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Abstract: Caffeoyl shikimate esterase (CSE) has been shown to play an important role in lignin
biosynthesis in plants and is, therefore, a promising target for generating improved lignocellulosic
biomass crops for sustainable biofuel production. Populus spp. has two CSE genes (CSE1 and CSE2)
and, thus, the hybrid poplar (Populus alba × P. glandulosa) investigated in this study has four CSE
genes. Here, we present transgenic hybrid poplars with knockouts of each CSE gene achieved by
CRISPR/Cas9. To knockout the CSE genes of the hybrid poplar, we designed three single guide
RNAs (sg1–sg3), and produced three different transgenic poplars with either CSE1 (CSE1-sg2), CSE2
(CSE2-sg3), or both genes (CSE1/2-sg1) mutated. CSE1-sg2 and CSE2-sg3 poplars showed up to
29.1% reduction in lignin deposition with irregularly shaped xylem vessels. However, CSE1-sg2
and CSE2-sg3 poplars were morphologically indistinguishable from WT and showed no significant
differences in growth in a long-term living modified organism (LMO) field-test covering four seasons.
Gene expression analysis revealed that many lignin biosynthetic genes were downregulated in
CSE1-sg2 and CSE2-sg3 poplars. Indeed, the CSE1-sg2 and CSE2-sg3 poplars had up to 25% higher
saccharification efficiency than the WT control. Our results demonstrate that precise editing of CSE
by CRISPR/Cas9 technology can improve lignocellulosic biomass without a growth penalty.

Keywords: biofuels; caffeoyl shikimate esterase (CSE); CRISPR/Cas9; hybrid poplar; lignin; sacchar-
ification

1. Introduction

Plant lignocellulosic biomass (i.e., wood) is an important renewable and sustainable
feedstock for the production of both biomaterials and biofuels [1,2]. The production of biofuels
from biomass is gaining more attention due to the growing global climate crisis [3,4].

Polysaccharides in biomass are fermented into ethanol or other compounds by opti-
mized microorganisms after saccharification [5]. However, biomass does not easily decom-
pose due to the complex chemical and physical structure of the plant cell wall, which is
referred to as biomass recalcitrance [6–9]. One of the major causes of biomass recalcitrance
is the presence of lignin, a phenolic polymer that provides strength and hydrophobicity
to the secondary cell wall. Lignin impedes the efficient enzymatic degradation of cellu-
lose and hemicellulose into fermentable sugars by immobilizing hydrolytic enzymes and
physically restricting access to the polysaccharide substrate [6,8,10,11].

Lignin is a heterogeneous polymer comprising three types of monomers synthesized
in the phenylpropanoid pathway starting with the aromatic amino acid, phenylalanine.
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After deamination of phenylalanine by phenylalanine ammonia-lyase (PAL), the result-
ing cinnamic acid undergoes a series of aromatic ring and propene tail modifications
resulting in three hydroxycinnamoyl alcohols with different degrees of methoxylation,
namely p-coumaryl, coniferyl, and sinapyl alcohols. Once incorporated into the polymer,
these monolignols produce p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units,
respectively [12,13].

A number of pretreatment methods have been developed to lower biomass recalcitrance,
but pretreatment is still a relatively expensive step in the manufacturing process of biofu-
els [14,15]. Thus, bioengineering of trees that produce less lignin but maintain normal growth
would reduce processing costs and the carbon footprint of biofuel production [7,16–19].

Recently, Vanholme et al. [15] demonstrated that caffeoyl shikimate esterase (CSE) cat-
alyzes the conversion of caffeoyl shikimate into caffeate in Arabidopsis, which bypasses the
second hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase (HCT)
reaction with 4-coumarate:CoA ligase (4CL) in a lignin biosynthetic pathway [20]. Loss of
function of CSE by T-DNA insertion in Arabidopsis resulted in a reduction of lignin levels by
up to 36% with preferential accumulation of H units (30-fold) [15]. A similar phenotype was
reported in a CSE loss-of-function mutant of Medicago truncatula generated by transposon
insertion [21]. Saleme et al. [22] later demonstrated that downregulation of CSE by RNAi
silencing resulted in a reduction in lignin deposition (up to 25%) with increased levels of
H units (two-fold) in the lignin polymer and a higher cellulose content in hybrid poplar
(Populus tremula × P. alba). Recently, LkCSE was successfully cloned from the gymnosperm
tree species, Larix kaempferi, and was shown to be able to convert caffeoyl shikimate to
caffeate and shikimate by in vitro assays using recombinant LkCSE protein [23].

In both Arabidopsis and hybrid poplar, saccharification efficiency can be dramatically
increased by mutation of CSE due to the reduction of lignin deposition. However, the
overall plant growth was not severely inhibited [15,22]. These results suggest that CSE
is not only important for lignin biosynthesis but is also a promising target for generating
improved lignocellulosic biomass crops for biofuel production [15,22].

In this study, we functionally characterized transgenic CSE-knockout hybrid poplars
generated by clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-
associated protein 9 (Cas9) technology. CRISPR/Cas9 technology is based on the Cas9
nuclease and single-guide RNA (sgRNA) for target DNA sequence recognition, and can be
utilized to make gene-specific insertion or deletion (indel) mutations [24]. CRISPR/Cas9
has been widely used for genome editing in plants due to its great efficiency and simplic-
ity [25–28]. We designed sgRNAs for CSEs in the hybrid poplar (Populus alba × P. glandulosa,
clone BH) and produced transgenic CSE-CRISPR poplar knockouts of either CSE1 (i.e.,
CSE1-sg2) or CSE2 (i.e., CSE2-sg3), or both genes; mutation of either CSE1 or CSE2 resulted
in a reduction in lignin deposition by up to 29.1% and significantly increased saccharifi-
cation efficiency (up to 25%). We will discuss the significance of using this approach to
improve woody biomass feedstock for biofuel production.

2. Results
2.1. Production of Transgenic Hybrid Poplars with CRISPR-Knockout of CSE Genes

Two homologous CSE genes are present in the genome of Populus trichocarpa, namely
PtrCSE1 (Potri.001G175000) and PtrCSE2 (Potri.003G059200). These genes have 91% amino
acid sequence identity to each other, and around 80% to Arabidopsis CSE (At1g52760;
Figure S1). The hybrid poplar (Populus alba × P. glandulosa, clone BH) used in this study
has four CSE genes. Two CSE genes (PaCSE1 and PaCSE2) come from the P. alba genome,
while the other two (PgCSE1 and PgCSE2) are from the P. glandulosa genome (Figure S1).
To precisely knockout each CSE gene in the hybrid poplar, we used CRISPR/Cas9 genome
editing technology (see Methods). First, we designed three single guide RNAs (sg1, sg2,
and sg3); sg1 was designed to knockout all four CSE genes by targeting 1st exon; sg2
and sg3 were designed to knockout CSE1 and CSE2, respectively, by targeting the 2nd
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exon (Figures 1a and S2). Then, we produced transgenic CSE-CRISPR hybrid poplars
(CSE1/2-sg1, CSE1-sg2, and CSE2-sg3) using the vector constructs of each sgRNA.
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Figure 1. Production of transgenic hybrid poplar with CRISPR-knockout of CSE genes. (a) Gene structure of CSE genes with
locations of single guide RNA (sg1–sg3) target sequences. PaCSE1/2 and PgCSE1/2 indicate CSE genes from Populus alba
and P. glandulosa, respectively, in the hybrid poplar (Populus alba × P. glandulosa, clone BH) used in this study. C-terminal
region of exon2 in each CSE gene for quantitative real-time PCR (RT-qPCR) target was underlined with a gene name.
(b) Summary of the genotypes of the transgenic CSE-CRISPR hybrid poplars by targeted deep sequencing. Genotyping of
the mutated sequences in transgenic hybrid poplars was performed using the Illumina MiniSeq platform (see, Methods).
(c) Indel mutations of the selected CSE-CRISPR hybrid poplars. CSE1/2-sg1 (line #2) targeted the first exon of PaCSE1/2 and
PgCSE1/2 genes; CSE1-sg2 (lines #1, #16, #28) targeted the second exon of PaCSE1 and PgCSE1; CSE2-sg3 (lines #4, #17 #19)
targeted the second exon of PaCSE2 and PgCSE2. PAM sequences are shown in blue and target sequences are underlined.
Identified indels in target sequences of each line are highlighted in red and the indel numbers are shown on the right.
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Next, we examined the resulting mutations at the CSE loci of the regenerated trans-
genic CSE-CRISPR hybrid poplars by PCR amplification and targeted deep sequencing,
(Illumina MiniSeq; see Methods) and summarized (Figure 1b). Mutation frequencies in
the lines of CSE1/2-sg1, CSE1-sg2 and CSE2-sg3 poplars were 91.7%, 80.0%, and 96.3%,
respectively (Figure 1b). CSE1/2-sg1 poplars showed the highest biallelic/homozygous
mutations (95.5%). On the other hand, the biallelic/homozygous mutation of CSE1-sg2
poplars was the lowest (20.8%) but the monoallelic and chimeric mutations were relatively
higher (45.8% and 33.4%, respectively) than those of CSE1/2-sg1 and CSE2-sg3 poplars.
Among these mutants, we selected a total of seven representative lines of higher indel
biallelic/homozygous mutations for further functional characterization (Figure 1c).

2.2. Predicted CSE Protein and CSE Gene Expression in Transgenic CSE-CRISPR Hybrid Poplars

To visualize the functional significance of the CRISPR/Cas9-induced mutations in
each line, we prepared a schematic diagram of the predicted CSE proteins by querying
the gene edited sequences of each transgenic line using the ORF finder program of NCBI
(https://www.ncbi.nlm.nih.gov/orffinder/20210817) (Figure 2a). In line #2 of the CSE1/2-
sg1 poplar, three CSE genes (i.e., PaCSE1, PaCSE2 and PgCSE2) were edited in the 1st exon
as per our experimental design; thus, N-terminal deleted proteins (PaCSE1 and PaCSE2;
309 amino acids) or one amino acid-deleted protein were predicted (PgCSE2). However,
PgCSE1 remained intact (326 amino acids) with no gene editing (Figure 2a). Indeed, CSE1-
sg2 poplars (lines 1, 16 and 28) that were targeted for knockout of CSE1 had nonsense
mutations in both CSE1 genes (PaCSE1 and PgCSE1) in the 2nd exon, resulting in predicted
C-terminal truncated CSE1 (PaCSE1 and PgCSE1) proteins with only 146 and 154 amino
acids, respectively, while the other two CSE2 proteins (PaCSE2 and PgCSE2) were intact
(Figure 2a). CSE2-sg3 poplars (lines 4, 17, and 19) that were targeted for CSE2 knockout
had mutations only of the two CSE2 genes but not the other two CSE1 genes, as expected
(Figure 2a). Among these lines, line 19 had nonsense mutations in the second exon of the
two CSE2 genes (PaCSE2 and PgCSE2), which would result in C-terminal truncated CSE2
(PaCSE2 and PgCSE2) proteins with only 143 and 174 amino acids, respectively.

To quantify the expressions of CSE genes in the CSE1-sg2 and CSE2-sg3 poplars, quan-
titative real-time PCR (RT-qPCR) was performed using primers amplifying the C-terminal
region after target sites of sg2 and sg3 (Figure 1a). As an internal quantitative control, the
PtrACTIN7 (Potri. 001G309500) gene was used. Expression of CSE1 and CSE2 in CSE1-sg2
and CSE2-sg3 poplars, respectively, was considerably reduced compared to the expression
of these genes in BH poplar (control) (Figure 2b,c). However, as expected, there is no
significant change in PagCSE1 expression in CSE2-sg3 poplar and vice versa (Figure 2b,c).
This result is consistent to our previous report of PDS-CRISPR poplar study [29], and
can be explained by nonsense-mediated mRNA decay, a surveillance pathway present in
all eukaryotes, which eliminates mRNA transcripts containing premature stop codons,
reducing gene expression errors [30].

2.3. CSE-CRISPR Hybrid Poplars Have Reduced Lignin Deposition

We measured the Klason lignin contents of CSE-CRISPR poplars together with that of
the control BH poplar (three-month-old grown in pot), using cell wall materials obtained
from stem tissues. As shown in Figure 3a, both CSE1-sg2 and CSE2-sg3 poplars had Klason
lignin deposition that was reduced by up to 16 wt% compared to BH. All three lines of
CSE1-sg2 poplars (lines 1, 16, and 28) had a similar reduction in lignin content. However,
among CSE2-sg3 poplars, only line 19 showed a clear reduction in lignin. Interestingly,
CSE1/2-sg1 poplars had no changes in lignin content compared to BH (Figure 3a). We
attributed these results to the gene editing results in each CSE-CRISPR poplar line, as
shown in Figures 1c and 2a. We focused on line 16 of CSE1-sg2 and line 19 of CSE2-sg3
poplar for further in-depth analyses.

https://www.ncbi.nlm.nih.gov/orffinder/20210817
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Figure 2. Predicted CSE protein and CSE gene expression in transgenic CSE-CRISPR hybrid poplars. (a) Summary of
mutations in each transgenic CSE-CRISPR poplar line. Expected normal CSE proteins in the control (BH) are shown as
black bars with corresponding sizes. CSE proteins mutated by CRISPR editing are shown as gray bars with corresponding
sizes. Asterisks indicate non-sense mutations, and means a deletion of an amino acid. (b,c) Expression of CSE gene in
CSE-CRISPR poplars. Quantitative real-time PCR (RT-qPCR) was performed using primers targeting the c-terminal regions
shown in (Figure 1a) (n = 6, error bar = S.E.). PagCSE1 indicates both PaCSE1 and PgCSE1.

To quantify the compositional changes of the cell wall components, we performed cell
wall analysis using line 16 of CSE1-sg2 and line 19 of CSE2-sg3 poplar grown in LMO field
for 8 month (Figure 3b). Our results showed the significant reduction of total lignin contents
in CSE-CRISPR poplars up to 29.1% compared to BH poplars. This reduction in lignin
content is higher than the results in Figure 3a, which may result from different growth
conditions (e.g., three months in pots vs. eight months in LMO fields). Interestingly, both
cellulose and hemicellulose contents were slightly increased in the CSE-CRISPR poplars,
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consistently to the previous report [22]. However, there were no significant changes in the
contents of the extractives.
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Figure 3. Transgenic CSE-CRISPR hybrid poplars have reduced lignin deposition. (a) Quantification
of Klason lignin content. Two hundred milligrams of cell wall material from three-month-old
hybrid poplars grown in pot was used (n = 2, error bar = S.E.). (b) Cell wall composition analysis.
Eight-month-old LMO field grown stem tissues were used to analyze the composition of cell wall
components (n = 3, error bar = S.E.). Asterisks indicate significant differences compared to BH using
the unpaired Student’s t-test (* p-value < 0.05, *** p-value < 0.001).

2.4. CSE-CRISPR Hybrid Poplars Have Collapsed Xylem Vessels with Decreased
S-Lignin Content

Because both CSE1-sg2 and CSE2-sg3 poplars showed a significant reduction in lignin
content, we examined secondary xylem formation by stem cross-sections. Both CSE1-sg2
and CSE2-sg3 poplars (line 16 and line 19, respectively) exhibited collapses of xylem vessel
cells (e.g., irregularly shaped xylem) (Figure 4), which is commonly found in plants that
have defective accumulation of secondary wall components (such as cellulose, lignin and
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xylan) (for a review, [31]). On the contrary, BH poplars showed normal xylem vessel
development (Figure 4). This result is consistent with the reduced lignin content in CSE1-
sg2 and CSE2-sg3 poplars shown in Figure 3.
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Figure 4. Transgenic CSE-CRISPR hybrid poplars have irregularly shaped xylem vessel cells. Stem anatomy of hybrid
poplars (8-month-old LMO field grown) was assessed by (a) toluidine blue, (b) phloroglucinol-HCl, and (c) Mäule staining.
Collapsed irregular vessels are marked with asterisks. Scale bars represent 50 µm.

Indeed, Wiesner (also known as phloroglucinol-HCl) and Mäule staining of both CSE1-
sg2 and CSE2-sg3 poplars revealed weaker red coloration than observed in BH poplars,
suggesting a decrease in lignin deposition and S-lignin content, respectively (Figure 4b,c).

2.5. Coordinated Expression Changes of Genes Involved in Lignin Biosynthesis

Next, we examined the expression of genes involved in the lignin biosynthetic path-
way (Figure 5). As expected, genes upstream of CSE showed relatively stable expression
levels compared to downstream genes, except PtrC4H1 and PtrC4H2 genes (Figure 5a,b).
For example, expression of the downstream genes PtrCCoAOMT1, and PtrCCR2 was signif-
icantly suppressed in CSE-CRISPR poplars compared to BH control poplars (Figure 5b).

Both PtrMYB152 and PtrMYB92 have been shown to regulate secondary cell wall
thickening and increase total lignin content in poplars [32,33]. Interestingly, expression
of both transcription factor genes was significantly repressed in our CSE-CRISPR poplars
(Figure 5c), which may also have contributed to the reduction in total lignin content of the
CSE-CRISPR poplars.

2.6. Enhanced Saccharification Efficiency of CSE-CRISPR Transgenic Poplars with Normal
Growth Performance

Saccharification efficiency of wood materials from CSE-CRISPR poplars was measured
by quantifying the amount of glucose released at different incubation times after hot water
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or alkali (1% NaOH) pretreatment (Figure 6a). We found a significant increase (>25% at
72 h) in glucose release from NaOH-treated CSE-CRISPR poplars (CSE1-sg2 #16) compared
to BH poplars (Figure 6a). These results suggest that biomass recalcitrance was reduced and
thus glucose release was improved in CSE-CRISPR poplars, most likely due to decreased
lignin content and increased fermentable sugars, as shown in Figure 3.
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Previously, Vanholme et al. [15] reported that an Arabidopsis CSE loss-of-function
mutant (cse-2) exhibited a 40% reduction in plant growth. Furthermore, loss of function of
CSE in transposon insertion lines of M. truncatula resulted in severe dwarfing and altered
development [21]. We therefore investigated the overall growth phenotypes (e.g., stem
height and diameter growth) of both CSE1-sg2 and CSE2-sg3 poplars compared to BH
poplars. Interestingly, we detected no significant differences in growth among CSE1-sg2
and CSE2-sg3 poplars and BH poplars in a living modified organism (LMO) field test
conducted over a year covering all four seasons (Figure 6b).

3. Discussion

Lignin is essential for the growth and development of terrestrial plants as it contributes
to the creation of a very strong secondary cell wall. At the same time, lignin makes it
difficult to process plant biomass into fermentable sugars [6,34]. Not only does CSE play
an essential role in plant lignin biosynthesis, it is also an excellent target for producing
improved biomass crops for sustainable biofuel production [15,22]. Here, we described the
generation and functional characterization of transgenic hybrid poplars with knockouts of
each CSE gene by CRISPR/Cas9 technology.

3.1. CSE-Knockout Reduces Lignin Deposition in Poplar Stems

We generated three different transgenic hybrid poplars with mutations of either CSE1
(CSE1-sg2), CSE2 (CSE2-sg3), or both genes (CSE1/2-sg1). However, we did not observe
any phenotypic changes in CSE1/2-sg1 poplars (both CSE1 and CSE2 mutated), most likely
due to targeting of the N-terminus of the CSE1/2 protein. In fact, CSE1/2-sg1 poplars are
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expected to have an intact PgCSE1 protein, PgCSE2, with a single amino-acid deletion,
and PgCSE1 and PaCSE2 proteins with the 17 N-terminal amino acids deleted, which
could all potentially function properly (Figure 2a). In fact, we performed in-depth analyses
on five additional lines, that are two biallelic (#11, #12) and three homo lines (#30, #32,
#34). However, all those lines showed similar growth performances with no significant
changes of lignin deposition compared to BH poplars (data not shown). Thus, we focused
on characterizing CSE1-sg2 and CSE2-sg3 poplars with mutations of CSE1 and CSE2,
respectively (Figure 2).

Consistent with previous reports, CSE1-sg2 and CSE2-sg3 poplars had up to 29.1%
reduced lignin deposition (Figure 3) [15,21,22]. In our analysis of stem anatomy (Figure 4b),
we found both CSE1-sg2 and CSE2-sg3 poplars had collapsed xylem vessel formation
with reduced Wiesner staining; as this stain reacts with O-4-linked coniferyl and sinapyl
aldehydes in lignified cells [35], this further confirmed a reduction in lignin content. In
addition, a decrease in S-lignin content was revealed by Mäule staining (Figure 4c), which
specifically stains S units red [36–38]. This result is consistent with the previous finding
that CSE proteins function after the branch where G and S unit biosynthesis diverges from
that of H units in the lignin pathway [15,22].

3.2. CSE1-sg2 and CSE2-sg3 Poplars Exhibit Normal Growth Performance Based on a Long-Term
Field Test

CSE loss-of-function mutants of Arabidopsis and M. truncatula displayed severe dwarf-
ing and altered development [15,21]. However, hpCSE lines (CSE-RNAi silencing) of
hybrid poplar did not have drastically altered plant growth or development even though
these lines had up to 25% reduced lignin deposition [22]. The mild phenotype in the
hpCSE lines is likely due to residual expression of both PtxaCSE paralogues [22]. However,
because RNAi silencing simultaneously downregulates both CSE genes, it was difficult for
these researchers to investigate the individual roles of each of the two genes.

In the hybrid poplar used in this study (Populus alba × P. glandulosa, clone BH), both
PagCSE1 (indicating PaCSE1 and PgCSE1, together) and PagCSE2 genes were strongly
and preferentially expressed in mature developing xylem (MDX) tissue, whereas much
lower transcript levels were detected in shoot apical meristem with leaf primordia (SL),
intermediate or mature stem-derived cambium (IC or MC), and leaves without veins
(ML) [39]. Therefore, if one of the two CSE genes is unavailable, it is very likely that
the other can function as a paralog for lignin biosynthesis. Indeed, our CSE1-sg2 and
CSE2-sg3 poplars grew like control poplars, as demonstrated in our long-term LMO field
test covering all four seasons (Figure 6b). This result can be explained by the fact that
unlike in Arabidopsis and M. truncatula, only one of the two CSE genes was knocked out
in the CSE1-sg2 and CSE2-sg3 poplars, respectively. Furthermore, PagCSE1 and PagCSE2
appear to be functional paralogs in our hybrid poplar.

3.3. CSE-Knockout Improves the Saccharification Efficiency of Poplar Stems

It has been well documented that lignin is a major impediment to the conversion
of plant biomass into fermentable sugars [6,34]. To produce economically feasible biofu-
els, many efforts have been made to reduce the recalcitrance of biomass feedstock due
to lignin [40–43]. Reducing CSE function has been proven to produce better biomass
feedstock by reducing the recalcitrance of Arabidopsis and hybrid poplar to high saccharifi-
cation [15,22]. Very recently, de Vries et al. (2021) [44] reported CRISPR-Cas9 editing of CSE
in Populus tremula × P. alba, an approach very similar to that used in this study. However,
in their study, CRISPR-Cas9-generated cse1 and cse2 single mutants had no significant
phenotype and a wild-type lignin level; only cse1 cse2 double mutants showed a reduction
in lignin (35%) with a severe growth penalty. The cse1 cse2 double mutants had a four-fold
increase in cellulose-to-glucose conversion upon limited saccharification [44].

Unlike the report of de Vries et al. (2021) [44], our CSE1-sg2 and CSE2-sg3 poplars
had significantly reduced lignin levels (up to 29.1%) and thus showed a dramatic increase
in saccharification efficiency (Figure 6a). It is not clear why the results are different at
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this point, but perhaps the different species and the different target sites of CRISPR might
also be the reason. Additionally, because the hpCSE line had no growth penalty with a
25% reduction in lignin [22], no phenotypic effect is likely as long as the amount of lignin
remains above a certain threshold.

Although the saccharification efficiency of the CSE1-sg2 and CSE2-sg3 poplars was
lower than that of cse1 cse2 double mutant poplars [44], there was no associated growth
penalty and, thus, CSE1-sg2 and CSE2-sg3 transgenic poplars can be directly utilized as
efficient biomass feedstock for biorefineries.

4. Materials and Methods
4.1. Plant Materials and Growth Conditions

Hybrid poplars (Populus alba × P. glandulosa, clone BH) were used as both wild-type
controls and transgenic plants in this study. Plants were acclimated in soil and grown in
a growth room (16 h light; light intensity, 150 µmol m−2s−1; 24 ◦C) or in an LMO field at
the Forest Bioresources Department of the National Institute of Forest Science, Republic of
Korea (latitude 37.2 N, longitude 126.9 E).

4.2. Growth Measurements

Stem height was measured using a scale bar from the top of the plant to the soil level,
and stem diameter was measured using digital calipers (Mitutoyo, Kawasaki, Japan) at
3 cm above soil level. Three biological replicates per line were analyzed.

4.3. CSE-CRISPR/Cas9 Vector Construction and Plant Transformation

Single guide RNAs (sgRNAs) targeting CSE genes were designed by Cas-Designer
in the CRISPR RGEN Tools (http://www.rgenome.net/cas-designer/20210817) using
full-length cDNA sequences of CSE genes (i.e., PaCSE1, PgCSE1, PaCSE2 and PgCSE2)
and the Populus alba × P. tremula var. glandulosa (Poplar 84K) genome as a reference
sequence. Target sequences were selected with a low expected number of mismatches
and high out-of-frame score (Figure S2a). Finally, three single guide RNAs (sg1–sg3)
were selected for knockout of CSE1, CSE2, or both genes, and each guide RNA length
was set to 20 bp excluding the protospacer adjacent motif (PAM) sequence (Figure S2b).
The binary vector pHAtC (GenBank: KU213971.1) and AarI-mediated sgRNA cloning
system [45] were used for Agrobacterium-mediated transformation of the hybrid poplar. In
brief, the annealed target sgRNA sequence was inserted between the AtU6 promoter and
sgRNA scaffold after AarI-digestion and then circularized by T4 DNA ligase (New England
Biolabs, Ipswich). Vector construct was then introduced into Agrobacterium tumefaciens
strain GV3101, which was used to transform poplar using the stem node transformation–
regeneration method [46,47]. All constructs used in this study were verified by DNA
sequencing (Macrogen http://dna.macrogen.com/kor/20210818).

4.4. Genotyping of Regenerated Transgenic Hybrid Poplars by Targeted Deep Sequencing

Genotyping of the mutated sequences in transgenic hybrid poplars was performed
using the Illumina MiniSeq platform (KAIST Biocore Center, Daejeon, Korea). In brief,
genomic DNA was extracted from shoot tissue of regenerated transgenic hybrid poplars
using the DNeasy Plant Mini Kit (Qiagen, Hilden, Germany). The target region was
amplified using nested PCR primer pairs containing adapter sequences. Then, amplicons
were labelled with an index sequence (Illumina, Seoul, Korea) using index PCR primer
pairs, and targeted deep sequencing was conducted using an Illumina MiniSeq (KAIST
Biocore Center, Daejeon, Korea). The resulting deep sequencing data were analyzed using
Cas-Analyzer (www.rgenome.net/cas-analyzer/20210817). Primer pairs used in this study
are listed in Table S1.

http://www.rgenome.net/cas-designer/20210817
http://dna.macrogen.com/kor/20210818
www.rgenome.net/cas-analyzer/20210817
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4.5. Histological Analysis

Cross sections of poplar stems were prepared by hand-cutting and stained with 0.05%
toluidine blue O or 2% phloroglucinol/HCl for 1 min, as described previously [48]. Mäule
staining was performed following the method of Mitra and Loqué [49]. In brief, stem cross
sections were incubated for 2 min in 1 mL of 0.5% (w/v) potassium permanganate. Sections
were then rinsed with distilled water 3–4 times until the solution remained clear. Then,
1 mL of 3% HCl was added to remove the deep brown color of the stained sections. The
3% HCl solution was removed and 1 mL of 14.8 M ammonium hydroxide solution was
added immediately. Sections were observed using a digital camera-equipped microscope
(CHB-213; Olympus, Tokyo, Japan).

4.6. RNA Extraction and RT-qPCR

For RNA extraction of hybrid poplars, the cetyltrimethylammonium bromide (CTAB)
method was used because of the high amounts of polysaccharides and polyphenols in
poplars, as described previously [48,50]. One microgram of total RNA was reverse tran-
scribed using Superscript III reverse transcriptase (Invitrogen, Carlsbad, CA, USA) in a
20 µL reaction volume. Subsequently, RT-PCR was performed using 1 µL of the reaction
product as a template. Quantitative real-time PCR was performed using an CFX96 Touch
™ Real-Time PCR platform (BioRad) with iQTM SYBR® Green Supermix (BioRad, Hercules,
CA, USA). Poplar ACTIN7 (Potri.001G309500) was used as the internal quantitative con-
trol, and relative expression level was calculated by the 2−∆∆CT method [51]. All primer
sequences were designed using Primer3 software (http://fokker.wi.mit.edu/20210807).
Sequences are provided in Table S1.

4.7. Measurement of Klason Lignin Content

Klason lignin (i.e., acid insoluble lignin) contents of transgenic poplars grown for
3 months in soil were measured [52]. Stem tissues were dried at 65 ◦C for 1 week and
ground to a fine powder. Ground materials (~100 mg) were placed in glass screw-cap tubes
and 1 mL of 72% (v/v) sulfuric acid was added followed by thorough mixing. Tubes were
placed in a water bath set at 45 ± 3 ◦C and incubated for 90 ± 5 min until all samples were
hydrolyzed. Acid was diluted to a 4% concentration by adding 28 mL deionized water.
Samples were mixed by inversion several times to eliminate phase separation. Sealed
samples were autoclaved for 1 h at 121 ◦C and slowly cooled down to room temperature
before removing the caps of the tubes. The autoclaved hydrolysis solution was vacuum-
filtered through pre-weighed filter paper. The filter paper was dried at 105 ◦C to obtain
acid insoluble residue until a constant weight was achieved. The filter paper was allowed
to cool down to room temperature and the weight of the filter paper and dry residue
were recorded.

4.8. Cell Wall Composition Analysis

The main stems of 8-month-old LMO field-grown hybrid poplars were used for cell
wall composition analysis. Stem tissues were dried (65 ◦C/2 weeks) and ground to a
fine powder. To determine extractives amounts [53], 50 mL of acetone was added to
700 mg of samples followed by a 2-hr incubation at 65 ◦C with shaking. After vacuum
filtration and washing (5 mL of 10% (v/v) acetone three times), the filter paper was dried
in an oven at 65 ◦C until a constant weight was obtained, which was then recorded. To
extract hemicellulose [54], 4 mL of 10% (w/v) NaOH was added to 200 mg of the collected
extractive-free samples above followed by a 3 h incubation at 50 ◦C with shaking. After
vacuum filtration and washing (5 mL of distilled water three times), samples were dried
(65 ◦C) until a constant weight was obtained, and the final weight of residue was recorded.
Lignin content was determined using the Klason lignin method [52]. Cellulose content
was obtained by calculating the difference between the initial samples (100%) and the
percentages of the three other components.

http://fokker.wi.mit.edu/20210807


Int. J. Mol. Sci. 2021, 22, 9750 13 of 15

4.9. Saccharification Efficiency of Transgenic Poplar

Saccharification efficiency was measured as described previously [50] with determina-
tion of reducing sugar content by the method of Yang et al. [55] with slight modifications.
Briefly, for pretreatment, ground materials (~2 mg) were transferred into 2-mL screw-cap
tubes and incubated with 200 µL of distilled water or 180 µL of NaOH (1%, w/v) at 30 ◦C
for 30 min and then autoclaved at 120 ◦C for 60 min. After cooling to room temperature,
20 µL of 2.5 N HCl was used to neutralize the 1% NaOH-treated sample. After pretreat-
ment, 300 µL of 0.1 M sodium acetate buffer (pH 5.0) containing 40 µg of tetracycline,
10 mg cellulose, and 1 mg ß-glucosidase was added. After 24, 48, and 72 h of incubation
at 37 ◦C with shaking (180 rpm), samples were centrifuged (15,000× g for 3 min) and
5 µL of the supernatant was collected to measure reducing sugar content using the DNS
(3,5-dinitrosalicylate) assay [56]. DNS reactions were performed by mixing 5 µL of the
sample and 5 µL of water with 90 µL of DNS reagent in a PCR tube, followed by incubation
at 95 ◦C for 6 min. Reducing sugar content was quantified by measuring the absorbance at
λ550 nm with glucose solution standards.

4.10. Statistical Analysis

All experiments were performed in triplicate and repeated at least three times. The
number of used plants is indicated for each result presented. Statistical analyses were per-
formed and graphs were generated using SigmaPlot v12.0 (Systat Software, Inc., Chicago,
IL, USA). In addition, the significance of differences was calculated using Student’s t-test.
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