

Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

On neighborhood Zagreb index of product graphs

Sourav Mondal ${ }^{\text {a }}$, Nilanjan De ${ }^{\mathrm{b}, *}$, Anita Pal ${ }^{\text {a }}$
${ }^{\text {a }}$ Department of mathematics, National Institute of Technology Durgapur, West Bengal 713209, India
${ }^{\mathrm{b}}$ Department of Basic Sciences and Humanities (Mathematics), Calcutta Institute of Engineering and Management, Kolkata 700040, India

A R T I C L E I N F O

Article history:

Received 17 July 2020
Revised 17 August 2020
Accepted 4 September 2020
Available online 6 September 2020

Keywords:

Molecular graph
Molecular descriptor
Neighborhood Zagreb index
Cartesian product
Tensor product
Wreath product

Abstract

The properties and activities of chemicals are strongly related to their molecular structures. Topological indices defined on these molecular structures are capable to predict those properties and activities. In this article, a new topological index named as neighborhood Zagreb index $\left(M_{N}\right)$ is presented. Here the chemical importance of the M_{N} index is investigated and it is shown that the newly introduced index is useful in predicting physico-chemical properties with high accuracy compared to some well-established and often used indices. The isomer-discrimination ability of M_{N} is also examined. To demonstrate how the computational formula of the novel index for chemical compounds is simple and convenient, the chemical structures of favipiravir and hydroxychloroquine are used. In addition, some explicit results for this index of different product graphs such as Cartesian, tensor and wreath product are derived. Some of these results are applied to obtain the M_{N} index of some special structures.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A molecular graph [12,32] is a connected graph where loops and parallel connections are not allowed and in which nodes and edges are supposed to be atoms and chemical bonds of compound respectively. Throughout this work, we use only molecular graphs. For the node and edge sets of a graph G, we consider the notations $V(G)$ and $E(G)$, respectively. The degree (valency) of a node u, written as $\operatorname{deg}_{G}(u)$, is the total count of edges associated with u. The set of neighbors of a node u is written as $N_{G}(u)$. For molecular graph, $\left|N_{G}(u)\right|=\operatorname{deg}_{G}(u)$.

In mathematical chemistry, molecular descriptors play a leading role specifically in the field of quantitative structure property relationship/quantitative structure activity relationship modeling. Amongst them, an outstanding area is preserved for the wellknown topological indices or graph invariants. A real valued mapping considering graph as an argument is called a graph invariant if it gives the same value to isomorphic graphs. The order(total count of nodes) and size(total count of edges) of a graph are examples of two graph invariants. In mathematical chemistry, the graph invariants are named as topological indices. Some familiar topological indices are Wiener index, Randić index, connectivity indices, Zagreb indices etc. The idea of topological indices was initiated when the eminent chemist Harold Wiener found the first topological index, known as Wiener index [6], in 1947 for searching boil-

[^0]ing points of alkanes. Amidst the topological indices invented on initial stage, the Zagreb indices are associated with the most popular molecular descriptors. It was firstly presented by Gutman and Trinajestic [14], where they investigated how the total energy of π-electron depends on the structure of molecules and it was recognized on [13]. The first (M_{1}) and second (M_{2}) Zagreb indices are as follows:
$M_{1}(G)=\sum_{u \in V(G)} \operatorname{deg}_{G}(u)^{2}$,
$M_{2}(G)=\sum_{u v \in E(G)} \operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v)$.
For more discussion regarding the Zagreb indices, see the articles [4,5,11,22]. In addition to the Zagreb indices, there are some other well-established and most used degree based topological indices such as forgotten topological index (F) [8,14], Randić index (R) [30], sum connectivity index (SCI) [35] and symmetric division degree index (SDD) [33] to model different structure-property/structure-activity relationships, which are defined as follows.
\[

$$
\begin{align*}
& F(G)=\sum_{u \in V(G)} \operatorname{deg}_{G}(u)^{3}, \tag{3}\\
& R(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\operatorname{deg}_{G}(u) \operatorname{deg}_{G}(v)}}, \tag{4}\\
& \operatorname{SCI}(G)=\sum_{u v \in E(G)} \frac{1}{\sqrt{\operatorname{deg}_{G}(u)+\operatorname{deg}_{G}(v)}}, \tag{5}
\end{align*}
$$
\]

$S D D(G)=\sum_{u v \in E(G)}\left[\frac{\operatorname{deg}_{G}(u)}{\operatorname{deg}_{G}(v)}+\frac{\operatorname{deg}_{G}(v)}{\operatorname{deg}_{G}(u)}\right]$.
Let the degree sum of all nodes connected to u in G be denoted by $\delta_{G}(u)$, i.e.
$\delta_{G}(u)=\sum_{v \in N_{G}(u)} \operatorname{deg}_{G}(v)$.
Following the construction of first Zagreb index as described in Eq. (1), we present here a novel index known as the neighborhood Zagreb index $\left(M_{N}\right)$ which is defined below.
$M_{N}(G)=\sum_{u \in V(G)} \delta_{G}(u)^{2}$.
In mathematical chemistry, graph operations are very significant since certain graphs of chemical interest can be evaluated by various graph operations of different simple graphs. H.Yousefi Azari and co-authors [3] derived some exact formulae of PI index for Cartesian product of bipartite graphs. P. Paulraja and V.S. Agnes [28] evaluated some explicit expressions of the degree distance for the Cartesian and wreath products. De et al. [25] found explicit expressions of the F-index under several graph operations. For further illustration on this area, interested readers are suggested some articles [1,2,9,10,15,19,24,26,29]. We continue this progress for M_{N} index. The objective of this work is to determine the usefulness of the newly designed index defined in Eq. (8) and compute some exact results for the index under different product graphs. Also we intend to apply that results to some special graphs and nanomaterials.

2. Materials and methods

Our main outcomes are organized in two parts. In the first part, the chemical applicability of the newly designed index is investigated. We consider the benchmark data set of octane isomers for such testing and corresponding experimental values of physicochemical properties are collected from www.moleculardescriptors. eu/dataset/dataset.htm. Different topological indices of octanes are obtained using Dev-C++ software. All the properties are correlated with the index by MATLAB. After that a regression analysis for well correlated properties is performed using MATLAB and Excel data analysis tools. Linear fittings of the obtained models are plotted by MATLAB basic fitting tools. The degeneracy of the indices are checked using "unique" command in MATLAB. In the second part, some explicit expressions of the novel index for different product graphs are computed. We consider combinatorial computing, graph theoretic tools and mathematical induction to obtain the results. Different composite graphs are drawn using Latex tikzpicture environment.

3. Results and discussion

Laboratory testing of chemicals to understand their different properties is very expensive. To overcome this, lots of topological indices have been presented in the theoretical chemistry. To introduce a topological index, one should check two aspects: On the one hand, it should correlate well with at least one physicochemical properties for a benchmark data set, while on the other hand its formulation should be simple and give some theoretical insight. We split this section into two subsections. Firstly, we establish the applicability of M_{N} index for octane isomer. We study the following linear regression model
$P=I(\pm 2 E)+S(\pm 2 E) T$,
where P, I, E, S, and T are properties, intercept, standard error of coefficients, slope, and topological index respectively. The results

Fig. 1. Linear fitting of M_{N} with acentric factor for octane isomers.
are interpreted graphically using MATLAB software. Later, we study the index for some product graphs. Throughout this section, for the graph G_{i}, we use V_{i} and E_{i} for the node and the edge sets, respectively. Also for path, cycle and complete graphs with n nodes, we use P_{n}, C_{n} and K_{n}, respectively. From the definition (8), it is clear that $M_{N}\left(P_{n}\right)=16 n-38(n \geq 4), M_{N}\left(C_{n}\right)=16 n(n \geq 3)$, and $M_{N}\left(K_{n}\right)=n(n-1)^{4}(n \geq 1)$. Since various significant graphs can be obtained from different product of P_{n}, C_{n} and K_{n}, the M_{N} index of them are also obtained in the second subsection.

3.1. Chemical significance of the neighborhood Zagreb index $\left(\mathrm{M}_{\mathrm{N}}\right)$

According to the instruction of the International Academy of Mathematical Chemistry (IAMC), to investigate the effectiveness of a topological index to model physico-chemical attributes, we use regression analysis. Usually octane isomers are helpful for such investigation, since they represent a sufficiently large and structurally diverse group of alkanes for the preliminary testing of indices [16,31]. Furtula et al. [8] derived that the correlation coefficient of both M_{1} and F for octane isomers is greater than 0.95 with acentric factor and entropy. They also enhanced the skill of prediction of these indices by devising a linear model $\left(M_{1}+\lambda F\right)$, where λ was varied from -20 to 20 .

In this article, we find the correlation of entropy (S) and acentric factor with the neighborhood Zagreb index for octane isomers. The data related to octanes are listed in Table 1. Here we have computed that the correlation coefficient (r) between acentric factor and M_{N} is -0.99456 and between entropy (S) and M_{N} is -0.95261 . Thus M_{N} can help to predict the entropy ($r^{2}=0.90746$) and acentric factor $\left(r^{2}=0.98915\right)$ with powerful accuracy. These results confirm the suitability of the indices in QSPR analysis. The Eq. (9) yields the following regression models for the M_{N} index.

Acentricfactor $=0.51918(\pm 0.00977)-0.00137\left(\pm 7.16964 \times 10^{-5}\right) M_{N}$, $r^{2}=0.98915, S_{e}=0.00381, F=1457.77859, S F=3.8081 \times 10^{-17}$,
$S=127.80036(\pm 3.63605)-0.16707(\pm 0.02667) M_{N}$,
$r^{2}=0.90746, S_{e}=1.41645, F=156.92469, S F=1.1012 \times 10^{-9}$,
where S_{e}, F and $S F$ are the statistical parameters: standard error of model, F-test and significance F, respectively. The linear fittings of the models are depicted in Figs. 1 and 2. In both the figures, the solid circles represent the data point (x, y), where x, y denote the M_{N} value and the physico-chemical property for octane isomers, respectively and the blue line represents the regression line. The Fig. 1 reveals the strength of structure property relationship between M_{N} and acentric factor and the Fig. 2 shows that between M_{N} and acentric factor. If we round the r^{2} values to two digits,

Table 1
Experimental values of the acentric factor, entropy(S) and the corresponding values of different topological indices for octane isomers.

Octane isomers	Acentric factor	S	M_{N}	M_{1}	M_{2}	F	$S C I$	R	$S D D$
n-octane	0.397898	111.67	90	26	24	50	3.6547	3.9142	15
2-methyl heptane	0.377916	109.84	104	28	26	62	3.5246	3.7701	17.3333
3-methyl heptane	0.371002	111.26	108	28	27	62	3.5491	3.8081	16.6667
4-methyl heptane	0.371504	109.32	110	28	27	62	3.5491	3.8081	16.6667
3-ethyl hexane	0.362472	109.43	114	28	28	62	3.5737	3.8461	16
2,2-dimethyl hexane	0.339426	103.42	138	32	30	92	3.3272	3.5607	21.75
2,3-dimethyl hexane	0.348247	108.02	126	30	30	74	3.4328	3.6807	18.6667
2,4-dimethyl hexane	0.344223	106.98	124	30	29	74	3.419	3.6639	19
2,5-dimethyl hexane	0.35683	105.72	118	30	28	74	3.3944	3.6259	19.6667
3,3-dimethyl hexane	0.322596	104.74	146	32	32	92	3.3656	3.6213	20.5
3,4-dimethyl hexane	0.340345	106.59	130	30	31	74	3.4574	3.7187	18
2-methyl-3-ethyl pentane	0.332433	106.06	132	30	31	74	3.4574	3.7187	18
3-methyl-3-ethyl pentane	0.306899	101.48	152	32	34	92	3.404	3.682	19.25
2,2,3-trimethyl pentane	0.300816	101.31	162	34	35	104	3.2442	3.4814	22.8333
2,2,4-trimethyl pentane	0.30537	104.09	156	34	32	104	3.1971	3.4165	24.0833
2,3,3-trimethyl pentane	0.293177	102.06	164	34	36	104	3.258	3.504	22.25
2,3,4-trimethyl pentane	0.317422	102.39	144	32	33	86	3.3165	3.5535	20.6667
2,2,3,3-tetramethyl butane	0.255294	93.06	194	38	40	134	3.0368	3.25	27.5

Fig. 2. Linear fitting of M_{N} with S for octane isomers.

Table 2
The square of correlation coefficient of different topological indices with acentric factor and entropy.

	M_{1}	M_{2}	F	$S C I$	R	$S D D$
Acentric factor	0.9468	0.973	0.9313	0.8647	0.8176	0.8118
S	0.9107	0.8868	0.9077	0.8518	0.8205	0.8276

then it is clear that 99% and 91% of our observations fit the models (10) and (11) respectively and are shown visually in Figs. 1 and 2 respectively. The data points in Fig. 1 are more closed to the best fitting line compared to the Fig. 2. It confirms that the linear fitting of the model (10) is more accurate that the model (11). The smaller the S_{e} values, the more confident we are regarding the regression equation. The S_{e} values of both the equations are significantly low. The average distance of the data points to the regression line is also very low in Figs. 1 and 2. In fact, Fig. 1 yields a lower average distance than Fig. 2. The consistency of the model improves as the F-value increases. In each model, F-value is considerably high. When the $S F$ value is less than 0.05 , then the model is considered to be statistically reliable. In each case, $S F$ value is far less than 0.05 . Correlation of some well-established and most used degree based indices like first (M_{1}) and second (M_{2}) Zagreb indices [14], forgotten topological index (F) [8,14], connectivity index (R) [30], sum connectivity index (SCI)[35] and symmetric division degree index (SDD) [33] with acentric factor and S is shown in Table 2. It reveals the supremacy of M_{N} compared to the indices in Table 2 in modelling acentric factor. Sometimes the novel index shows better predictive capability than the existing indices for S.

Table 3
Sensitivity of different indices for octane isomers.

Indices	Sensitivity $\left(S_{T}\right)$
M_{1}	0.333
M_{2}	0.722
F	0.389
R	0.889
$S C I$	0.889
$S D D$	0.889
Neighborhood Zagreb index $\left(M_{N}\right)$	$\mathbf{1 . 0 0 0}$

Table 4
The square of correlation coefficient of M_{N} with some existing indices.

	M_{1}	M_{2}	F	$S C I$	R	$S D D$
M_{N}	0.9716	0.9646	0.9657	0.891	0.8471	0.8539

In addition to their application to different structure-property and structure-activity correlations, topological indices are also used for discrimination against isomers. The discrimination ability of an index has remarkable importance for the coding and the computer processing of chemical structures. Most of the indices have a flaw that more than one isomers occupy the same index which is known as degeneracy. But this novel index is exceptional for octane isomers. Konstantinova [21] proposed the sensitivity, the measure of degeneracy, formulated as
$S_{T}=\frac{N-N_{T}}{N}$,
where N and N_{T} are the total number of isomers and the count of isomers that cannot be discriminated by the descriptor T, respectively. The isomer discrimination ability of an index is directly proportional to S_{T}. Clearly, its maximum value is 1 . Therefore, S_{T} plays a major role in the discriminating power of an index. The indices having good discrimination ability captures more structural information. For octane isomers, M_{N} index exhibits better response ($S_{T}=1$) compared to some well established and most utilized degree based indices that are reported in Table 3.

Correlation of M_{N} with some existing indices are shown in Table 4.

Apart from chemical importance, an effective topological index should have a convenient and straightforward computational formula. To show how the computation of M_{N} index for chemical compound is clear and easy, we consider chemical structures favipiravir and hydroxychloroquine in Fig. 3. Favipiravir has been

Fig. 3. Chemical structures of favipiravir and hydroxychloroquine from left to right.

Fig. 4. Hydrogen deleted molecular graphs of favipiravir and hydroxychloroquine from left to right.
researched for the treatment of life-threatening pathogens such as Ebola, Lassa, and now COVID-19. Hydroxychloroquine is an antimalarial drug. It is one of the antiviral agents that is being investigated currently to prevent COVID-19. The hydrogen suppressed molecular graphs of the aforesaid compounds are shown in Fig. 4. Let G_{1} and G_{2} be the hydrogen deleted molecular graphs of favipiravir and hydroxychloroquine, respectively. Then, we have

$$
\begin{aligned}
M_{N}\left(G_{1}\right)= & \sum_{u \in V\left(G_{1}\right)} \delta_{G}(u)^{2}=4(3)^{2}+4(5)^{2}+2(6)^{2}+(8)^{2}=272, \\
M_{N}\left(G_{2}\right)= & \sum_{u \in V\left(G_{2}\right)} \delta_{G}(u)^{2}=2(2)^{2}+2(3)^{2}+5(4)^{2}+8(5)^{2}+2(6)^{2} \\
& +2(7)^{2}+(8)^{2}=540,
\end{aligned}
$$

3.2. M_{N} Index of some product graphs

Product graphs are applicable in a number of areas, including automata theory, communication networks, information theory, computer architecture, algebraic structures and chemistry. They help to construct many network topologies for interconnection networks. In this section, we evaluate the newly introduced index for different product graphs such as Cartesian, wreath and tensor product of graphs. We proceed with the following lemma directly followed from definitions.

Lemma 3.1. If G be a graph, then we have
(i) $\sum_{u \in V(G)} \delta_{G}(u)=M_{1}(G)$,
(ii) $\sum_{u \in V(G)} \operatorname{deg}_{G}(u) \delta_{G}(u)=2 M_{2}(G)$,
where $M_{1}(G), M_{2}(G)$ are formulated in Eqs. (1), (2) and $\delta_{G}(u)$ is defined in Eq. (7).

3.2.1. Cartesian product

Definition 3.2. The Cartesian product of G_{1}, G_{2}, written as $G_{1} \otimes$ G_{2}, containing node set $V_{1} \times V_{2}$ and $\left(u_{1}, v_{1}\right)$ is connected to (u_{2}, v_{2}) iff [u_{1} is connected with u_{2} in G_{1} and $v_{1}=v_{2}$] or [v_{1} is connected with v_{2} in G_{2} and $u_{1}=u_{2}$]. We consider the symbol \times for the Cartesian product of two sets.

Clearly the above definition yield the lemma stated below.
Lemma 3.3. For graphs G_{1} and G_{2}, we have
(i) $\delta_{G_{1} \otimes G_{2}}(u, v)=\delta_{G_{1}}(u)+\delta_{G_{2}}(v)+2 \operatorname{deg}_{G_{1}}(u) \operatorname{deg}_{G_{2}}(v)$,
(ii) $\left|E\left(G_{1} \otimes G_{2}\right)\right|=\left|V_{2}\right|\left|E_{1}\right|+\left|V_{1}\right|\left|E_{2}\right|$.

In $[18,20]$ different topological descriptors were studied for Cartesian product. Here we intend to go forward for the M_{N} index.

Proposition 3.4. The M_{N} index of Cartesian product of G_{1} and G_{2} is given by

$$
\begin{align*}
M_{N}\left(G_{1} \bigotimes G_{2}\right)= & \left.6 M_{1}\left(G_{1}\right) M_{1} G_{2}\right)+\left|V_{2}\right| M_{N}\left(G_{1}\right)+\left|V_{1}\right| M_{N}\left(G_{2}\right) \\
& +16\left[\left|E_{2}\right| M_{2}\left(G_{1}\right)+\left|E_{1}\right| M_{2}\left(G_{2}\right)\right] . \tag{13}
\end{align*}
$$

Proof. From definition of neighborhood Zagreb index and applying Lemma 3.3 and Lemma 3.1, we get

$$
\begin{aligned}
M_{N}\left(G_{1} \bigotimes G_{2}\right)= & \sum_{\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}} \delta_{G_{1}}^{2} \otimes G_{2}\left(u_{1}, u_{2}\right) \\
= & \sum_{u_{1} \in V_{1}} \sum_{u_{2} \in V_{2}}\left[\delta_{G_{1}}\left(u_{1}\right)+\delta_{G_{2}}\left(u_{2}\right)+2 \operatorname{deg}_{G_{1}}\left(u_{1}\right) \operatorname{deg}_{G_{2}}\left(u_{2}\right)\right]^{2} \\
= & \left.6 M_{1}\left(G_{1}\right) M_{1} G_{2}\right)+\left|V_{2}\right| M_{N}\left(G_{1}\right)+\left|V_{1}\right| M_{N}\left(G_{2}\right)+16\left[\left|E_{2}\right| M_{2}\left(G_{1}\right)\right. \\
& \left.+\left|E_{1}\right| M_{2}\left(G_{2}\right)\right] .
\end{aligned}
$$

Hence the result. Using the Eq. (13), we have the following results.
Example 3.5. The Cartesian product of P_{2} and P_{n+1} produces the ladder graph L_{n} (Fig. 5). By the above proposition, we derive the following result.
$M_{N}\left(L_{n}\right)=162 n-130, n \geq 3$.
Carbon nanotube is the most popular nanomaterial having low weight, high strength, and very well thermal and electric conductivity. It has diverse usage in electromagnetic devices, Coatings and films, water and air filtration, bio-medical industry etc.

Fig. 5. The ladder graph L_{n}.

Fig. 6. The grid graph $P_{5} \otimes P_{4}$.

Fig. 7. The example of n-Prism graph $(n=6)$.

The M_{N} index for C_{4} - nanotorus and C_{4} - nanotube are obtained in Eqs. (15) and (16), respectively.

Example 3.6. For a C_{4} - nanotorus $T C_{4}(m, n)=C_{m} \otimes C_{n}$, the M_{N} index is given by
$M_{N}\left(T C_{4}(m, n)\right)=256 m n$.
Example 3.7. The Cartesian product of P_{m} and C_{n} yields a $C_{4}-$ nanotube $T U C_{4}(m, n)=P_{m} \otimes C_{n}$. Its M_{N} index is as follows:
$M_{N}\left(T U C_{4}(m, n)\right)=256 m n-374 n, \quad m \geq 4$.
Example 3.8. The M_{N} index of the grid $\left(P_{n} \otimes P_{m}\right)$ (Fig. 6) is given by
$M_{N}\left(P_{n} \bigotimes P_{m}\right)=256 m n-374 m-374 n+472, \quad m, n \geq 4$.
Example 3.9. For a n-prism $\left(K_{2} \otimes C_{n}\right)$ (Fig. 7), the neighborhood Zagreb index is given below.
$M_{N}\left(K_{2} \bigotimes C_{n}\right)=162 n$.
Example 3.10. The Cartesian product of K_{n} and K_{m} yields the rook's graph (Fig. 8). All legal move of a rook on a chessboard can be represented by a rook's graph. Its each node correspond to a square of the chessboard and edges correspond to legal moves from one square to another. Applying the Proposition 3.4, we have computed the M_{N} index of rook's graph as follows.
$M_{N}\left(K_{m} \bigotimes K_{n}\right)=m n\left[2(m-1)(n-1)\left(2 m^{2}+2 n^{2}+3 m n-7 m-7 n+7\right)\right.$

$$
\begin{equation*}
\left.+(m-1)^{4}+(n-1)^{4}\right] . \tag{19}
\end{equation*}
$$

Now we generalize the Proposition 3.4. We begin with the following lemma.

Fig. 8. The rook's graph $K_{6} \otimes K_{6}$.

Lemma 3.11. If $G_{1}, G_{2}, \ldots ., G_{n}$ be n graphs and $V=V\left(\bigotimes_{p=1}^{n} G_{p}\right), E=$ $E\left({ }_{p=1}^{n} G_{p}\right)$, then we have
(i) $\left|E\left(\bigotimes_{p=1}^{n} G_{p}\right)\right|=|V| \sum_{p=1}^{n} \frac{\left|E_{p}\right|}{\left|V_{p}\right|}$,
(ii) $M_{1}\left(\bigotimes_{p=1}^{n} G_{p}\right)=|V| \sum_{p=1}^{n} \frac{M_{1}\left(G_{p}\right)}{\left|V_{p}\right|}+4|V| \sum_{p \neq q, p, q=1}^{n-1} \frac{\left|E_{p}\right|\left|E_{q}\right|}{\left|V_{p}\right|\left|V_{q}\right|}$,
(iii) $M_{2}\left(\bigotimes_{p=1}^{n} G_{p}\right)=|V|\left[\sum_{p=1}^{n} \frac{M_{2}\left(G_{p}\right)}{\left|V_{p}\right|}+4 \sum_{p \neq q \neq r, p, q, r=1}^{n} \frac{\left|E_{p}\right|\left|E_{q^{\prime}}\right|\left|E_{r}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|}\right]$ $+3 \sum_{p=1}^{n} M_{1}\left(G_{p}\right)\left(\frac{|E|}{\left|V_{p}\right|}-\frac{|V|\left|E_{p}\right|}{\left|V_{p}\right|^{2}}\right)$.
Proof. Applying Lemma 3.3(ii) and an inductive argument, (i) is clear. In order to proof (ii) and (iii), we refer to Khalifeh et al. [19].
Proposition 3.12. If $G_{1}, G_{2}, \ldots, G_{n}$ be n graphs, then we have

$$
\begin{align*}
M_{N}\left(\bigotimes_{p=1}^{n} G_{p}\right)= & |V|\left[\sum_{p=1}^{n} \frac{M_{N}\left(G_{p}\right)}{\left|V_{p}\right|}+3 \sum_{p \neq q, p, q=1}^{n} \frac{M_{1}\left(G_{p}\right) M_{1}\left(G_{q}\right)}{\left|V_{p}\right|\left|V_{q}\right|}\right. \\
& +24 \sum_{p \neq q \neq r, p, q, r=1}^{n} \frac{M_{1}\left(G_{p}\right)\left|E_{q}\right|\left|E_{r}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|}+16 \sum_{p \neq q, p, q=1}^{n} \frac{M_{2}\left(G_{p}\right)\left|E_{q}\right|}{\left|V_{p}\right|\left|V_{q}\right|} \\
& \left.+16 \sum_{p \neq q \neq r \neq s, p, q, r, s=1}^{n} \frac{\left|E_{p}\right|\left|E_{q}\right|\left|E_{r}\right|\left|E_{s}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|\left|V_{s}\right|}\right] \tag{20}
\end{align*}
$$

Proof. We derive the formula by mathematical induction. Evidently the result holds for $n=2$. Let us take the proposition to be true for $(n-1)$ graphs. Then we obtain

$$
\begin{align*}
M_{N}\left(\bigotimes_{p=1}^{n} G_{p}\right)= & M_{N}\left(\bigotimes_{p=1}^{n-1} G_{p} \bigotimes G_{n}\right) \\
= & 6 M_{1}\left(\bigotimes_{p=1}^{n-1} G_{p}\right) M_{1}\left(G_{n}\right)+\left|V_{n}\right| M_{N}\left(\bigotimes_{p=1}^{n-1} G_{p}\right)+\left|V\left(\bigotimes_{p=1}^{n-1} G_{p}\right)\right| M_{N}\left(G_{n}\right) \\
& +16\left[M_{2}\left(\bigotimes_{p=1}^{n-1} G_{p}\right)\left|E_{n}\right|+M_{2}\left(G_{n}\right)\left|E\left(\bigotimes_{p=1}^{n-1} G_{p}\right)\right|\right] \tag{21}
\end{align*}
$$

Using Lemma 3.11 in Eq. (21), we get

$$
\begin{aligned}
M_{N}\left(\bigotimes_{p=1}^{n} G_{p}\right)= & 6|V| \frac{M_{1}\left(G_{n}\right)}{\left|V_{n}\right|}\left[\sum_{p=1}^{n-1} \frac{M_{1}\left(G_{p}\right)}{\left|V_{p}\right|}+4 \sum_{p \neq q, p, q=1}^{n-1} \frac{\left|E_{p}\right|\left|E_{q}\right|}{\left|V_{p}\right|\left|V_{q}\right|}\right] \\
& +|V|\left[\sum_{p=1}^{n-1} \frac{M_{N}\left(G_{p}\right)}{\left|V_{p}\right|}+3 \sum_{p \neq q, p, q=1}^{n-1} \frac{M_{1}\left(G_{p}\right) M_{1}\left(G_{q}\right)}{\left|V_{p}\right|\left|V_{q}\right|}\right. \\
& +24 \sum_{p \neq q \neq r, p, q, r=1}^{n-1} \frac{M_{1}\left(G_{p}\right)\left|E_{q}\right|\left|E_{r}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|}+16 \sum_{p \neq q, p, q=1}^{n-1} \frac{M_{2}\left(G_{p}\right)\left|E_{q}\right|}{\left|V_{p}\right|\left|V_{q}\right|} \\
& \left.+16 \sum_{p \neq q \neq r \neq s, p, q, r, s=1}^{n-1} \frac{\left|E_{p}\right|\left|E_{q}\right|\left|E_{r}\right|\left|E_{s}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|\left|V_{s}\right|}\right]+|V| \frac{M_{N}\left(G_{n}\right)}{\left|V_{n}\right|} \\
& +16 \frac{|V|}{\left|V_{n}\right|}\left[| E _ { n } | \left\{\sum_{p=1}^{n-1} \frac{M_{2}\left(G_{p}\right)}{\left|V_{p}\right|}+3 \sum_{p=1}^{n-1} \frac{M_{1}\left(G_{p}\right)}{\left|V_{p}\right|}\left(\sum_{q=1}^{n-1} \frac{\left|E_{q}\right|}{\left|V_{q}\right|}-\frac{\left|E_{p}\right|}{\left|V_{p}\right|}\right)\right.\right. \\
& \left.\left.+4 \sum_{p \neq q \neq r, p, q, r=1}^{n-1} \frac{\left|E_{p}\right|\left|E_{q}\right|\left|E_{r}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|}\right\}+M_{2}\left(G_{n}\right) \sum_{p=1}^{n-1} \frac{\left|E_{p}\right|}{\left|V_{p}\right|}\right] .
\end{aligned}
$$

After simplification, we have

$$
\begin{align*}
M_{N}\left(\bigotimes_{p=1}^{n} G_{p}\right)= & |V|\left[\sum_{p=1}^{n} \frac{M_{N}\left(G_{p}\right)}{\left|V_{p}\right|}+3\left\{\sum_{p \neq q, p, q=1}^{n-1} \frac{M_{1}\left(G_{p}\right) M_{1}\left(G_{q}\right)}{\left|V_{p}\right|\left|V_{q}\right|}\right.\right. \\
& \left.+2 \frac{M_{1}\left(G_{n}\right)}{\left|V_{n}\right|} \sum_{p=1}^{n-1} \frac{M_{1}\left(G_{i}\right)}{\left|V_{p}\right|}\right\}+24\left\{\sum_{p \neq q \neq r, p, q, r=1}^{n-1} \frac{M_{1}\left(G_{p}\right)\left|E_{q}\right|\left|E_{r}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|}\right. \\
& +\sum_{p \neq q, p, q=1}^{n-1} \frac{M_{1}\left(G_{n}\right)\left|E_{p}\right|\left|E_{q}\right|}{\left|V_{n}\right|\left|V_{p}\right|\left|V_{q}\right|}+2\left(\sum_{p, q=1}^{n-1} \frac{M_{1}\left(G_{p}\right)\left|E_{q}\right|\left|E_{n}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{n}\right|}\right. \\
& \left.\left.-\sum_{p=1}^{n-1} \frac{M_{1}\left(G_{p}\right)\left|E_{p}\right|\left|E_{n}\right|}{\left|V_{p}\right|\left|V_{p}\right|\left|V_{n}\right|}\right)\right\}+16\left\{\sum_{p \neq q, p, q=1}^{n-1} \frac{M_{2}\left(G_{p}\right)\left|E_{q}\right|}{\left|V_{p}\right|\left|V_{q}\right|}\right. \\
& \left.\left.+\sum_{p=1}^{n-1} \frac{M_{2}\left(G_{n}\right)\left|E_{p}\right|}{\left|V_{n}\right|\left|V_{p}\right|}+\sum_{p=1}^{n-1} \frac{M_{2}\left(G_{p}\right)\left|E_{n}\right|}{\left|V_{p}\right|\left|V_{n}\right|}\right\}\right] \\
& +16|V| \sum_{p \neq q \neq r \neq s, p, q, r, s=1}^{n} \frac{\left|E_{p}\right|\left|E_{q}\right|\left|E_{r}\right|\left|E_{s}\right|}{\left|V_{p}\right|\left|V_{q}\right|\left|V_{r}\right|\left|V_{s}\right|} . \tag{22}
\end{align*}
$$

Thus, the result (20) can be obtained easily from the Eq. (22).
Definition 3.13. Consider the graph G containing m-tuples $b_{1}, b_{2}, \ldots, b_{m}$ with $b_{p} \in\left\{0,1, \ldots, n_{p}-1\right\}, n_{p} \geqslant 2$, as vertices and let whenever the difference of two tuples is exactly one place, the corresponding two vertices are adjacent. This graph is known as Hamming graph. The necessary and sufficient criteria for a graph G to be a Hamming graph is that $G=\bigotimes_{p=1}^{m} K_{n_{p}}$ and that is why such a graph G is naturally written as $H_{n_{1}, n_{2}, \ldots, n_{m}}$.

Hamming graph is very useful in coding theory specially in error correcting codes. Also such type of graph is effective in association schemes. Applying the result (20), we have the corollary stated below.

Corollary 3.14. The neighborhood Zagreb index of Hamming graph is obtained as follows:

$$
\begin{aligned}
M_{N}(G)= & \prod_{p=1}^{m} n_{p}\left[\sum_{p=1}^{m}\left(n_{p}-1\right)^{4}+3 \sum_{p \neq q, p, q=1}^{m}\left(n_{p}-1\right)^{2}\left(n_{q}-1\right)^{2}\right. \\
& +6 \sum_{p \neq q \neq r, p, q, r=1}^{m}\left(n_{p}-1\right)^{2}\left(n_{q}-1\right)\left(n_{r}-1\right)+4 \sum_{p \neq q, p, q=1}^{m}\left(n_{i}-1\right)^{3}\left(n_{j}-1\right) \\
& \left.+\sum_{p \neq q \neq r \neq s, p, q, r, s=1}^{m}\left(n_{p}-1\right)\left(n_{q}-1\right)\left(n_{r}-1\right)\left(n_{s}-1\right)\right]
\end{aligned}
$$

Example 3.15. When $n_{1}, n_{2}, \ldots ., n_{m}$ are all equal to 2 , the graph $H_{n_{1}, n_{2}, \ldots, n_{m}}$ is known as a hyper cube (Fig. 9) with dimension m and written as Q_{m}. We compute the following.
$M_{N}\left(Q_{m}\right)=2^{m} m^{4}$.

Q_{4}
Fig. 9. Example of Hypercube.

3.2.2. Tensor product

Definition 3.16. The tensor product of G_{1}, G_{2}, written as $G_{1} \circledast G_{2}$, contains the node set $V_{1} \times V_{2}$ and (u_{1}, v_{1}) is connected to (u_{2}, v_{2}) iff $u_{1} u_{2} \in E_{1}$ and $v_{1} v_{2} \in E_{2}$.

Clearly the definition gives the lemma as follows:
Lemma 3.17. For graphs G_{1} and G_{2}, we have
$\delta_{G_{1} \circledast G_{2}}(u, v)=\delta_{G_{1}}(u) \delta_{G_{2}}(v)$.
The tensor product was thoroughly studied in terms of graph coloring, graph identification and decomposition, graph embedding, matching theory and graph stability in [17]. Z. Yarahmadi studied about degree based indices for tensor product in [34]. Also in $[23,27]$ various topological descriptors of tensor product graphs are calculated. Here we continue this journey for the M_{N} index.

Proposition 3.18. The M_{N} index of tensor product for G_{1}, G_{2} is given by
$M_{N}\left(G_{1} \circledast G_{2}\right)=M_{N}\left(G_{1}\right) M_{N}\left(G_{2}\right)$.
Proof. By the definition of the M_{N} index and applying Eq. (24), we get

$$
\begin{aligned}
M_{N}\left(G_{1} \circledast G_{2}\right) & =\sum_{\left(u_{1}, u_{2}\right) \in V_{1} \times V_{2}} \delta_{G_{1} \circledast G_{2}}^{2}\left(u_{1}, u_{2}\right) \\
& =\sum_{u_{1} \in V_{1}} \sum_{u_{2} \in V_{2}}\left[\delta_{G_{1}}\left(u_{1}\right) \delta_{G_{2}}\left(u_{2}\right)\right]^{2} \\
& =M_{N}\left(G_{1}\right) M_{N}\left(G_{2}\right) .
\end{aligned}
$$

Which is the required result.
Example 3.19. Using the result (25), we have the following computations.
(i) $M_{N}\left(P_{n} \circledast P_{m}\right)=(16 n-38)(16 m-38), \quad m, n \geq 4$,
(ii) $M_{N}\left(C_{n} \circledast C_{m}\right)=256 m n$,
(iii) $M_{N}\left(K_{n} \circledast K_{m}\right)=m n(m-1)^{4}(n-1)^{4}$,
(iv) $M_{N}\left(P_{n} \circledast C_{m}\right)=16 m(16 n-38), \quad n \geq 4$,
(v) $M_{N}\left(P_{n} \circledast K_{m}\right)=m(m-1)^{4}(16 n-38), \quad n \geq 4$,
(vi) $M_{N}\left(C_{n} \circledast K_{m}\right)=16 m n(m-1)^{4}$.

3.2.3. Wreath product

Definition 3.20. The wreath product (also known as composition) of G_{1} and G_{2} having V_{1} and V_{2} as vertex sets with no common vertex and edge sets E_{1} and E_{2} is the graph $G_{1}\left[G_{2}\right]$ containing node set $V_{1} \times V_{2}$ and $\left(u_{1}, v_{1}\right)$ is connected to $\left(u_{2}, v_{2}\right)$ iff $\left(u_{1} u_{2} \in E_{1}\right)$ or ($u_{1}=u_{2}$ and $v_{1} v_{2} \in E_{2}$).

From the definition, we have the following obvious lemma.

Fig. 10. Fence graph $\left(P_{n}\left[P_{2}\right]\right)$ and closed fence graph $\left(C_{n}\left[P_{2}\right]\right)$.

Lemma 3.21. For graphs G_{1} and G_{2}, we have

$$
\begin{align*}
\delta_{G_{1}\left[G_{2}\right]}(u, v)= & \left|V_{2}\right|^{2} \delta_{G_{1}}(u)+\delta_{G_{2}}(v)+2\left|E_{2}\right| \operatorname{deg}_{G_{1}}(u) \\
& +\left|V_{2}\right| \operatorname{deg}_{G_{1}}(u) \operatorname{deg}_{G_{2}}(v) . \tag{26}
\end{align*}
$$

In [7,25] different topological indices for wreath product of graphs are derived. Here we proceed for the M_{N} index of wreath product.

Proposition 3.22. The M_{N} index of wreath product for G_{1}, G_{2} is obtained as follows:

$$
\begin{align*}
M_{N}\left(G_{1}\left[G_{2}\right]\right)= & \left|V_{2}\right|^{5} M_{N}\left(G_{1}\right)+\left|V_{1}\right| M_{N}\left(G_{2}\right)+12\left|V_{2}\right|\left|E_{2}\right|^{2} M_{1}\left(G_{1}\right)+8\left|E_{1}\right|\left|E_{2}\right| M_{1}\left(G_{2}\right) \\
& +16\left|V_{2}\right|^{3}\left|E_{2}\right| M_{2}\left(G_{1}\right)+8\left|V_{2}\right|\left|E_{1}\right| M_{2}\left(G_{2}\right)+3\left|V_{2}\right|^{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right) . \tag{27}
\end{align*}
$$

Proof. From definition of neighborhood Zagreb index and using Eq. (26), we have

$$
\begin{aligned}
M_{N}\left(G_{1}\left[G_{2}\right]\right)= & \sum_{(u, v) \in V_{1} \times V_{2}} \delta_{G_{1}\left[G_{2}\right]}^{2}(u, v) \\
= & \sum_{u \in V_{1}} \sum_{v \in V_{2}}\left[\left|V_{2}\right|^{2} \delta_{G_{1}}(u)+\delta_{G_{2}}(v)+2\left|E_{2}\right| \operatorname{deg}_{G_{1}}(u)\right. \\
& \left.+\left|V_{2}\right| \operatorname{deg}_{G_{1}}(u) \operatorname{deg}_{G_{2}}(v)\right]^{2} \\
= & \sum_{u \in V_{1}} \sum_{v \in V_{2}}\left[\left|V_{2}\right|^{4} \delta_{G_{1}}(u)^{2}+\left|V_{2}\right|^{2} \operatorname{deg}_{G_{1}}(u)^{2} \operatorname{deg}_{G_{2}}(v)^{2}+4\left|E_{2}\right|^{2} \operatorname{deg}_{G_{1}}(u)^{2}\right. \\
& +\delta_{G_{2}}(v)^{2}+2\left|V_{2}\right|^{3} \delta_{G_{1}}(u) \operatorname{deg}_{G_{1}}(u) \operatorname{deg}_{G_{2}}(v) \\
& +4\left|V_{2}\right|^{2}\left|E_{2}\right| \delta_{G_{1}}(u) \operatorname{deg}_{G_{1}}(u)+2\left|V_{2}\right|^{2} \delta_{G_{1}}(u) \delta_{G_{2}}(v) \\
& +4\left|V_{2}\right|\left|E_{2}\right| \operatorname{deg}_{G_{1}}(u)^{2} \operatorname{deg}_{G_{2}}(v)+2\left|V_{2}\right| \delta_{G_{2}}(v) \operatorname{deg}_{G_{1}}(u) \operatorname{deg}_{G_{2}}(v) \\
& \left.+4 \operatorname{deg}_{G_{1}}(u)\left|E_{2}\right| \delta_{G_{2}}(v)\right] .
\end{aligned}
$$

Applying Lemma 3.1, we have

$$
\begin{aligned}
M_{N}\left(G_{1}\left[G_{2}\right]\right)= & \left|V_{2}\right|^{5} M_{N}\left(G_{1}\right)+\left|V_{1}\right| M_{N}\left(G_{2}\right)+12\left|V_{2}\right|\left|E_{2}\right|^{2} M_{1}\left(G_{1}\right)+8\left|E_{1}\right|\left|E_{2}\right| M_{1}\left(G_{2}\right) \\
& +16\left|V_{2}\right|^{3}\left|E_{2}\right| M_{2}\left(G_{1}\right)+8\left|V_{2}\right|\left|E_{1}\right| M_{2}\left(G_{2}\right)+3\left|V_{2}\right|^{2} M_{1}\left(G_{1}\right) M_{1}\left(G_{2}\right),
\end{aligned}
$$

which is the desired result.
Example 3.23. The wreath product of the path graphs P_{n} and P_{2} yield the fence graph (Fig. 10), whereas the wreath product of the cycle C_{n} and the path P_{2} gives the closed fence graph (Fig. 10). Thus from the result (27), we compute the followings.
(i) $M_{N}\left(P_{n}\left[P_{2}\right]\right)=1250 n-2560, \quad n \geqslant 4$,
(ii) $M_{N}\left(C_{n}\left[P_{2}\right]\right)=1250 n, \quad n \geqslant 3$.

4. Conclusion

In this article, we introduced the M_{N} index, examined its chemical applicability, computed some exact formulae for M_{N} of some product graphs and applied the results to some special graphs. As a future work, we derive the results for some other graph operations and compute some bounds of this index. Also some exact expressions of it for different networks can also be derived. As the pharmacological activity of a compound depends on its physicochemical properties and the correlations of M_{N} index with some of these properties are attractive, there is nothing to be surprised that M_{N} index can be used in designing new drugs.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Sourav Mondal: Conceptualization, Writing - original draft, Software. Nilanjan De: Conceptualization, Investigation, Writing review \& editing. Anita Pal: Supervision, Visualization, Validation.

Acknowledgments

The first author is very obliged to the Department of Science and Technology (DST), Government of India for the Inspire Fellowship [IF170148].

Supplementary material

Supplementary material associated with this article can be found, in the online version, at 10.1016/j.molstruc.2020.129210

References

[1] S. Akhter, M. Imran, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb. 14 (2017) 70-79.
[2] A. Alameri, M. Al-Rumaima, M. Almazah, Y-coindex of graph operations and its applications of molecular descriptors, J. Mol. Struct. 1221 (2020) 128754.
[3] H.Y. Azari, B. Manoochehrian, A.R. Ashrafi, The PI index of product graphs, Appl. Math. Lett. 21 (2008) 624-627.
[4] M. Azari, A. Iranmanesh, Chemical graphs constructed from rooted product and their zagreb indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 901-919.
[5] F. CMD, D. Stevanovic, Further properties of the second zagreb index, MATCH Commun. Math. Comput. Chem. 72 (2014) 655-668.
[6] K.C. Das, K. Xu, I. Gutman, On zagreb and harary indices, MATCH Commun. Math. Comput. Chem. 70 (2013) 301-314.
[7] A. Donno, Spectrum, distance spectrum, and wiener index of wreath products of complete graphs, Ars Math. Contemp. 13 (2017) 207-225.
[8] B. Furtula, I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015) 1184-1190.
[9] M. Ghorbani, M.A. Hossainzadeh, The third version of zagreb index, Discrete Math Algorithm Appl. 5 (4) (2013). Article ID:1350039
[10] A.Y. Gunes, M. Togan, F. Celik, I.N. Cangul, Cut vertex and cut edge problem for topological graph indices, J. Tybah Univ. Sci. 13 (2019) 1175-1183.
[11] I. Gutman, K.C. Das, The first zagreb index 30 years after, MATCH Commun, Math. Comput. Chem. 50 (2004) 83-92.
[12] I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, 1986.
[13] I. Gutman, B. Rućić, N. Trinajstić, C.F. Wilcox, Graph theory and molecular orbitals. XII. acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.
[14] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. total π-electron energy of alternate hydrocarbons, Chem. Phys. Lett. 17 (1972) 535-538.
[15] S. Hayat, S. Khan, M. Imran, J.B. Liu, Quality testing of distance-based molecular descriptors for benzenoid hydrocarbons, J. Mol. Struct. 1222 (2020) 128927.
[16] H. Hosoya, Topological index, a newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons, Bull. Chem. Soc. Jpn. 44 (1971) 2332-2339.
[17] W. Imrich, S. Klavzar, Product Graphs: Structure and Recognition, Wiley, New York, 2000.
[18] M.H. Khalifeh, H.Y. Azari, A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. 156 (2008) 1780-1789.
[19] M.H. Khalifeh, H.Y. Azari, A.R. Ashrafi, The first and second zagreb indices of some graph operations, Discrete Appl. Math. 157 (2009) 804-811.
[20] S. Klavzar, A. Rajapakse, I. Gutman, The szeged and the wiener index of graphs, Appl. Math. Lett. 9 (1996) 45-49.
[21] E.V. Konstantinova, The discrimination ability of some topological and information distance indices for graphs of unbranched hexagonal systems, J. Chem. Inf. Comput. Sci. 36 (1996) 54-57.
[22] R.E. Merrifield, H.E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989.
[23] A. MJN, H. Khodashenas, Distance-based topological indices of tensor product of graphs, Iranian J. Math. Chem. 3 (2012) 45-53.
[24] D. N., A. Pal, N. SMA, On some bounds and exact formulae for connective eccentric indices of graphs under some graph operations, Int J Comb. 2014 (2014). Article ID:579257
[25] D. N., N. SMA, A. Pal, F-index of some graph operations, Discrete Math Algorithm Appl. 8 (2) (2016). Article ID:1650025
[26] S. Noureen, A.A. Bhatti, A. Ali, Extremal trees for the modified first zagreb connection index with fixed number of segments or vertices of degree 2, J. Tybah Univ. Sci. 14 (2020) 31-37.
[27] K. Pattabiraman, P. Paulraja, On some topological indices of the tensor products of graphs, Discrete Appl. Math. 160 (2012) 267-279.
[28] P. Paulraja, V.S. Agnes, Degree distance of product graphs, Discrete Math Algorithm Appl. 6 (1) (2014). Article ID:1450003
[29] D. Plavsić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the harary index for the characterization of chemical graphs, J. Math. Chem. 12 (1993) 235-250.
[30] M. Randić, Characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609-6615.
[31] M. Randić, N. Trinajstić, In search for graph invariants of chemical interest, J. Mol. Struct. 300 (1993) 551-571.
[32] N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, 1993.
[33] D. Vukicevic, Bond additive modeling 2 mathematical properties of max-min rodeg index, Croat. Chem. Acta. 54 (2010) 261-273.
[34] Z. Yarahmadi, Computing some topological indices of tensor product of graphs, Iranian J. Math. Chem. 2 (2011) 109-118.
[35] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252-1270.

[^0]: * Corresponding author.

 E-mail address: de.nilanjan@rediffmail.com (N. De).

