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Objective. To develop an objective, readily measur-
able pharmacodynamic biomarker of glucocorticoid (GC)
activity.

Methods. Genes modulated by prednisolone were
identified from in vitro studies using peripheral blood
mononuclear cells from normal healthy volunteers. Using
the criteria of a >2-fold change relative to vehicle controls
and an adjusted P value cutoff of less than 0.05, 64 up-
regulated and 18 down-regulated genes were identified. A
composite score of the up-regulated genes was generated
using a single-sample gene set enrichment analysis algorithm.

Results. GC gene signature expression was signifi-
cantly elevated in peripheral blood leukocytes from nor-
mal healthy volunteers following oral administration of
prednisolone. Expression of the signature increased in a
dose-dependent manner, peaked at 4 hours postadminis-
tration, and returned to baseline levels by 48 hours after
dosing. Lower expression was detected in normal healthy
volunteers who received a partial GC receptor agonist,
which is consistent with the reduced transactivation
potential of this compound. In cohorts of patients with
systemic lupus erythematosus and patients with

rheumatoid arthritis, expression of the GC signature was
negatively correlated with the percentages of peripheral
blood lymphocytes and positively correlated with periph-
eral blood neutrophil counts, which is consistent with the
known biology of the GC receptor. Expression of the sig-
nature largely agreed with reported GC use in these
populations, although there was significant interpatient
variability within the dose cohorts.

Conclusion. The GC gene signature identified in
this study represents a pharmacodynamic marker of GC
exposure.

Glucocorticoids (GCs) are effective antiinflam-
matory drugs that are used extensively to treat many
human diseases, including rheumatoid arthritis (RA),
inflammatory bowel disease, psoriasis, asthma, and sys-
temic lupus erythematosus (SLE) (1). However, the util-
ity of these drugs is limited by their toxicities, which
include diabetes, osteoporosis, muscle wasting, fat redis-
tribution, and suppression of the hypothalamic–pitu-
itary–adrenal gland (HPA) axis (2). The risk for harmful
side effects increases with higher doses and more pro-
longed use (3,4). Despite the potential for adverse
effects, GCs remain a key standard-of-care treatment.ClinicalTrials.gov identifiers: NCT00119678; NCT03198013;
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GCs mediate their biologic effects via interactions
with a nuclear hormone receptor, GC receptor (GR). GR
is a ligand-activated transcription factor that induces tran-
scription by binding as a homodimer to GC-responsive
elements (5). Many GR-activated genes have antiinflam-
matory activity (6–8). However, transactivated genes are
also associated with side effects (9). GR has also been
shown to inhibit the activity of several proinflammatory
transcription factors, including NF-jB, activator protein 1
(AP-1), interferon regulatory factor 3, CREB, NF-AT,
STAT, T-Bet, and GATA-3, independently of DNA bind-
ing, in a process referred to as transrepression (10). In an
attempt to broaden the therapeutic window, several syn-
thetic GCs with reduced transactivation but intact transre-
pression activity have been developed (11).

In addition to the risk of damaging effects, long-term
GC use is also associated with tissue-specific resistance (12).
Several resistance mechanisms have been described, includ-
ing down-regulation of GR expression as well as up-regula-
tion of a dominant-negative isoform of the receptor (13).
Polymorphisms of the GR that modulate sensitivity to ago-
nists have also been described (14). Given the heterogeneity
of clinical responses to GCs, it would be extremely valuable
to have a companion biomarker of GC biologic activity.

In the current study, we developed a gene signa-
ture based on genes modulated by treatment of periph-
eral blood mononuclear cells (PBMCs) from normal
healthy volunteer (NHV) donors with prednisolone. We
confirmed the sensitivity of this signature by analyzing
postdose whole blood gene expression in healthy partici-
pants given either prednisolone or a partial GR agonist.
Expression of the signature was higher in healthy sub-
jects who received prednisolone than in those who
received the partial agonist, which is consistent with the
transactivation potential of the compounds. Expression
of the signature in whole blood from patients with SLE
and patients with RA correlated with known GC-
mediated pharmacodynamic effects, including higher
levels of peripheral blood neutrophils and lower levels of
peripheral blood lymphocytes. Expression of the signa-
ture also aligned with the reported use and dose of pred-
nisolone in these cohorts. These data suggest that the
GC gene signature may provide a sensitive biomarker to
monitor pharmacodynamic responses to GCs.

PATIENTS AND METHODS

Study approval. These studies were performed in
accordance with the Declaration of Helsinki and approved by
the institutional review boards of Brigham and Women’s Hos-
pital and Northwell Health. Participants provided written
informed consent prior to sample collection.

Identification of GC-regulated genes. PBMCs were iso-
lated from the blood of 10 independent donors, using Ficoll den-
sity-gradient centrifugation. Cells were cultured at 5 million
lymphocytes/well in a 96-well flat-bottomed block plate (Qiagen)
in 500 ll assay media (RPMI 1640 with GlutaMAX containing
10% charcoal-stripped fetal bovine serum; Gibco). Cells were
cultured for 6 hours with either dimethyl sulfoxide (DMSO)
vehicle or 1 lM prednisolone. After 6 hours, cells were pelleted
and resuspended in 1 ml of nucleic acid purification lysis solu-
tion (Applied Biosystems) diluted 1:2 with calcium-free and
magnesium-free phosphate buffered saline (Invitrogen). Cells
were incubated in lysis buffer for 10 minutes at room tempera-
ture followed by storage at �80°C. RNA was isolated using a
Qiagen RNeasy Isolation Kit according to the instructions of the
manufacturer.

For profiling of whole blood, anticoagulant citrate dex-
trose solution A–containing whole blood from 4 NHVs was cul-
tured with either DMSO vehicle, 200 nM prednisolone, 1 lM
prednisolone, 5 lM prednisolone, 5 lM BMS-791826, or 10 lM
BMS-776532 for 5 hours, followed by transfer to a PAXgene
tube. Total RNA was isolated, treated with DNase I, and cleaned
using a Qiagen RNeasy MinElute Cleanup Kit. RNA concentra-
tions were determined using NanoDrop (Thermo Fisher), and
RNA quality was evaluated using an Experion electrophoresis
system (Bio-Rad). All target-labeling reagents were purchased
from Affymetrix.

Double-stranded complementary DNAs (cDNAs) were
synthesized from 1 lg of total RNA by reverse transcription with an
oligo(dT) primer containing the T7 RNA polymerase promoter
and converted to double-strand using a cDNA Synthesis System
(Invitrogen). Biotin-labeled complementary RNA (cRNA) was gen-
erated from the cDNA and was used to probe a Human Genome
HT_HG-U133A plate (Affymetrix), consisting of 96 single HG-
U133A arrays in a 96-well plate. All cDNA and cRNA target prepa-
ration steps were processed on a Caliper GeneChip Array Station
(Affymetrix). Array hybridization, washing, and scanning were per-
formed according to the recommendations of the manufacturer.
Data are available in the NCBI Gene Expression Omnibus data-
base (accession nos. GSE110098, GSE110156, GSE110157).

Gene signature development and scoring. CEL files
from the Affymetrix Array Station were processed and normal-
ized using the Robust Multi-array Average algorithm (15) and
the “affy” package in R version 3.2.1 (16) and Bioconductor
(17) with custom CDF files from BrainArray (version 18.0.0)
(18). Differential gene expression analysis was performed to
compare gene expression levels in prednisolone-treated versus
control samples, using a moderated t-test (19) in Array Studio
(OmicSoft). P values were adjusted using the multiple testing
correction method, which is also called the false discovery rate
(FDR) (20). Genes that were up-regulated or down-regulated
by at least 2-fold with an adjusted P value of less than 0.05
across experiments were reported as the GC gene signatures.

To score an individual sample according to the enrich-
ment level of GC gene signatures, we adapted the single-sample
gene set enrichment analysis (ssGSEA) algorithm (21) to gener-
ate a composite score, which was implemented using the Gene
Set Variation Analysis package in R (version 3.4.0) (22). This
algorithm ranks genes in the transcriptome within each sample
and scores genes of interest according to the ranks. The higher
the ranks of individual GC genes are, the higher the ssGSEA
GC signature score is. We modified the algorithm so that
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enrichment scores fell between –1 and 1, representing the lowest
to the highest possible rankings of genes in the transcriptome.

Mammalian 2-hybrid analysis. Sequences encoding
either full-length human peroxisome proliferator–activated
receptor c coactivator 1a (PGC-1a) or full-length human tran-
scription intermediary factor 2 (TIF-2) were cloned in frame
with the Gal-4 DNA–binding domain in the vector pM (Clon-
tech). Full-length human GR was cloned in frame with the VP16
activation domain in the vector pVP16 (Clontech). Human SK-
N-MC neuroblastoma cells (American Type Culture Collection)
were cotransfected with these plasmids and a Gal-4–dependent
luciferase reporter (pGF-luc; Promega). Transfectants were
stimulated with either 200 nM dexamethasone or different con-
centrations of prednisolone, BMS-791826, or BMS-776532.
Luciferase activity was measured 48 hours posttransfection.

Chromatin immunoprecipitation. For chromatin im-
munoprecipitations, A549 cells were cultured for 1 hour with
either DMSO, 1 lM prednisolone, 1 lM BMS-791826, or 2 lM
BMS-776532 in RPMI with 10% charcoal-stripped fetal calf
serum. Cells were fixed with formaldehyde and sent to Active
Motif for analysis of the GR and TIF-2 recruitment to specific
promoter sequences, using quantitative polymerase chain reac-
tion (qPCR).

SLE and RA cross-sectional cohorts. Peripheral blood
samples were obtained in 2014 and 2015 from 82 patients with
SLE during routine visits at Northwell Health. These patients
were receiving standard-of-care treatment for general SLE or
lupus nephritis that included hydroxychloroquine, mycopheno-
late mofetil, GCs, and/or belimumab. The characteristics of the
patients were as follows. The mean � SD age was 45 � 14 years,
85% were female, the mean � SD SLE Disease Activity Index
2000 (23) score was 3.7� 3.2, 43% had a history of lupus nephri-
tis, and the mean � SD disease duration was 15 � 13 years.

In 2014 and 2015, blood samples were also obtained
from 84 patients with RA during routine visits at either Brigham
and Women’s Hospital or Northwell Health. These patients
were receiving standard-of-care treatment for RA that included
methotrexate, hydroxychloroquine, tofacitinib, abatacept, anti–
tumor necrosis (anti-TNF) biologics, tocilizumab, GCs, and/or
nonsteroidal antiinflammatory drugs. The characteristics of the
patients were as follows. The mean � SD age was 57 � 14 years,
77% were female, the mean � SD American College of Rheu-
matology/European League Against Rheumatism 2010 classifi-
cation (24) score was 7.8 � 1.6, and the mean � SD disease
duration was 17 � 10 years. Blood was collected in heparin and
in PAXgene tubes at each visit. Blood was shipped overnight to
Bristol-Myers Squibb and, upon arrival, was processed for fluo-
rescence-activated cell sorting analysis. Blood from age- and sex-
matched NHVs was collected in PAXgene tubes (Bristol-Myers
Squibb). RNA was isolated from PAXgene tubes and used to
probe Affymetrix HG-U219 gene arrays, using the protocols
described above. Data are available in the NCBI Gene Expres-
sion Omnibus database (accession no. GSE110169).

IM101-042 Abatacept SLE clinical cohort (ClinicalTrials.
gov identifier: NCT00119678). Baseline PAXgene collections and
complete blood cell counts were obtained for 144 adults with SLE
meeting the criteria of the British Isles Lupus Assessment Group
(25) with a score of A or B. The population at baseline consisted
of 53% of patients with polyarthritis, 35% with discoid lupus, and
12% with serositis. Overall, 87% of patients were receiving pred-
nisone, 50% were receiving hydroxychloroquine, and 41% were
receiving immunosuppressive agents (methotrexate, azathioprine,

or mycophenolate mofetil). Expression data are available in
the NCBI Gene Expression Omnibus database (accession no.
GSE110174).

IM124-001 cohort (ClinicalTrials.gov identifier: NCT03
196557). Male NHVs were randomly assigned (6 participants
per group) to receive daily doses of 5, 10, or 30 mg prednisolone
for 7 days. Two participants received placebo. Blood was col-
lected in PAXgene tubes before dosing and 2, 4, 8, 48, 144, and
216 hours postadministration. Expression data are available in
the NCBI Gene Expression Omnibus database (accession no.
GSE110160).

IM125-001 cohort (ClinicalTrials.gov identifier: NCT03
198013). Male NHVs were randomly assigned to receive either a
placebo of polyethylene glycol 400 (PEG 400) solution (4 partici-
pants), a single daily oral dose of BMS-791826 (150 mg or
300 mg) as a PEG 400 solution (6 participants/dose), or a single
daily dose of 10 mg prednisolone (4 participants) for 3 consecutive
days. PAXgene tubes were collected before dosing and 4 hours
postdose on day 1. Expression data are available in the NCBI
Gene Expression Omnibus database (accession no. GSE110161).

Heparinized whole blood was stained with premixed
cocktails of antibodies, followed by lysis and fixation. Antibodies
used for the SLE panel included phycoerythrin–Cy7–conjugated
CD4 (clone OKT4; BioLegend), allophycocyanin-H7–conjugated
CD8 (clone SK1; BD Biosciences), and Brilliant Violet 421
(BV421)–conjugated CD19 (clone HIB19; BioLegend). The anti-
bodies used for the RA panel included BV421-conjugated CD19,
Alexa Fluor 700–conjugated CD3 (clone OKT3; BioLegend),
PerCP–Cy5.5–conjugated CD4 (clone RPA-T4; eBioscience), and
BV785-conjugated CD8 (clone RPA-T8; BioLegend).

Statistical analysis. All statistical analyses of GC gene
signature scores were performed in statistical programming lan-
guage R (version 3.4.0) (16) with Bioconductor packages (17).
GC gene signature scores in different treatment groups were
compared using linear regression (lm function in the Stats Pack-
age). When samples from matching donors were included, a lin-
ear mixed-effect model (lme function in the nlme package) was
used, with donors as a random factor. Spearman’s correlation
and P values comparing GC gene signature scores with CD4+ T
cells, CD8+ T cells, B cells, and neutrophil counts were calcu-
lated using the cor.test function in the Stats Package. Analysis of
chromatin immunoprecipitation data was performed using
GraphPad Prism version 7.

RESULTS

Identification of GC-regulated genes. In order to
monitor GC-dependent responses in peripheral blood, we
focused on genes modulated by prednisolone in human
PBMCs. PBMCs from 10 independent NHV donors were
treated with either DMSO control or 1 lM prednisolone
for 6 hours. Using a cutoff value of >2-fold change and an
FDR-corrected P value of less than 0.05, 64 up-regulated
genes (Figure 1A) and 18 down-regulated genes (Fig-
ure 1B) were identified. Many of these genes were known
GC-regulated genes (26). However, half of the up-regulated
genes had not been previously linked to GC regulation. Sev-
eral of the up-regulated genes have previously been associ-
ated with antiinflammatory activity, including DUSP1 (7),

GLUCOCORTICOID GENE SIGNATURE 1333

http://www.ncbi.nlm.nih.gov/nuccore/GSE110169
http://www.ncbi.nlm.nih.gov/nuccore/GSE110174
http://www.ncbi.nlm.nih.gov/nuccore/GSE110160
http://www.ncbi.nlm.nih.gov/nuccore/GSE110161


TSC22D3 (8), IRAK3 (27), and CD163 (28), while several
of the down-regulated genes encoded chemokines, chemo-
kine receptors, and other proinflammatory mediators. Net-
work analysis of the regulated genes indicated enrichment
for immune response pathways (data not shown).

We used the ssGSEA algorithm to generate a com-
posite score for enrichment of these genes in the transcrip-
tomes of individual samples (21). This algorithm ranks
genes in the transcriptome within each sample and scores

genes of interest according to the ranks; the higher the
ranks of individual GC genes are, the higher the compos-
ite ssGSEA GC signature score is. Whole blood was stimu-
lated with different concentrations of prednisolone in vitro
for 5 hours, and the expression levels of up-regulated and
down-regulated genes were calculated. The ssGSEA score
for the up-regulated genes increased dose dependently
(Figure 1C). Similarly, expression of the down-regulated
genes decreased in a dose-dependent manner (Figure 1D).

Figure 1. Identification of glucocorticoid (GC)–regulated genes. Peripheral blood mononuclear cells from normal healthy volunteers were cul-
tured in vitro for 6 hours with either 1 lM prednisolone or DMSO vehicle alone. RNA was analyzed for gene expression using Affymetrix profil-
ing. Analyses of genes modulated by prednisolone compared with vehicle are shown. Axes represent the false discovery rate (FDR)–adjusted
log10-transformed P value versus fold change. A and B, Genes up-regulated (A) and down-regulated (B) >2-fold by prednisolone versus vehicle
with an FDR-adjusted P value of ≤0.05. C and D, Single-sample gene set enrichment analysis scores for genes up-regulated (C) and down-regu-
lated (D) in whole blood samples stimulated with increasing concentrations of prednisolone in vitro. Data in C and D are presented as box plots,
where the boxes represent the 25th to 75th percentiles, the lines within the boxes represent the median, and the lines outside the boxes extend to
the minimum or maximum values after excluding outliers. * = P = 0.027; *** = P < 0.001. NS = not significant.
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Figure 2. Validation of the glucocorticoid (GC) gene signature using partial GC receptor (GR) agonists. A and B, Mammalian 2-hybrid analysis
of peroxisome proliferator–activated receptor c coactivator 1 (PGC1) (A) and transcription intermediary factor 2 (TIF-2) (B) recruitment by pred-
nisolone, BMS-776532, and BMS-791826. Values are the means of triplicate wells, normalized to the activity induced by 200 nM dexamethasone.
Results are from a representative experiment of 2 independent experiments performed. C and D, Analysis of GR (C) and TIF-2 (D) recruitment
to the promoters of ANGPTL4, ALOX5AP, and LEPREL1 by 1 lM prednisolone, 1 lM BMS-791826, and 2 lM BMS-776532, as analyzed by chro-
matin immunoprecipitation (ChIP) assay followed by quantitative polymerase chain reaction analysis. Values are the mean � SD of triplicate reac-
tions. Binding values are normalized to input values. E, GC gene signature scores for whole blood samples cultured in vitro with either DMSO
vehicle, 5 lM prednisolone, 5 lM BMS-776532, or 10 lM BMS-791826. Data are presented as box plots, where the boxes represent the 25th to
75th percentiles, the lines within the boxes represent the median, and the lines outside the boxes extend to the minimum or maximum values after
excluding outliers. * = P < 0.05; ** = P < 0.01; *** = P < 0.001 versus prednisolone, by Student’s t-test. FL = full-length; NS = not significant.
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The up-regulated gene module appeared to have a larger
dynamic range based on the ability of this gene module to
distinguish differences between the higher doses of pred-
nisolone in the experiments using whole blood samples
(Figure 1C). The down-regulated gene module was not sig-
nificantly different between these prednisolone concentra-
tions. Therefore, we focused on the up-regulated gene
module for all other analyses.

In order to provide further mechanistic evidence
that this gene module accurately reflected GR activity, we
analyzed the activity of partial GR agonists. Our group pre-
viously described the in vitro and in vivo activities of 2 selec-
tive GR modulators, BMS-776532 and BMS-791826 (29).
Both compounds potently bound to GR and potently
repressed AP-1– and NF-jB–dependent reporters but
demonstrated significantly weaker induction of a GR-
dependent reporter as compared with prednisolone.
BMS-791826 was more potent in transrepression and trans-
activation assays as compared with BMS-776532.

We used a mammalian 2-hybrid system as well as a
chromatin immunoprecipitation assay to characterize the
transactivation potential of these compounds. We focused
on 2 co-regulators associated with GR activity, TIF-2 (30)
and PGC-1a (31). Compared with prednisolone, BMS-
791826 and BMS-776532 recruited significantly less PGC-
1a and TIF-2 to the GR, peaking at 30–75% of the level
recruited by prednisolone (Figures 2A and B). Compared
with BMS-776532, BMS-791826 recruited more TIF-2
(50% versus 30%) but similar amounts of PGC-1a. In a
chromatin immunoprecipitation assay, both compounds
recruited significantly lower amounts of GR (Figure 2C)
as well as TIF-2 (Figure 2D) to the promoters of 3 target
genes as compared with prednisolone, confirming the
reduced transactivation potential of these compounds.
Whole blood from 2 independent NHV donors was stimu-
lated in vitro with these compounds and prednisolone for
5 hours, followed by RNA isolation and gene expression
profiling. The GC gene signature scores for these samples
aligned well with the transactivation potential of the com-
pounds: prednisolone greater than BMS-791826, which is
greater than BMS-776532 (Figure 2E).

In vivo assessment of the GC gene signature.
Because the GC signature accurately captured GR agonist
activity in vitro, we examined the behavior of the signature
in vivo following the administration of specific compounds.
NHVs received placebo, 10 mg prednisolone, or 150 or
300 mg BMS-791826. Blood was drawn before dosing and
4 hours postdose, and RNA was analyzed by Affymetrix
gene expression profiling. The GC signature scores for
participants who received prednisolone were significantly
elevated at the 4-hour time point relative to predose levels
and those in the placebo group (Figure 3A). The signature

Figure 3. In vivo validation of the GC gene signature. A, Normal
healthy volunteers (NHVs) were administered an oral dose of 150
mg or 300 mg BMS-791826, 10 mg prednisolone, or placebo. Blood
samples were collected before administration and 4 hours postdose.
Whole blood expression profiles were analyzed for the GC gene sig-
nature. Data are presented as box plots, where the boxes represent
the 25th to 75th percentiles, the lines within the boxes represent the
median, and the lines outside the boxes extend to the minimum or
maximum values after excluding outliers. B, NHVs were adminis-
tered 5 mg, 10 mg, or 30 mg prednisolone or placebo (i.e., 0 mg).
Blood was drawn before administration and at different time points
postdose (2, 4, 8, 48, 144, and 216 hours). Whole blood expres-
sion profiles were analyzed for the GC gene signature. Bars show
the mean � SEM. * = P = 0.027; *** = P < 0.001. See Figure 1 for
definitions.
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Figure 4. Relationship between the GC gene signature and GC use in the rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE)
cohorts. A, GC gene signature expression in cross-sectional cohorts of patients with RA or SLE. Whole blood was collected from normal healthy
volunteers, patients with RA, and patients with SLE. RNA was isolated and used to probe Affymetrix HG-219 arrays. GC gene signature scores
are categorized as patients currently receiving GCs (true) versus patients receiving other standard-of-care treatments (false). Patients without treat-
ment information are indicated as not available (NA). B, GC gene signature scores for baseline samples from the IM101-042 abatacept SLE phase
II trial, according to GC dose (low, medium, or high). Data are presented as box plots, where the boxes represent the 25th to 75th percentiles,
the lines within the boxes represent the median, and the lines outside the boxes extend to the minimum or maximum values after excluding out-
liers. * = P = 0.01; ** = P = 0.001; *** = P < 0.001. See Figure 1 for other definitions.
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scores for participants who were treated with BMS-791826
were higher than predose levels and higher than those for
participants given placebo but lower than those for partici-
pants in the prednisolone group.

To address the kinetics of the GC gene signature
response, we analyzed the whole blood RNA profiles of
NHVs who were administered different doses of pred-
nisolone. The GC gene signature score increased dose
dependently and peaked at 4 hours postdose (Figure 3B).
For all but the highest dose of prednisolone, GC gene sig-
nature scores had returned to baseline levels by 8 hours

postdose. The signature score was at baseline levels in all
groups by 48 hours postdose. We conclude that the GC
signature score is a sensitive measure of in vivo responses
to GC administration.

Relationship between the GC gene signature and re-
ported GC use. To determine whether the GC signature
could differentiate patients based on treatment status, we
analyzed expression of the signature in cross-sectional
cohorts of patients with SLE or RA. Relative to either
normal healthy controls or patients treated with other
standard-of-care medications, patients with SLE or RA who

Figure 5. Glucocorticoid (GC) gene signature correlations with T and B cell subsets. A and B, Percentages of peripheral blood CD4+ T cells,
CD8+ T cells, and CD19+ B cells from patients with systemic lupus erythematosus (SLE) (A) and patients with rheumatoid arthritis (B), plotted
relative to the GC gene signature score for each patient. C, Peripheral blood neutrophil counts from the IM101-042 abatacept SLE study baseline
samples, plotted relative to the GC gene signature score for each patient. Correlations were analyzed using Spearman’s rank correlation coeffi-
cients. Each data point represents an individual patient. WBCs = white blood cells.
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were prescribed GCs had elevated signature scores (Fig-
ure 4A). We did not observe significant differences in the
pattern of gene expression for the signature genes across
these cohorts. Although the GC signatures were elevated,
there was significant interpatient variability in the signature
scores. We also analyzed baseline samples from a phase II
study of abatacept in SLE (32) for expression of the GC
gene signature (Figure 4B). The GC gene signature scores
generally aligned well with the reported prednisone dose
when categorized into high (>30 mg), medium (10–30 mg),
and low (<10 mg) doses. However, there was again signifi-
cant interpatient variability in GC gene signature scores in
all groups. This could reflect steroid resistance in some
patients or deviations from the stated GC doses.

Correlation of the GC gene signature with other
pharmacodynamic end points. GCs are known to cause
redistribution of leukocyte subsets through demargin-
ation of neutrophils from the bone marrow or sequestra-
tion of lymphocyte populations in lymphoid organs
(33,34). To determine whether the GC signature corre-
lated with these pharmacodynamic end points, we ana-
lyzed peripheral blood samples obtained from SLE
and RA patients for CD4+ T cells, CD8+ T cells, and
CD19+ B cells. Expression of the GC signature was
negatively correlated with the percentages of these sub-
sets in the peripheral blood of SLE patients (Figure 5A)
and RA patients (Figure 5B). In the abatacept SLE study,
the GC signature scores were positively correlated with
neutrophil counts (Figure 5C). Therefore, expression of
the GC gene signature correlates with the known biology
of GCs in both patients with SLE and patients with RA.

Refinement of the GC gene signature. Having
identified a gene signature that reflected the pharmacody-
namic effects of GCs, we sought to further refine the sig-
nature in order to facilitate its implementation in the
clinic. We refined the list of 64 up-regulated genes to
those genes that were induced by >1.5-fold with an FDR-
adjusted P value of less than 0.05, comparing patients
who received prednisolone with those who received pla-
cebo in the IM125-001 trial. We further filtered for
detectable expression in the abatacept IM101-042 SLE
trial. Of the initial 64 genes, 18 met these criteria (see
Supplementary Table 1, available on the Arthritis &
Rheumatology web site at http://onlinelibrary.wiley.com/
doi/10.1002/art.40476/abstract). The top 8 genes from the
list (FKBP5, ECHDC3, IL1R2, ZBTB16, IRS2, IRAK3,
ACSL1, DUSP1) were then used to calculate ssGSEA
scores. Analysis of the IM125-001 study of the partial
GR agonist with this abbreviated signature fully captured
the behavior of the 64-gene signature (Figure 6A). Simi-
lar to the signature generated with the 64 up-regulated
genes, the 8-gene signature accurately reflected the

transactivation potential of the partial agonist and
prednisolone following in vivo administration of these
compounds. The 8-gene signature also was positively cor-
related with peripheral blood neutrophil counts from the
abatacept IM101-042 SLE trial, with a similar P value to
that for the correlation generated with the 64-gene list
(Figure 6B). We conclude that a qPCR assay for these 8
genes would be a sensitive biomarker of GC pharmacody-
namic activity that can be implemented with a simple
whole blood collection.

DISCUSSION

GCs remain a mainstay of treatment for many
autoimmune and inflammatory diseases, due to their
potent antiinflammatory activity. Long-term treatment is,
however, associated with an increased risk of toxic effects.
Given this risk and the significant interpatient variability in
the clinical response to GCs, there is a need for a sensitive,
objective pharmacodynamic biomarker that will facilitate
proper dose selection. In this report, we describe the
development of a gene signature that can be applied to
whole blood RNA analysis.

We developed the gene signature based on in vitro
expression-profiling experiments using PBMCs derived
from NHVs. We focused on genes induced by pred-
nisolone treatment rather than down-regulated genes,
due to a larger dynamic range across donors. We used the
ssGSEA algorithm to generate a composite score that
can be applied to individual samples or patients. This
algorithm appeared to sensitively detect GC-dependent
transcriptional responses, based on several observations.
The GC signature score accurately reflected the transacti-
vation potential of synthetic partial GR agonists from
both in vitro whole blood profiling studies and in vivo
using samples obtained following oral administration of
full and partial GR agonists. The signature scores also
captured the dose response to prednisolone both in vitro
and in vivo. When applied to samples from cross-
sectional cohorts of patients with SLE and patients with
RA, GC signature scores were higher in patients receiv-
ing GCs compared with those receiving other non-GC
standard-of-care medications. In baseline samples from
the IM101-042 abatacept SLE study, GC signature scores
progressively increased as steroid doses increased.

Other biomarkers of GR agonism have been de-
scribed. In a randomized, placebo-controlled trial of predni-
sone in NHVs, cortisol concentrations in plasma declined
rapidly following administration of prednisone, with a maxi-
mal reduction by 8–12 hours postdose (34). Peripheral blood
leukocyte populations also rapidly reacted to prednisone
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Figure 6. Validation of the 8-gene glucocorticoid (GC) signature. A, GC gene signature scores using an abbreviated list of 8 genes for participants from
the IM125-001 study who received placebo, 150 or 300 mg BMS-791826, or 10 mg prednisolone. Data are presented as box plots, where the boxes repre-
sent the 25th to 75th percentiles, the lines within the boxes represent the median, and the lines outside the boxes extend to the minimum or maximum
values after excluding outliers. B, GC gene signature scores using the 8-gene list versus peripheral blood neutrophil counts for participants from the
IM101-042 abatacept systemic lupus erythematosus study. Correlations were calculated using Spearman’s rank correlation coefficients. Each data point
represents an individual patient. * = P = 0.015; *** = P < 0.001.
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administration. Peripheral blood neutrophil counts in-
creased significantly by 12 hours postdose and returned to
baseline levels by 24 hours. Lymphocyte counts decreased
significantly as early as 2 hours postdose, peaked at 4 hours,
and recovered to baseline levels by 12 hours. Similar shifts
in peripheral blood leukocyte populations have been
observed following intravenous administration of hydrocorti-
sone (33). Consistent with these effects, we observed nega-
tive correlations between the GC signature score and
the percentages of peripheral blood CD4+ T cells, CD8+
T cells, and CD19+ B cells in cross-sectional cohorts of both
RA patients and SLE patients. GC signature scores were
also positively correlated with peripheral blood neutrophil
counts in baseline samples from the abatacept SLE study
(IM101-042).

Although changes in circulating cell populations
represent potential pharmacodynamic responses to GCs,
these changes may be difficult to assess in patients with
autoimmune disease, because many of these patients
have lymphopenia (35). Furthermore, many of the proin-
flammatory cytokines associated with autoimmune dis-
eases, including interleukin-1, interleukin-6, and TNF,
have been shown to impact the HPA axis (36), thereby
confounding the use of serum cortisol levels as a phar-
macodynamic response biomarker. We propose that the
GC gene signature provides an objective measure of the
downstream effects of the GR that can be applied to all
patient populations.

In addition to reflecting GR agonism, the signa-
ture may also provide insight into efficacy. Our in vitro
gene profiling studies were not biased to identify transre-
pressed genes, because we did not include a proinflamma-
tory stimulus in the experiment. However, it is clear that
transactivated genes also contribute to the efficacy of
GCs. Three genes in our final 8-gene signature have been
implicated in mediating the antiinflammatory effects of
GCs (DUSP1 [7], IRAK3 [37], and IL1R2 [38]). To con-
firm the ability of the signature to capture GC efficacy,
the signature analysis could be included in the context of
a clinical trial that has a GC comparator arm.

The GC gene signature we have developed has
utility not only as part of clinical practice but also in help-
ing to determine the potential confounding effects of ste-
roids in clinical trials. In baseline samples from the
abatacept SLE study, GC gene signature scores generally
correlated with the reported steroid dosage. However, sig-
nificant interpatient variability within each dose group
was observed. One limitation of our study is that GC use
is physician-reported and may not accurately reflect
patient use. This heterogeneity could also be attributable
to steroid resistance. A significant percentage of patients
with autoimmune disease exhibit steroid resistance (12).

Alternatively, the heterogeneity could reflect nonadher-
ence to the study protocol. Given the strong antiinflam-
matory effects of GCs, trials often include a requirement
to taper or even discontinue GC treatment.

The GC gene signature provides an objective
method with which to assess compliance to study protocols.
We have also observed that commonly used co-medications
such as hydroxychloroquine do not appear to interfere with
expression of the signature (data not shown). Furthermore,
we have refined the signature to a list of 8 genes. Calcula-
tion of the 8-gene signature score could easily be con-
ducted using qPCR or other platforms using whole blood
collections. In summary, we believe that the gene signature
we have developed has broad utility for monitoring
responses to GCs in the many indications for which they
are prescribed.
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