg G 2 (v )] 2 

= 

∑ 

u ∈ V 1 

∑ 

v ∈ V 2 
[ | V 2 | 4 δG 1 (u ) 2 + | V 2 | 2 deg G 1 (u ) 2 deg G 2 (v ) 

2 + 4 | E 2 | 2 deg G 1 (u ) 2 

+ δG 2 (v ) 
2 + 2 | V 2 | 3 δG 1 (u ) deg G 1 (u ) deg G 2 (v ) 

+4 | V 2 | 2 | E 2 | δG 1 (u ) deg G 1 (u ) + 2 | V 2 | 2 δG 1 (u ) δG 2 (v ) 

+4 | V 2 || E 2 | deg G 1 (u ) 2 deg G 2 (v ) + 2 | V 2 | δG 2 (v ) deg G 1 (u ) deg G 2 (v ) 

+4 deg G 1 (u ) | E 2 | δG 2 (v )] . 

pplying Lemma 3.1 , we have 

 N (G 1 [ G 2 ]) = | V 2 | 5 M N (G 1 ) + | V 1 | M N (G 2 ) + 12 | V 2 || E 2 | 2 M 1 (G 1 ) + 8 | E 1 || E 2 | M 1 (G 2 )

+16 | V 2 | 3 | E 2 | M 2 (G 1 ) + 8 | V 2 || E 1 | M 2 (G 2 ) + 3 | V 2 | 2 M 1 (G 1 ) M 1 (G 2 ) , 

hich is the desired result. �

xample 3.23. The wreath product of the path graphs P n and P 2 
ield the fence graph ( Fig. 10 ), whereas the wreath product of the

ycle C n and the path P 2 gives the closed fence graph ( Fig. 10 ).

hus from the result (27) , we compute the followings. 

(i) M N (P n [ P 2 ]) = 1250 n − 2560 , n � 4 , 
ii) M N (C n [ P 2 ]) = 1250 n, n � 3 . 
. Conclusion 

In this article, we introduced the M N index, examined its chem-

cal applicability, computed some exact formulae for M N of some

roduct graphs and applied the results to some special graphs. As

 future work, we derive the results for some other graph oper-

tions and compute some bounds of this index. Also some exact

xpressions of it for different networks can also be derived. As the

harmacological activity of a compound depends on its physico-

hemical properties and the correlations of M N index with some

f these properties are attractive, there is nothing to be surprised

hat M N index can be used in designing new drugs. 
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