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Abstract

Background: Soil water and nitrogen (N) are considered to be the main environmental factors limiting plant growth and
photosynthetic capacity. However, less is known about the interactive effects of soil water and N on tree growth and
photosynthetic response in the temperate ecosystem.

Methods/Principal Findings: We applied N and water, alone and in combination, and investigated the combined effect of
different water and N regimes on growth and photosynthetic responses of Fraxinus mandshurica seedlings. The seedlings
were exposed to three water regimes including natural precipitation (CK), higher precipitation (HW) (CK +30%) and lower
precipitation (LW) (CK 230%), and both with and without N addition for two growing seasons. We demonstrated that water
and N supply led to a significant increase in the growth and biomass production of the seedlings. LW treatment significantly
decreased biomass production and leaf N content, but they showed marked increases in N addition. N addition could
enhance the photosynthetic capability under HW and CK conditions. Leaf chlorophyll content and the initial activity of
Rubisco were dramatically increased by N addition regardless of soil water condition. The positive relationships were found
between photosynthetic capacity, leaf N content, and SLA in response to water and N supply in the seedling. Rubisco
expression was up-regulated by N addition with decreasing soil water content. Immunofluorescent staining showed that
the labeling for Rubisco was relatively low in leaves of the seedlings under LW condition. The accumulation of Rubisco was
increased in leaf tissues of LW by N addition.

Conclusions/Significance: Our study has presented better understanding of the interactions between soil water and N on
the growth and photosynthetic response in F. mandschurica seedlings, which may provide novel insights on the potential
responses of the forest ecosystem to climate change associated with increasing N deposition.
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Introduction

Human activities such as fossil fuel burning, forest disturbance,

and land conversion have globally elevated the atmospheric

concentration of carbon dioxide (CO2) and atmospheric deposi-

tion of nitrogen (N) [1]. The atmospheric N depositions are

altering the availability of this limiting nutrient in many terrestrial

ecosystems [2]. Elevated N availability can affect plant growth,

biodiversity, and ecosystem functioning [3,4]. Soil N availability

has the potential to alter plant physiology in terrestrial ecosystems

[5,6]. Increases in atmospheric N deposition can affect the amount

of N available to plants which influence the growth and survival of

the seedlings [7]. Photosynthesis may be altered in responses to

elevated N availability [8]. Increased N availability results in

increased photosynthesis and growth in northern hardwood trees

[9]. N additions increase leaf N concentrations accompanied by

higher net photosynthetic rates in Douglas-fir [10], poplar [11],

pond pine and red maple [12]. Maximum photosynthetic capacity

is strongly regulated by leaf N concentration [13]. It is showed that

there is a significant and positive correlation between photosyn-

thetic capacity and leaf N content [14–16]. Increases in N

availability have been shown to correspond with increased leaf

chlorophyll content [11,17], Rubisco (Ribulose-1, 5-bisphosphate

carboxylase/oxgenase) [10]. N addition enhances tolerance of

plants to abiotic stresses such as water deficits, salt and high

temperatures [18–20]. Despite the potential importance of N

deposition in plant, there is still limited knowledge regarding the

relationship between N application, photosynthesis and growth in

temperate forest ecosystems.

Soil water content is the primary limitation in photosynthetic

processes in plants. Water availability influences leaf phenology

[21] and photosynthetic rate [22]. It is well known that one of the

primary physiological consequences of drought is photosynthesis

inhibition [23,24]. Inhibition of photosynthesis under drought has
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been attributed mainly to stomatal closure, reduced mesophyll

conductance, and inhibition of Rubisco activity [25–29]. The

major effects of water deficit on plant function include decreased

shoot growth due to decreased leaf biomass and leaf area

allocation, and increased leaf N content [30].

Physiological responses of plants to either water deficit or

nitrogen addition have been documented [31]. Soil N availability

can be affected by soil water availability via several microbial-

mediated pathways, such as litter decomposition [32] and N

mineralization [33]. Appropriate N supply is recommended to

improve photosynthetic efficiency under water stress [15].

However the interactions between these two factors on plant

physiological responses have received relatively little attention

[34]. The overall effect of N addition and water changes on trees

remains still unclear.

Rubisco is a kind of special enzymes that catalyzes the initial

fixation reaction of photosynthesis [35]. Rubisco is mainly located

in the chloroplasts of the bundle sheath cells in the leaves of higher

plants. The large subunits of Rubisco play an important role in

photosynthesis for CO2 assimilating [35]. Some evidences suggest

that Rubisco functions increasingly as a storage protein in addition

to its catalytic functions with increasing Narea [36]. The response

of Rubisco to N supply in trees remains equivocal. The results

show greater concentration of Rubisco in seedling foliage at high

rates of N supply [37], whereas another study found no effect of

fertiliser application on Rubisco concentration, Rubisco activity or

photosynthesis in 25- to 30-year-old trees [38]. Less is known

about the relationships between photosynthetic capacity, leaf N

content, and the expression and activity of Rubisco in response to

N and water in the seedling.

Fraxinus mandschurica is the most economically important forest

tree species and primarily distributed in the temperate forests of

northern hemisphere. However, forest decline of F. mandschurica

have been recently observed in forest areas in the northeast in

China due to logging and hunting. Protection and restoration of

this ecologically important deciduous tree in temperate forest

regions is crucial. Little information is available regarding the

effects of N depositions and water availability on the growth and

photosynthetic responses of F. mandschurica seedlings. Therefore, in

the present study we applied N and water, alone and in

combination, and investigated the interactive effects of N addition

and soil water on the growth and physiological function of F.

mandschurica seedlings. We specifically aimed to examine potential

impacts of increased soil N and water availability and their

interaction on whole-plant growth, biomass allocation, photosyn-

thetic gas exchange, specific leaf area, leaf N content and

photosynthetic pigment content in the seedlings. We also studied

the changes in the expression and activity of Rubisco to clarify

how N addition and water treatment affect photosynthetic

functions of the seedlings. Better understanding of the interactions

between soil water and N on trees may provide critical insights on

the potential responses of the forest ecosystem to climate change

associated with increasing atmospheric N deposition.

Materials and Methods

Study site
This study was carried out in the Changbai Mountain Natural

Reserve in northeastern China (42u249090N, 128u059450E). The

area is situated in the temperate continental climatic zone. Altitude

above sea level of the study site is 738 m. Mean annual

temperature is 3.6uC with monthly mean temperatures of

215.6uC in January and 19.7uC in July, respectively. Mean

annual precipitation is 695 mm. The period of snow cover is from

November to April, with a maximum depth of about 30 cm. Most

precipitation in this area occurs from June to September (480–

500 mm) [39]. The soil is classified as dark brown forest soil

(Calcis-orthic Aridisol in the US Soil Taxonomy classification)

with pH of 5.85, and with the top 30 cm containing an average of

156.6 g kg21 organic carbon and 7.17 g kg21 total N. The

temperate broad-leaved Korean pine (Pinus koraiensis) mixed forest

in the study area is dominated by Pinus koraiensis Sieb. et Zucc.,

Fraxinus mandschurica Rupr., Quercus mongolica Fisch. ex Ledeb. and

Tilia amurensis Rupr.

Experimental design
The experiment was conducted in openings within a mature

broad-leaved Korean pine (P. koraiensis) mixed forest. A paired,

nested design was used with precipitation as the primary factor

and N addition the secondary one. The experiment involved three

pairs of 21.661.6 m plots. N was added to one plot in each pair

(+N), while the other plot in that pair contained no addition of N,

but only that resulting from naturally occurring addition (CK).

Each pair was also subjected to one of three water (precipitation)

regimes: a) naturally occurring precipitation (CK); b) precipitation

deduction (LW), in which 33% of naturally occurring precipitation

was removed and diverted to c) precipitation enhancement plot

(HW). These three regimes were applied to the three pairs of plots,

yielding an overall experimental design as depicted in Figure 1.

Each of the 6 plots was divided into nine 2.461.6 m subplots that

served as replicates, yielding a total of 54 subplots in the

experiment.

On 5 May 2006, two-year-old seedlings of F. mandshurica were

planted individually in the 54 subplots that served as locations for

experiment replications. Precipitation was manipulated by means

of troughs (0.1661.6 m) suspended above the dry plots such that

about 33% of the precipitation was trapped and passively

transferred by gravity to polyvinylchloride piping and then across

an ambient plot to a wet plot. In order to allow sunlight in, these

flumes were made of transparent plastic board. The flumes

inclined to the ground level at the angle of 15u with the highest

and lowest points 1.43 m and 1 m above the ground, respectively.

Flumes were spaced 40 cm apart. Soil water treatments began on

15 May 2006. To reduce nutrient heterogeneity, the original soil

was excavated to a depth of 0.3 m and replaced with soil collected

from the floor of a mature broad-leaved Korean pine (P. koraiensis)

mixed forest. The soil was passed through a 4 mm sieve after

collection.

Two N levels were control (CK) without N addition and N

addition (+N) 10 g N m22 yr21 experimental input. The latter

was applied by use of a backpack sprayer. Ammonium nitrate was

applied twice per year on 15 May and 15 July in 2006, 2007 and

2008 as two equal applications (5 g N m22, i.e. 54.86 g NH4NO3)

over the entire year. During each application, fertilizer was

weighed and mixed with 20 L of water. For each of the water

treatments, soil volumetric water content (v/v) was periodically

measured in the 0–30 cm depth range with a portable time

domain reflect meter (TDR 100 Campbell, USA). Whole seedling

dry mass, tree height and stem base diameter at the beginning of

the experiment were 8.6460.49 g, 26.3560.80 cm and

8.3360.20 mm, respectively. For assessment of water 6N effects

on the physiological/morphological characteristics of F. mandshur-

ica seedlings, all seedlings were grown under the same conditions

with the exception of variations in soil water and N levels.

Growth parameters
In late September 2008, 36 randomly selected seedlings were

harvested (n = 6 per replicate) to determine final shoot height, root
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collar diameter, and stem, leaf, and root biomass. Roots were

separated from shoots by severing the seedling at the root collar,

and were then carefully washed clean of growth media. The shoots

were divided into leaf and stem components. Seedling fractions

were oven-dried separately for at least 72 h at 80uC and the dry

mass of each fraction was determined. Specific leaf area (SLA

cm2 g21) was measured on six seedlings for each treatment, using

a LI-3000 leaf area meter (Li-Cor, Lincoln, NE).

Gas exchange parameters
To characterize water- and N-induced shifts in carbon

acquisition, instantaneous gas exchanges on fully expanded,

exposed current-year leaves were measured under controlled

optimal conditions using an open-mode portable photosynthesis

system (LI-6400, Li-Cor, Lincoln, NE). For each treatment, three

to four leaves of three individuals per replicate were randomly

selected for sampling. For each seedling a series of five

measurements per leaf was averaged (after the system had

achieved a predetermined stability point), and the mean value of

three individuals was used as the replicate for statistical analysis.

PN-PAR response curves were measured at 1800, 1500, 1200,

1000, 800, 500, 200, 100, 50, 20, and 0 mmol m22 s21 of PAR

under uniform conditions (25uC, 360610 mmol (CO2) mol21, and

65–75% RH at 9:00–11:30 on two sunny days. Maximum net

photosynthetic rate (Amax) and saturation irradiance were estimated

according to Ellsworth (2000) [40]. All the measurements were

recorded 5 times. In addition, water use efficiency was calculated

using instantaneous measurements. Instantaneous water use

efficiency (WUEi) was calculated and defined as Amax/E, which

Amax is the light-saturated net CO2 assimilation rate and E is

Figure 1. Total seedling, leaf, root and stem biomass (panels A–D) and SLA and S/R (panel E and F) under high-water (HW), (CK),
and low-water (LW) conditions in combinations with natural (dotted) or high N-supply level (hatched). Bars represent means of 6
replications 6 standard deviation. Values accompanied by different letters differ significantly at p = 0.05. Abbreviations: SLA, specific leaf area; S/R, the
ratio of the stem and root biomass.
doi:10.1371/journal.pone.0030754.g001
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transpiration rate. All of the measurements were taken between

9:00 am to 11:30 pm on two fully sunny days (July 17–21, 2008)

under natural conditions.

Determination of N concentration per unit leaf area
On 15 June, 17 July and 20 August 2008, two or three

nonshaded leaves per seedling were harvested and washed with

deionized water. The area of the fresh leaves was measured after

petiole removal, with an area meter (LI-3000A; Li-Cor). The

harvested leaves were dried at 70uC during 48 h and ground for

analysis. The specific leaf area (SLA) was determined as the ratio

of leaf area to leaf dry mass, 20 leaves were collected and

transported to the laboratory in refrigerated bags to avoid weight

loss by respiration in each treatment. The leaf area was measured,

after petiole removal, with an area meter (LI-3000A; Li-Cor). The

dried leaves were ground to fine powder with a vibrating sample

mill (MM-400 Retsch, Haan, Germany). The concentration of N

in the powder was determined with a CHN analyzer (Vario EL;

Elementar, Hanau, Germany). The N concentration per unit leaf

area (Narea) was determined as the ratio of N concentration to SLA

of the leaves. Photosynthetic N-use efficiency (PNUE) was

determined as the ratio of A360 to Narea. [41].

Photosynthesis pigment content
The fully expanded leaves from each seedling were collected,

placed between layers of ice in a thermal insulated box, and taken

to the laboratory of the National Research Station of Changbai

Mountain forest ecology where they were analyzed immediately.

The leaf disks (1 cm2) were taken and homogenized in chilled 80%

(v/v) acetone, and the homogenates were centrifuged at 10000 g

for 10 min at 4uC in the dark. The supernatant was used for

determining pigment contents. The absorbance of the supernatant

was recorded at 470, 646, and 663 nm. The amounts of

chlorophyll a, b, and total chlorophyll were calculated as described

by Inskeep and Bloom [42]. Total carotenoids were calculated as

described by Arnon [43]. All the spectrophotometric assays were

conducted using a UV-1601 spectrophotometer (Shimadzu,

Japan).

Measurement of Rubisco activity and activation state
On 18th August 2008, three non-shaded first-flush leaves per

seedling were harvested from 9:00 to 11:30 am. The harvested

leaves were washed with deionized water. Leaf samples (0.1 g)

were frozen in liquid nitrogen until the measurements of activity

and concentration of Rubisco. The stored leaf samples were

homogenized to a fine powder in liquid nitrogen with a mortar

and pestle. Subsequently, Rubisco was extracted by grinding the

fine powder in a 1.0 ml extraction buffer containing 50 mM

HEPES-KOH (pH 8.0), 10 mmol/L MgCl2, 0.5 mmol/L EDTA,

1% (w/v) polyvinylpolypyrrolidone. The crude homogenate was

centrifuged at 16000 g for 15 min. The supernatant of the sample

was used in the assay of activity of Rubisco. The activity of

Rubisco was determined spectrophotometrically by measuring the

disappearance rate of NADH [44]. To determine the initial

activity of Rubisco, immediately after combining the desalted

sample solution (100 mL with assay solution containing 50 mM

HEPES-KOH (pH 8.0), 10 mM NaHCO3,1.5 mM NADH,

5 mM ATP, 1 mM EDTA, 20 mM MgCl2, 2.5 mM DTT,

5 mM phosphocreatin, 10 units per ml of phosphoglyceric kinase,

10 units per ml of glyceraldehyde-3-phosphate dehydrogenase and

20 units per ml of phosphocreatine kinase at final concentration,

the reaction was started by adding 60 mL of 10 mM RuDP. The

change in the absorption of the activation state of Rubisco was

calculated as the ratio of initial activity to total activity of this

enzyme.

Western blotting
Leaf samples were ground in liquid N2 with mortar and pestle.

Total proteins were extracted with a buffer containing 50 mM

phosphate buffer solution (pH 7.5), 2% b-mercaptoethanol,

100 mM EDTA, 1% PVPP (w/v), and 1% Triton X-100 (v/v).

After 15 min centrifugation (4uC, 15000 g), the upper phase was

transferred to a new centrifuge tube. Two volumes of TRIS

saturated phenol (pH 8.0) were added and then the mixture was

further vortexed for 30 min. Proteins were precipitated by adding

5 vols of ammonium sulphate-saturated methanol, and incubated

at 220uC for at least 4 h. After centrifugation as described above,

the protein pellets were re-suspended and rinsed with ice-cold

methanol followed by washing with ice-cold acetone twice, and

spun down at 15000 g for 10 min at 4uC after each washing.

Finally the washed pellets were air-dried and recovered in the lysis

buffer containing 62.5 mM TRIS-HCl (pH 6.8), 2% SDS (v/v),

10% glycerol (v/v), and 2% b-mercaptoethanol (v/v). Protein

concentrations were quantified using the Bradford assay [45].

For Western-blot analysis, an aliquot of the proteins (20 mg) was

separated by SDS-PAGE using 12% (w/v) acrylamide gels

according to the method of Laemmli (1970) and electrophoreti-

cally transferred to nitrocellulose membranes (Millipore, Saint-

Quentin, France). The protein blot was probed with a primary

antibody of the Rubisco large subunit (AS03037-200, Agrisera,

Sweden) at a dilution of 1:5000 for 4 h at room temperature with

agitation. The blot was washed three times in phosphate buffered

saline with Tween-20 solution containing 50 mM TRIS-HCl

(pH 8.0), 150 mM NaCl, 0.05% Tween-20 (v/v), and followed by

incubation with the secondary antibody (anti-rabbit IgG horse-

radish peroxidase conjugated, Abcam, UK, 1:5000 dilution) for

2 h at room temperature. The blots were finally washed as above

and developed with SuperSigmal West Pico Chemiluminescent

Substrate (Pierce, USA) according to the manufacturer’s instruc-

tions. Images of the blots were obtained using a CCD imager

(FluorSMax, Bio-Rad, USA). The QuantityOne software (Bio-

Rad, Hercules, CA, USA) was used to determine the optical

density.

Immunolocalization
Leaf sections were embedded in OCT compound (Sakura

Finetek CA, USA) and sections were cut using a microtome and

adhered to a poly-lysine coated slide. Sections were then fixed in

3% paraformaldehyde. After being rinsed with phosphate-buffered

saline (PBS; 150 mM NaCl, 5 mM KCl, 0.8 mM KH2PO4,

3.2 mM Na2HPO4, pH 7.3), tissue sections were blocked with 1%

bovine serum in PBS. Samples were washed extensively in PBS

and then incubated at 4uC overnight with the polyclonal primary

rabbit anti-Rubisco (1:2000) in 0.5% BSA in PBS. After two

washings in PBS, samples were incubated with anti-rabbit

secondary antibody conjugated to Alexa 635 (1:500) (Molecular

Probes, Eugene, OR) for 30 min. Nuclei were stained with DAPI

(49, 69-diamidino-2-phenylindole) (Molecular Probes, Eugene,

OR). Slides were viewed with a Leica TCS SP2 confocal scanning

microscope (Leica Microsystems, Heidelberg GmbH, Mannheim,

Germany). Images were composed and analysed using Adobe

PhotoShop 8.0.

Statistical analyses
All statistical analyses were performed using SPSS 10.0 (SPSS,

Chicago, Il, USA). Effects of soil water, N addition interaction

between soil water and N addition were analyzed using a two way

Soil Water and Nitrogen Affect Photosynthesis
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ANOVA (p,0.05). Differences between the means among soil

water or N addition treatments were compared using Duncan’s

multiple range tests at ,0.05 probability levels. For relationships

of photosynthesis rate with leaf N content and SLA analysis was

also performed (p,0.05). All the means involved in the interaction

were compared. All data were presented as mean 6 SD.

Results

Growth of the seedlings
Water and N addition had significant effects on seedling growth.

A significant interactive effect of N addition and water treatment

on plant height and root collar diameter of F. mandshurica seedlings

was found as described in Table 1. N addition stimulated a

significant increase in the height in HW treatment and root collar

diameter of the seedlings in different water treatments (p,0.05).

These two parameters markedly decreased under LW condition

compared with that of the seedlings in CK, whereas N addition

ameliorated the reduction. Soil water and N addition had

advantaged effects in height growth and root collar diameter. N

addition, water regimes and their interaction significantly

influenced total seedling biomass, aboveground biomass (Fig. 1A–

C). The significant changes were detected in total seedling biomass

and above-ground biomass by N addition under HW and CK

conditions (p,0.05). Even under LW treatment, N addition also

led to a significant increase in total seedling biomass, leaf biomass

and stem biomass (p,0.05). N addition increased root biomass

especially in LW treatment. The ratio of the stem and root

biomass (S/R) showed a significant decrease in LW treatment

compared with that in CK (Fig. 1F). But no obvious changes were

detected in S/R ratio by N addition, suggesting that N addition

might not affect biomass allocation of the seedlings.

Gas exchange
The responses of Amax, stomatal conductance (gs), WUEi and E

in leaves of F. mandshurica seedlings to N and water were shown

in Fig. 2. Leaf Amax significantly increased by N addition under

HW and CK, whereas this was not affected by N apply in LW

treatment (Fig. 2A). The HW treatment alone induced a slight

increase in gs, while the combination of N and HW treatment led

to a dramatic enhancement of gs (Fig. 2B). Similar to the responses

of gs, leaf transpiration rate was significantly enhanced by N

addition under HW (Fig. 2C). However, N addition didn’t change

the transpiration rate under CK and LW conditions. However,

there was significant change in gs in response to N addition under

CK and LW conditions. A significant decrease in WUEi was found

in LW treatment, whereas N addition didn’t affect WUEi (Fig. 2D).

A slight increase in WUEi but no significant difference was found

by N addition under HW and CK conditions.

Leaf N content and photosynthetic nitrogen-use
efficiency (PNUE)

In order to examine possible relationships between photosyn-

thesis and N availability in different soil water and N addition

conditions, the effects of soil water and/or N addition on leaf N

content and photosynthetic nitrogen-use efficiency (PNUE) were

determined in the leaves of seedlings. There were significant

differences in leaf N content between soil water treatments

(Fig. 3A). HW treatment induced a significant increase in leaf N

content, and this increase was further enhanced by N addition.

Similarly, N addition also led to an elevation in leaf N content

under CK and LW conditions (Fig. 3A). These results showed an

interactive effect of soil N and water on the leaf N content in F.

mandshurica seedlings. Leaf N content displayed significant positive

correlation with Amax (r2 = 0.79, p,0.05, Fig. 4A) and was positive

with SLA (r2 = 0.60, p,0.05, Fig. 4C). SLA was also positively

correlated with Amax (r2 = 0.82, p,0.05, Fig. 4B). No significant

variations in PNUE were found under different soil moisture

(Fig. 3B). N addition resulted in a marked decrease for PNUE in

LW treatment (Fig. 3B).

Leaf chlorophyll content
To examine how N addition and soil water affect photosynthetic

capacity, we determined the response of leaf chlorophyll contents

under N apply and different soil moisture conditions. The

concentrations of leaf chlorophyll including total Chl (a+b), Chl

a and Chl b were significantly influenced by N supply and water

treatments in F. mandshurica (p,0.05) (Fig. 5A–C). N supply had

significant positive effects on Chl a, Chl b and Chl (a+b) regardless

of soil water contents. Chl a/b ratios were not significantly

different in N addition or water treatment (Fig. 5D). In addition,

the ratio of Car/Chl was dramatically increased under LW

treatment (Fig. 5E). However, N addition enhanced the synthesis

of chlorophyll, which leading to a recovery in the ratio of Car/Chl

under LW condition (Fig. 5E).

Rubisco activity
Rubisco catalyzes CO2 assimilation and is a major limited factor

in leaf photosynthetic responses of plants. We determined the

effects of N addition and water regimes on the total activity and

initial activity of Rubisco, as well as Rubisco activation state

(Fig. 6). Water treatments had no significant effects on total

Rubisco activity at natural N level (Fig. 6A). Total Rubisco activity

was significantly increased at high N level in HW and CK. In

addition, the initial activity of Rubisco was not affected by water

regimes at natural N level and it was dramatically increased at

high N level in all water treatments (Fig. 6B). Rubisco activation

state was significantly increased by N supply (Fig. 6C).

Table 1. The effects of N addition on plant height and root collar diameter of F. mandshurica seedlings grown in three different
soil water regimes and two N treatment leaves.

Growth characteristics Treatment

Natural N level High N level

HW CK LW HW CK LW

Plant height (m) 2.6560.05b 2.6760.06b 2.3560.09c 2.8560.03a 2.6360.08b 2.5260.11b

Root collar diameter (mm) 30.6360.24b 29.2660.87b 25.8960.89c 35.7660.29a 33.5660.92a 29.0261.30b

Values are mean 6SD of six replicates. And the same letter in the same row are not significantly different between treatments at the p,0.05 level.
doi:10.1371/journal.pone.0030754.t001
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Expression of Rubisco
In addition to the activity and activation state of Rubisco, soil N

and water might affect photosynthetic responses by regulating

expression of Rubisco in the leaves of the seedlings. Therefore, we

further analyzed the effects of N addition and water regimes on the

expression of the large subunits in Rubisco in the leaves of F.

mandshurica seedlings. The leaf protein of F. mandshurica seedlings

was separated by means of SDS-PAGE, and a 55 kDa distinct

band showed up by western blot analysis (Fig. 7A). The analysis of

band intensity indicated that the expression of Rubisco was down-

regulated by LW treatment, while the expression of the protein

wasn’t significantly influenced in HW treatment (Fig. 7B). The

expression level of Rubisco was higher in N addition and LW

treatment than that in LW condition, suggesting that N addition

increased the protein expression of Rubisco under LW condition.

However, under HW and CK conditions, N addition didn’t

induce a change in the expression of.

Immunolocalization of Rubisco
We further detected the distribution of Rubisco in the leaves of

F. mandshurica seedlings. Immunofluorescent staining showed that

Rubisco was found in chloroplasts throughout the leaf chloren-

chyma in the seedlings (Fig. 8). Labeling for Rubisco was abundant

in chloroplasts of leaf tissues of HW and CK, while the labeling

was relatively low in leaves of the seedlings under LW condition.

We observed that labeling for Rubisco was also concentrated in

the chloroplasts of leaf chlorenchyma after N addition. The

accumulation of Rubisco has increased in leaf tissues of LW by N

addition, which was similar to the result from the expression of

Rubisco by Western blots.

Discussion

Soil N and water content are coupled tightly to the growth of

plants. However, the interactive effects of N addition and soil

water on plant physiological responses of tree seedlings have

received relatively little attention [34]. In this study, we

demonstrated significant interactive effects of N addition and soil

water on the whole-plant growth and photosynthetic capacity of F.

mandschurica seedlings in the temperate forest ecosystem in

northeastern China. We showed that N addition increased

seedling growth including plant height, total biomass and

aboveground biomass under different soil water conditions. The

reduction of the seedlings growth induced by low water supply was

Figure 2. Effects of nitrogen addition and water regime on gas exchange. Parameters include: A. Amax, B. gs, C. WUEi, D. E. Each column
represents means 6 SD (n = 6). Different letters indicate significant differences among treatments at p = 0.05. Abbreviations: Amax: maximum
photosynthetic rate; gs, stomatal conductance; WUEi intrinsic water use efficiency; E, transpiration.
doi:10.1371/journal.pone.0030754.g002
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significantly attenuated by N addition. We observed the strong

photosynthetic responses of F. mandschurica seedlings to N addition

and water regimes. There were significant differences in leaf N

content between soil water treatments, and an interactive effect of

soil N and water on the leaf N content was found. Leaf N content

displayed significant positive correlation with Amax and also with

SLA. N addition changed the photosynthetic capacity of seedlings

under high water and natural conditions. N addition led to a

significant increase in leaf chlorophyll content and the initial

activity of Rubisco regardless of soil water condition. The protein

expression of Rubisco was increased by N addition under LW

condition. Immunofluorescent staining showed that the labeling

for Rubisco was relatively low in leaves of the seedlings under LW

condition. The accumulation of Rubisco was increased in leaf

tissues of LW by N addition.

In the present study, we found the interactive effects of N

addition and soil water on the whole-plant growth of F. mandshurica

seedlings in the temperate forest ecosystem. N addition stimulated

the growth of the seedlings under different soil water conditions, as

reflecting by a significant increase in seedling growth parameters

such as plant height, root collar diameter, total biomass and

aboveground biomass (Table 1). Similar effects of N addition on

plant growth have been reported for annual grass and wheat

[46,47]. The growth response of the seedlings to N addition and

soil water suggested that N supply could amplify the positive effects

of elevated soil moisture on plant growth [48]. In addition, the

growth of the seedlings was negatively affected by LW treatment

and this tendency was partially diminished by N addition, which

was consistent with the previous finding in Sophora davidii seedlings

[20]. These results indicated that N addition might alleviate the

negative effects of LW manipulation on whole-plant growth of the

seedlings. It demonstrated that N addition might play a key role in

maintaining plant productivity under different soil water condi-

tions in the temperate forest ecosystem.

The shifts in biomass allocation had an important impact on

tree growth in the acclimation to changes of soil nutrient and

water content [49,50]. The ratio of stem and root biomass (S/R)

was an indicator that represented demand-supply balance for

environmental stresses [51]. Nutrient limitation and drought stress

were found to increase carbon translocation from the leaves to the

roots, thereby decreased the S/R ratio [52,53]. Similar result was

presented in our study, as the S/R ratio decreased with decreasing

soil water content (Fig. 1F, P,0.05), which supported the

assumption that reduced soil water content could lead to

carbohydrate accumulation in the roots of plants [53]. Our results

provided the evidence that N addition did not drive an alternation

in the ratio of the aboveground and belowground biomass in

seedlings. Biomass allocation for F. mandshurica seedlings might be

not primarily N limited.

This study added important evidence in the interactive effects of

N addition and soil water on the photosynthetic rate of F.

mandshurica seedlings and the investigations conducted in the

durum wheat [46] and hybridizing species [54]. We showed a

strong interaction between N and soil water on Amax of the

seedlings in this ecosystem. N addition significantly enhanced the

effect of HW regime on Amax. The photosynthetic responses to N

availability have been well documented in hardwood tree species

[55–57], which indicated that the photosynthetic rate of the

seedlings might be dependent on soil N availability in the

temperate ecosystem. We further investigated the changes of

SLA and leaf N content to explain the potential mechanism in leaf

photosynthesis. SLA and leaf N content were both significantly

correlated with Amax of the seedlings (Fig. 4). The results were

similar to that found in boreal tree species and wheat [46,58]. In

addition, N addition triggered a significant increase in the stomatal

diffusive conductance to H2O (gs) of the seedlings under HW

condition (Fig. 2B). It is likely that N addition accelerate the

transport of photosynthetic CO2 in the leaves, leading to enhanced

Amax of the seedlings.

Leaf chlorophyll content is a good indicator of photosynthetic

capacity. Low concentrations of chlorophyll limit photosynthetic

potential directly and lead to a decrease in biomass production in

the plants [59]. In this study, a strong interaction of soil N and

water on leaf chlorophyll including total chlorophyll (a+b), Chl a

and Chl b were found. Total chlorophyll (a+b), Chl a and Chl b

content per unit area were all significantly increased in response to

N addition in different soil water treatments (Fig. 5). The effects of

N addition on chlorophyll were in agreement with the previous

findings [20,60,61]. We also noticed a significant increase in Car/

Chl ratio under LW condition.

Rubisco is a key enzyme in photosynthesis and its activity is the

main limitation for photosynthetic CO2 fixation [62,63]. Increased

N availability may affect the photosynthesis of plants by altering

the activity of Rubisco in the leaves [13,64,65]. Previous studies

suggested that leaf Amax is associated with Rubisco activity [66] or

Figure 3. Effects of nitrogen addition and water regimes on
leaf nitrogen (panel A) and photosynthetic nitrogen-use
efficiency (PNUE) (panel B). Each column represents mean 6 SD
(n = 6). Mean values sharing the same letter are not significantly
different among treatments (p.0.05).
doi:10.1371/journal.pone.0030754.g003
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its activation state [67]. In our study, increased initial activity of

Rubisco and its activation state were found in the leaves of the

seedlings under N addition and different soil water conditions

(Fig. 6). Total activity of Rubisco in the leaves also augmented with

N addition under HW and CK conditions. A highly positive

correlation was observed between the initial activity of Rubisco

and leaf Amax of the seedlings (data not shown). These results

indicated that the initial activity of Rubisco was more closely

involved in the regulation of the photosynthetic rate than total

Rubisco activity or its activation state in F. mandshurica seedlings.

The result was consistent with the previous findings in Pinus pinaster

[68]. It was known that Rubisco activity increased linearly with

leaf N in plants [69–72]. We observed that leaf N content was

increased with N addition in the seedlings (Fig. 3), which might at

least in part explained the increase of Rubisco activity.

It has been reported that the protein synthesis of Rubisco was

influenced by leaf N content [73,74], we therefore hypothesized

that differences in photosynthetic response to N addition may be

due to the expression of Rubisco in the leaves in F. mandshurica

seedlings. In this study, the protein expression of Rubisco under N

addition and water regimes were determined by immunoblotting

and immuno-labeled techniques. We found that the expression of

Rubisco in the leaves was down-regulated under LW condition

and the tendency was reversed by N addition in the seedlings,

indicating that N addition could alleviate the negative response of

Rubisco to LW. A lower expression level of Rubisco and

photosynthesis down-regulation were found in seedlings only in

severe drought situation [75]. Immunofluorescent staining for

Rubsico showed that the immunolocalization of Rubisco occurred

in chloroplasts of the leaves in the seedlings. Low accumulation of

Rubisco was detected in the leaves of the seedlings grown in LW

condition, while labeling for Rubisco in the chloroplasts was

increased by N addition in LW condition. These results were

consistent with the findings from Western blots (Fig. 7, 8). The

amount of Rubisco was usually considered to be much greater

than required for photosynthesis under a wide range of

environmental conditions [76–78]. Under plentiful soil water, N

addition might not stimulate Rubisco expression and therefore no

significant effect on leaf Rubisco content was showed by N

addition. These results provided increasing evidence that Rubisco

in the leaves might be in excess and function as an N store in

normal environmental condition for F. mandshurica seedlings in the

temperate forest ecosystem. The amount of Rubisco in the leaf was

determined by the balance between its synthesis and degradation

[79,80]. With decreasing soil water content, the balance between

Rubisco synthesis and degradation might be disrupted, and more

Rubisco was degraded in response to water stress, which led to a

decrease in the amount of leaf Rubisco. N addition might

significantly increase the expression of Rubisco in the leaves to

alleviate the negative response of photosynthesis in the seedlings.

Therefore, in addition to effects of the enzyme activity and

activation state, N addition might affect the photosynthetic rate of

Figure 4. Correlations between Amax vs. leaf N (panel A), Amax vs. SLA (panel B), PNUE vs. WUEi (panel C) and leaf N vs. SLA (panel D). Data
points are means of data from all the different water regimes and N treatments.
doi:10.1371/journal.pone.0030754.g004
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the seedlings by regulating the expression of Rubisco in the leaves

under low soil moisture in the temperate forest ecosystem.

In summary, this study evaluated for the first time the

interactive effects of N and soil water on the growth and

photosynthetic responses of F. mandschurica seedlings in the

temperate ecosystem in northeastern China. We demonstrated

that the growth of the seedlings was positively affected by

combined manipulations of N addition and soil water. N addition

Figure 5. Impacts of nitrogen addition and water regimes on
chlorophyll. Parameters include: A. Chl a, B. Chl b, C. Chl (a+b), D. Chl
a/b, E. Car/Chl. Each column represents mean 6 SD (n = 6). Mean values
sharing the same letter are not significantly different among treatments
(p.0.05). Abbreviations: Chl, chlorophyll; Car, carotinoid.
doi:10.1371/journal.pone.0030754.g005

Figure 6. Total and initial Rubisco activity and Rubisco
activation state (panels A–C) under HW, CK, and LW conditions
in combinations with natural (dotted) or high N-supply level
(hatched). Bars represent means of 6 replications 6 standard
deviation. Values accompanied by different letters differ significantly
at p = 0.05.
doi:10.1371/journal.pone.0030754.g006
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Figure 7. Western blot analysis of large subunits of Rubisco in leaves of F. mandshurica seedlings (panel A). The relative expression level
is shown as the ratio of the band intensities between different treatments and CK with the analysis by Quantity One software (panel B).
doi:10.1371/journal.pone.0030754.g007

Figure 8. Confocal microscopy to show in situ immunolocalization of Rubisco in leaves of F. mandshurica seedlings. Label appears as
green particles and nuclei are stained with DAPI (blue). (A) HW; (B) CK; (C) LW; (D) +NHW; (E) +NCK; (F) +NLW.
doi:10.1371/journal.pone.0030754.g008
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significantly enhanced the growth and biomass production of the

seedlings under plentiful soil water condition and could alleviate

the negative effect of LW treatment on plant growth. Furthermore,

N addition could lead to a dramatic increase in the photosynthetic

capacity under high-water and natural conditions, which was

paralleled with the shifts of leaf chlorophyll content and Rubisco

enzymatic activity. Rubisco expression was up-regulated by N

addition in LW condition, which might be implicated in

maintaining the balance of its synthesis and degradation. Our

data provided increasing evidence that N deposition might be

beneficial to biomass production and photosynthesis in forest

seedlings in the temperate ecosystem.
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