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Abstract 

Background: Toxoplasma gondii is the third most important contributor to health burden caused by food-borne 
illness. Ingestion of tissue cysts from undercooked meat is an important source of horizontal transmission to humans. 
However, there is an increasing awareness of the consumption of fresh fruit and vegetables, as a possible source for 
oocyst transmission, since this stage of the parasite can persist and remain infective in soil and water for long time. 
Herein, we outline findings related with detection of T. gondii oocysts in vegetables and berry fruits, which are usually 
raw consumed. The procedure includes the estimation of the number of oocysts.

Methods: Food samples were collected from local producers and supermarket suppliers. Toxoplasma gondii oocysts 
were concentrated after washing the samples by applying high resolution water filtration and immunomagnetic 
separation (method 1623.1: EPA 816-R-12-001-Jan 2012), in order to (i) remove potential Cryptosporidium spp. oocysts 
and Giardia spp. cysts present in the samples; and (ii) select T. gondii oocysts. Toxoplasma gondii oocyst detection and 
an estimation of their numbers was performed by conventional PCR and real time qPCR, using specific primers for a 
183-bp sequence of the T. gondii repetitive DNA region. All PCR-positive DNA samples were purified and sequenced. 
Restriction enzyme digestion with EcoRV endonuclease confirmed the presence of the T. gondii DNA fragment. In addi-
tion, the presence of the parasite was observed by fluorescent microscopy, taking advantage of the oocysts autofluo-
rescence under UV light.

Results: Forty percent of the analysed samples (95% CI: 25.5–56.5%) presented the expected PCR and digested DNA 
fragments. These fragments were confirmed by sequencing. Microscopic autofluorescence supported the presence 
of T. gondii-like oocysts. The estimated mean (± SE) oocyst concentration was 23.5 ± 12.1 oocysts/g, with a range of 
0.6–179.9 oocysts/g.

Conclusions: Our findings provide relevant evidence of contamination of fresh vegetables and berry fruits with T. 
gondii oocysts.
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Background
Toxoplasma gondii is an intracellular protozoan (Apicom-
plexa: Coccidia) causing human and animal toxoplasmosis 
[1]. Protozoan infectivity is due to three parasitic stages: an 

invasive tachyzoite; a bradyzoite in tissue cysts; and an envi-
ronmental stage, the sporozoite, protected inside mature 
oocysts [1, 2]. The global prevalence of toxoplasmosis is 
estimated to be around 30% with 10 million clinical cases 
[1–4] and it is ranked as the third most important contribu-
tor to health burden caused by food-borne illness in Europe 
[4]. Most infections in humans are asymptomatic. However, 
severe complications may occur during (i) congenital Toxo-
plasma infection, such as abortion, stillbirth and hydro-
cephalus in new-borns [1, 4, 5]; (ii) ocular toxoplasmosis, 
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with retinochoroidal lesions leading to chronic ocular dis-
ease [1, 2]; (iii) encephalitis in immunosuppressed patients 
[1, 4, 5]; and (iv) multivisceral toxoplasmosis due to atypical 
genotypes in South America [6–8]. A possible implication 
of T. gondii genetic diversity on the pathogenesis of toxo-
plasmosis has been postulated [9–11]. Consensually, cur-
rent opinion is that the majority of horizontal transmissions 
to humans occurs after ingestion of tissue cysts in infected 
meat, or through water, raw fruit and vegetables contami-
nated with sporulated oocysts [2, 12, 13]. In vitro and in vivo 
experiments using mouse models have shown that infec-
tions due to oocysts are clinically more severe when com-
pared to infections caused by tissue cysts (bradyzoites) [14]. 
However, the relative importance of transmission via tissue 
cysts versus oocysts is still unclear [2]. In addition, oocysts 
can remain viable for long periods in the environment and 
can resist chemical and physical treatment currently applied 
in water plants, including chlorination and ozone treatment 
[15–18]. This paved the way for an increasingly awareness 
related to drinking water and the consumption of raw fruit 
and vegetables as putative routes for oocyst transmission. 
So far, the detection of Toxoplasma oocysts in fruit and 
vegetables has been difficult, and no standardized meth-
ods are available. Moreover, findings outlined in the litera-
ture on this topic are scarce and/or controversial [19–26]. 
In this scenario, a laboratory approach was designed based 
on the experience gained with Method 1623.1/EPA for 
Cryptosporidium oocyst and Giardia cyst detection [27]. 
This approach involved: (i) the concentration of oocysts 
from large volumes of washing water (fruit and vegetables), 
according to Method 1623.1/EPA; and (ii) subsequent appli-
cation of PCR for identification and quantification of T. gon-
dii DNA [23, 26, 28–30]. Herein, we outline findings related 
with the detection of T. gondii oocysts in vegetables and 
berry fruits, as a contribution to a better comprehension of 
oocyst transmission to humans.

Methods
Food samples
A total of 35 bulk, packaged and ready-to-eat (RTE) veg-
etables and berry fruits were collected from local pro-
ducers, provided by retail sellers, or bought in small and 
large-scale supermarkets between July 2018 and July 2019, 
in several locations in Portugal and Spain (Fig.  1). The 
choice of samples was based on expected market pref-
erences of raw fruit and vegetables by Portuguese con-
sumers, described by the Government agency “Instituto 
Nacional de Estatística” [31]. The food products included 
different varieties of lettuce (Lactuca sativa), watercress 
(Nasturtium officinale), coriander (Coriandrum sati-
vum), parsley (Petroselinum crispum) carrots (Daucus 
carota sativus), arugula (Eruca vesicaria sativa), strawber-
ries (Fragaria ananassa), raspberries (Rubus idaeus) and 

blueberries (Vaccinium myrtillus). Ready-to-eat mixed 
salads, with different varieties of lettuce (Lactuca sativa), 
arugula (Eruca vesicaria sativa), endive (Cichorium endi-
via), chicória-italiana (Cichorium intybus), carrots (Dau-
cus carota sativus), red cabbage (Brassica oleracea var. 
capitata f. rubra) and lambʼs lettuce (Valerianella locusta) 
were also included in this study. Laboratory sample treat-
ment was performed immediately or in less than 24 h after 
refrigeration.

Toxoplasma gondii oocyst recovery
The concentration and recovery of T. gondii oocysts, as 
well as Cryptosporidium spp. oocysts and Giardia spp. cysts 
from fruit and vegetable samples were performed by Fil-
tration/Immunomagnetic Separation (IMS)/Fluorescence 
Assay (FA) (Method 1623.1: Cryptosporidium and Giardia 
in water; US EPA 816-R-12-001-Jan 2012) [27]. Briefly, the 
fruit and vegetables were vigorously washed by manual swirl-
ing, for at least 10  min in large volumes of distilled water 
(between 10 and 80  l) in 20, 50 or 100  l tanks, accordingly 
to the size of each sample. Ten litres of distilled water were 
used to wash an average of 440 g of sample. The weight of 
each sample varied between 64–3600 g (Table 1); for wash-
ing water filtration, a 1 µm Filta-Max® filter (IDEXX, West-
brook, ME, USA) applied to a peristaltic pump at three bar 
was used. Elution was performed in a Filta-Max® manual 
wash station, and concentrated into 3 ml of phosphate-buff-
ered solution (PBS) with 0.01% of Tween 20 (Merck KGaA, 
Darmstadt, Germany), after centrifugation at 1000×g for 
10  min at room temperature. Magnetic beads conjugated 
with specific antibodies (Dynabeads™ GC-Combo; Thermo 
Fisher Scientific, Waltham, MA, USA) were added to the 
concentrate, and magnetized Cryptosporidium oocysts and 
Giardia cysts were removed from the extraneous material 
using a magnet (data not presented). The remaining sus-
pension, containing putative T. gondii (PTG) oocysts were 
centrifuged (1000×g for 10 min at room temperature) and 
resuspended in 2–5 ml of PBS.

Toxoplasma gondii DNA detection and oocysts number 
estimation
DNA extraction
Two-hundred microliters of PTG suspension was cen-
trifuged at 1000×g for 10 min at room temperature and 
the pellet resuspended in 200  ml lysis buffer  (QIAamp® 
DNA Mini Kit; Qiagen, Hilden, Germany). The disrup-
tion of the oocyst cell wall was performed with 4 freeze 
(− 20 °C)/thaw (95 °C) cycles. Prior to overnight incuba-
tion at 56  °C with 20  µl proteinase K (Qiagen), samples 
were treated with 1 ml of InhibitEX buffer (Qiagen) that 
efficiently removes PCR inhibitors commonly present in 
environmental samples. The commercial kit,  QIAamp® 
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DNA Mini Kit (Qiagen), was used for DNA isolation 
according to the manufacturer’s instructions.

Conventional PCR and sequencing
Specific primers (FW: 5′-AGC CAC AGA AGG GAC 
AGA AG-3′ and REV: 5′-TCC AGG AAA AGC AGC CAA 
G-3′) targeting a 183-bp sequence of the 529-bp repetitive 
sequence of T. gondii [23, 26, 28–30] were designed (Prim-
er3Plus and  BLAST®) for DNA detection according to the 
MIQE (minimum information for publication of quantita-
tive real-time PCR experiments) guidelines [32, 33]. These 
primers do not bind to any site of the H. hammondi 529-bp 
repetitive sequence (GenBank: EU493285.1), and no signifi-
cant similarity was found between the primers’ nucleotides 
and H. hammondi repetitive sequence. PCR amplification 
was performed with an initial polymerase activation step 
(3  min at 95  °C), followed by 35 cycles of denaturation 
(30  s at 95  °C), annealing (30  s at 62  °C) and extension 
(30 s at 72 °C), followed by a final extension step of 10 min 

at 72  °C. The amplification reaction mixture consisted of 
12.5 μl DreamTaq™ Hot Start Green PCR Master Mix 2× 
(Thermo Fisher Scientific), 600 nM of each primer (Eurofins 
Genomics, Ebersberg, Germany) and 5 μl of template DNA 
in a 25 μl reaction volume. Amplifications were performed 
in a C1000 Touch™ thermal cycler (Bio-Rad, Hercules, 
CA, USA). PCR products (183 bp) were observed in a Gel 
DocTM XR+ (Bio-Rad) and analysed using Image LabTM 
Software (Bio-Rad). In all PCR experiments, a positive 
control (genomic DNA isolated from  105 T. gondii ME49 
oocysts) and a negative control (water template) were used. 
Additionally, all of the negative samples were retested for 
the presence of PCR inhibitors by adding 1 μl of T. gondii-
positive control to the 5 μl of DNA template. Positive PCR 
fragments were purified (IllustraTM GFXTM PCR DNA 
and Gel Band Purification kit; GE HealthCare, IL, Chicago, 
USA) from a low melting 2% agarose gel (Lonza, Basel, 
Switzerland) and sequenced using Sanger sequencing ser-
vices from GATC Biotech (Eurofins Genomics, Ebersberg, 

Fig. 1 Geographical origin of the collected samples. Fruit and vegetables were collected from local producers, provided by retail sellers, or bought 
in small- and large-scale supermarkets in several locations of Portugal and Spain
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Germany). Sequence comparison was made with already 
published sequences (GenBank: AF146527.1) using the 
NCBI Basic Local Alignment Search Tool (BLAST).

Quantitative real‑time PCR
A quantitative (qPCR) method based on a standard curve 
was used to estimate the initial number of oocysts per 
gram of vegetable or fruit. Briefly, a standard template 
was obtained after purification of the positive control (T. 
gondii ME49 oocysts) PCR product and DNA concentra-
tion was measured with a NanoDrop 1000 spectropho-
tometer (ThermoFisher Scientific, Waltham, MA, USA). 
The DNA copy number/µl was calculated and two series 
of a ten-fold serial dilution of the DNA (from 1 × 106 to 
1 copy/μl) were prepared. qPCR was carried out in a final 
volume of 20  µl, using 10  μl of SsoAdvanced™ Univer-
sal  SYBR® Green Supermix (2×) (Bio-Rad) and 350 nM 
of each specific primer (previously used for conventional 
PCR) and 2  μl of the DNA sample or standard dilution. 
The plates were sealed and centrifuged at 1000×g for 
1  min, at room temperature. The cycling conditions for 
the qPCR CFX96 Touch real-time instrument (Bio-Rad) 
were as follows: initial denaturation at 98 °C for 3 min; fol-
lowed by 35 cycles at 98 °C for 15 s; then 62 °C for 30 s. 
Melting curve analysis was also performed at the end of 
each PCR run (65–95 °C at 0.5 °C/5 s). qPCR of the stand-
ard dilution gradient and the DNA isolated from fruit and 
vegetable samples were run in duplicate and in the same 
plate. The absolute quantification of the initial DNA copy 
number/μl and estimation of the number of oocysts per 
gram of each environmental sample was calculated by 
comparing the quantification cycle threshold (Cq) values 
of the environmental samples with the standard curve 
taking into account the variation of the 529-bp repetitive 
sequence and the ploidy of the T. gondii oocysts.

Restriction enzyme digestion
Purified positive PCR fragments were subject to restric-
tion enzyme digestion with the endonuclease EcoRV 
(New England Biolabs, Ipswich, MA, USA). The reaction 
was performed in a volume of 10  μl with 5  μl of DNA, 
1 μl of the enzyme and 1 μl of 10× NEBuffer 3.1, accord-
ing to the manufacturer’s instructions. Each sample was 
incubated at 37 °C for 1 h. Additionally, purified T. gondii 
PCR fragments and uncut experimental DNA were used 
as controls. The digested fragments (74  bp and 109  bp) 
were electrophoresed on a 2% high-resolution agarose gel 
(Sigma-Aldrich) and analysed using a Gel DocTM XR+ 
(Bio-Rad).

Epifluorescence microscopy
Twenty-five microliters of the PTG suspension was 
diluted (1:2) and air-dried onto a 2-well SuperStick™ Slide 
(Waterborne™, Inc., New Orleans, LA, USA) chemically 
treated to increase adhesion of the oocysts. Fixation was 
performed for 2 min with absolute methanol (Panreac 
Química SLU, Castellar del Vallès, Spain) and the slides 
were allowed to dry completely. As a positive control, 
a slide was prepared with  105 T. gondii ME49 oocysts 
(kindly provided by J. T. Dubey). The background fluo-
rescence was reduced by adding Evans Blue dye solution 
(BlockOut Counterstain; Waterborne™, Inc.), slides were 
rinsed with PBS and completely air-dried before being 
mounted with DPX mounting media (Merck KGaA, 
Darmstadt, Germany). Oocysts were visualized using a 
Nikon fluorescence microscope (Nikon Optiphot 2; Mel-
ville, NY, USA), under bright field and ultraviolet (UV) fil-
ter block (excitation 335 nm; emission 450 nm), based on 
the autofluorescent nature of the oocyst wall due to Tyr-
rich proteins [18, 34]. Images were captured at 400× mag-
nification using a PowerShot A630 digital camera (Canon, 
Amstelveen, Holland).

Statistical analysis
Graphpad Prism version 7.02 (San Diego, CA, USA) was 
used for statistical analysis. The 95% confidence intervals 
(95% CI) for the population proportions were calculated 
using the modified Wald method [35]. Fisher’s exact test 
was used to find out differences for the different categori-
cal variables. The non-parametric Mann-Whitney U-test 
was used to compare the number of oocysts per gram in 
each food group. A two-tailed P-value of less than 0.05 
was considered significant.

Results
Sampling
A total of 25 kg of fresh products distributed in 35 sam-
ples were analysed and results are shown in Table 1. These 
comprised 18 bulk samples, corresponding to 14.5  kg 
and 17 samples of packaged and RTE corresponding to 
10.5 kg; 28 samples (21.7 kg) of fresh vegetables (lettuce, 
watercress, parsley, coriander, arugula, carrots and mixed 
salads) and 7 (3.3 kg) of berry fruits (strawberry, raspberry 
and blueberry); 27 samples (21.3 kg) were provided from 
conventional agriculture systems and 8 samples (3.7  kg) 
from organic agriculture.

Toxoplama gondii DNA detection
Toxoplasma gondii detection was performed by conven-
tional PCR and a 183-bp gel band corresponding to the 
specific DNA fragment of the T. gondii repetitive region 
(GenBank: AF146527.1) was observed in 14 out of the 35 
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(40.0%) analysed samples (95% CI: 6.5–25.5%). Statistical 
analysis of contingency tables showed no significant dif-
ferences (P > 0.05) for the different categorical variables, 
such us the type of products, the season when they were 
collected, the type of agriculture system applied and Bulk 
or RTE products (Table 2). Sequence analysis confirmed 

that the obtained amplicon of all positive samples had 
more than 95% nucleotide similarity with the 529-bp T. 
gondii repetitive region (GenBank: AF146527.1) (Table 1). 
Moreover, two bands of expected sizes (109 bp and 74 
bp) were observed after EcoRV DNA enzymatic digestion 
(Fig. 2), confirming T. gondii DNA sequence.

Estimation of the number of T. gondii oocysts
Real-time qPCR was used to estimate the initial num-
ber of oocysts present in each gram of vegetable or fruit. 
Quantification was performed by using as a standard, 
a T. gondii DNA gradient of a known initial number of 
DNA copies/µl. Amplification efficiencies were calcu-
lated and were always between 90–110%. In addition, 
melt curve analysis allowed confirmation of the specific 
T. gondii amplified sequence. The diagnostic melting 
temperature (Tm) peak was 86.5 ± 1 °C. The concen-
tration of Toxoplasma from the fruit and vegetables 
varied between 0.6–179.9 oocysts/g (Table  1), with a 
mean number (± SE) of 23.5 ± 12.1 oocysts/g. A sig-
nificantly higher number of oocysts/g was found from 
RTE/packaged samples (45.9 ± 27.8 oocysts/g) when 
compared with the mean number of oocysts/g present 
in bulk products (8.5 ± 5.6 oocyst/g) (Mann-Whitney 
U-test: P = 0.036) (Fig.  3a). No statistically significant 
differences (P > 0.05) were found when comparing the 
number of oocysts/g in products originally from con-
ventional or organic agriculture, between fruit and veg-
etables or the season when the products were collected 
(Fig. 3b–d).

Toxoplasma gondii oocysts autofluorescence
Direct visualization of T. gondii oocyst autofluorescence 
was performed using an epifluorescent microscope. In 
slides from all PCR-positive samples we observed T. gon-
dii-like oocysts, based on morphology and size (between 
10–15 µm in diameter), and the pale blue glow when illu-
minated with a UV light source. The majority of the sam-
ples presented unsporulated oocysts. However, sporulated 
oocysts were observed in one of the strawberry samples.

Discussion
Water and food matrices may be accidentally contami-
nated by environmental oocysts [12, 13]. Thus far, there 
are no standard methods or consensual tools described 
for oocyst identification and quantification from these 
matrices. The lack of standardised methods probably sus-
tains the exclusion of T. gondii from regular surveillance 
systems [12, 13, 26]. In order to estimate the prevalence 
of T. gondii oocysts in fresh fruit and vegetables, we have 
designed an approach described herein. For molecular 
detection of the parasite, we have selected a consensual 

Table 2 Prevalence rate of Toxoplasma gondii in different groups 
of fruit and vegetables

Notes: Contingency tables were constructed in order to compare categorical 
variables. The Fisher’s exact test was used and P > 0.05 indicates non-significant 
associations

Abbreviations: n, number of samples; %, percentage

Samples Toxoplasma gondii DNA detection P-value

Negative (n, %) Positive (n, %)

Total 21 (60.0) 14 (40.0)

Product presentation

 Bulk 9 (50.0) 9 (50.0) P = 0.499

 RTE/packaged 11 (64.7) 6 (35.3)

Type of product

 Vegetables 16 (57.1) 12 (42.9) P = 1.000

 Berry fruits 4 (57.1) 3 (42.9)

Agricultural system

 Conventional 16 (59.3) 11 (40.7) P = 0.700

 Organic 4 (50.0) 4 (50.0)

Season

 Spring/summer 12 (63.2) 7 (36.8) P = 0.506

 Autumn/winter 8 (50.0) 8 (50.0)

Fig. 2 Representative image of a 2% high resolution agarose gel with 
T. gondii uncut, positive, 183 bp PCR fragments (Lane 2 and Lane 4) 
and subject to restriction enzyme digestion with the endonuclease 
EcoRV (Lane 1 and Lane 3). A ready-to-use DNA marker (Lanes M) 
suitable for sizing linear double-stranded DNA fragments from 
25–700 bp was used to confirm the expected digested fragments of 
74 bp and 109 bp
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specific DNA fragment of the T. gondii repetitive region 
[28]. The 529-bp DNA fragment was amplified in 40% of 
all samples, with an estimated mean of 23.5 oocysts per 
gram of product. Our findings indicate a higher preva-
lence compared to other studies [19–26]. However, 
critical analysis of the data in Table  3, evidences major 
differences related to: (i) sampling design; (ii) DNA tar-
get strategy; and of relevance to this particular study (iii) 
the choice of oocyst recovery method. In our opinion, 
the choice of the Filta-Max® System (IDEXX), for high-
resolution filtration of large volumes of washing water, 
increases oocyst recovery. Consequently, it increases the 
sensitivity of the detection method. Complementary to 
this, the execution of Method 1623.1 [27] seems to be 
an advisable strategy for removing Cryptosporidium spp. 
oocysts and Giardia spp. cysts and separating them from 
potential T. gondii oocysts present in the sample washing 
water. Indeed, high-grade filtration followed by immuno-
magnetic separation of water samples has been described 
as a more accurate method for parasite concentration 
when compared with membrane filtration and centrifuga-
tion [36] or sucrose gradient separation [37].

In our study, T. gondii DNA fragments were confirmed 
by sequencing and by DNA digestion with a restriction 

enzyme. Enzymatic digestion with EcoRV endonuclease 
suggests specificity and excludes cross-amplification of 
non-target organisms, such as Hammondia hammondi; 
this closely related apicomplexan presents a homologous 
region with around 84% sequence identity with the 529-
bp repeat region of T. gondii [38]. The selected endonu-
clease EcoRV does not bind to any recognition site of the 
H. hammondi repetitive sequence, consequently, DNA 
cleavage does not occur.

Slides from PCR-positive samples were examined 
under epifluorescent microscopy and autofluorescent 
structures, compatible with T. gondii unsporulated 
oocysts in morphology and size (between 10–15 µm 
in diameter) were observed. A sporulated oocyst was 
observed in one sample. Data concerning the direct 
microscopic examination of oocysts in fresh vegeta-
bles are scarce [19, 21]. Indeed, no clear references to 
the observation of T. gondii sporulated oocysts has 
yet been described in fruit or vegetables. On the other 
hand, T. gondii oocysts are morphologically indistin-
guishable from the oocysts of related coccidian para-
sites, not infectious to humans, such as Hammondia 
spp. and Neospora caninum [13]; debris present in 
the samples may affect the ability to visualize small 

Fig. 3 Box and whiskers diagrams comparing the estimated number of oocysts per gram, between bulk and RTE/packaged products (a), 
conventional and organic agriculture system (b), fruit and vegetables (c) and food items collected in spring/summer and autumn/winter (d), 
quantified by qPCR. The non-parametric Mann-Whitney U-test was used to compare the estimated number of oocysts per gram between the 
groups. *P = 0.036
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fluorescent structures such as autofluorescent oocysts, 
and so far there are no commercial antibodies to imple-
ment a specific immunomagnetic separation proto-
col. Therefore, and in the absence of standard methods 
for oocysts observation, T. gondii confirmation always 
requires molecular identification. Our findings sug-
gest no significant seasonal variation or differences 
between the type of agriculture system applied. Addi-
tionally, no significant differences between the preva-
lence of T. gondii in the leafy vegetables or fruits were 
observed. Although a statistically significant difference 
in the proportion, has not been observed between bulk/
RTE and positive T. gondii DNA amplification, curi-
ously, a remarkably higher concentration of Toxoplasma 
oocysts was found in RTE and packaged fruit and veg-
etables, when compared to bulk products. So far, we 
have no clear explanation for this result. However, it is 
reasonable to speculate about the management of the 
washing systems used in food industry. Trevisan et  al. 
[39] referred that managing water sustainably in agri-
culture means increased utilization of wastewater for 
irrigation, reusing freshwater to wash the products and 
therefore increasing the chances for RTE/packaged fruit 
and vegetables to become contaminated [39]. Neverthe-
less, testing water samples from washing/packing facili-
ties and the water used for irrigation of bulk products 
are warranted in order to decipher the degree of Toxo-
plasma oocyst contamination on fruit and vegetables. 
In addition, genotyping should be carried out in all posi-
tive-PCR samples, for risk assessment evaluation.

Conclusions
Our findings sustain that consumption of raw fruit 
and vegetables may be a source of T. gondii infection in 
humans. They also emphasise the need of a procedure 
accepted with a consensus as the “gold standard” method 
for the recovery, detection and quantification of T. gon-
dii oocysts and validated for use with fresh fruit and veg-
etables. Major improvements are still required for routine 
application at the industrial level or for food testing in 
laboratories for detection of T. gondii oocysts.
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