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Abstract: Mitochondrial ion channels are emerging oncological targets, as modulation of these
ion-transporting proteins may impact on mitochondrial membrane potential, efficiency of oxidative
phosphorylation and reactive oxygen production. In turn, these factors affect the release of cytochrome
c, which is the point of no return during mitochondrial apoptosis. Many of the currently used
chemotherapeutics induce programmed cell death causing damage to DNA and subsequent activation
of p53-dependent pathways that finally leads to cytochrome c release from the mitochondrial
inter-membrane space. The view is emerging, as summarized in the present review, that ion channels
located in this organelle may account in several cases for the resistance that cancer cells can develop
against classical chemotherapeutics, by preventing drug-induced apoptosis. Thus, pharmacological
modulation of these channel activities might be beneficial to fight chemo-resistance of different types
of cancer cells.

Keywords: mitochondrial ion channels; permeabilization and cytochrome c release; resistance
to apoptosis

1. Introduction

Apoptosis-resistance is of the key hallmarks of cancer cells [1]. Defective regulation of apoptosis
importantly contributes to tumorigenesis and cancer progression leading to accumulation of pathologic
cells. Mitochondria are central organelles for apoptosis and, in general, for regulated cell death
in different organisms [2]. Release of pro-apoptogenic factors, such as cytochrome c, Second
Mitochondria-derived Activator of Caspases/ Direct IAP-Binding protein with Low pI (SMAC/Diablo)
and apoptosis-inducing factor (AIF) from the mitochondrial inter-membrane space (delimited by
the two mitochondrial membranes) represent the point of no return of the intrinsic mitochondrial
programmed cell death signaling pathway. Mitochondria may contribute in two major ways to
resistance towards chemotherapy: i) by producing ATP, that allows the function of ATP-binding
cassette family members, such as multidrug resistance (MDR) proteins that actively extrude xenobiotics
(chemotherapeutics) from malignant cells [3,4]; ii) by defective outer membrane permeabilization
(MOMP) and/or impaired opening of the mitochondrial permeability transition pore (MPTP) that may
prevent release of pro-apoptotic factors, thereby leading to resistance to apoptosis-inducing agents.
Beside apoptosis, MPTP is involved also in the mitochondrial permeability transition (MPT) dependent
necrosis [5] (Figure 1).

Ion channels of both the outer and inner mitochondrial membrane (MOM and IMM, respectively)
might impact a priori on both processes. MOM channels participate in MOMP, while IMM channels
fine-tune changes in membrane potential and thereby influence reactive oxygen (ROS) production and
efficiency of the respiratory chain [6,7]. ROS in turn may activate MPTP [8] or the caspase-independent
ROS-triggered parthanatos (poly (ADP-ribose) polymerase-1 dependent cell death) [5]. In addition,
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MPTP can be also triggered by Ca2+ overload in the mitochondrial matrix or by IMM depolarization and
by several other factors (for example oxidative stress, for reviews see [9,10]). Regarding the connection
between mitochondrial ion channels, ATP production and MDR function, available information is
more limited.
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Figure 1. Possible contribution of mitochondrial ion channels to counteracting chemo-resistance. Ion 
channels and pore-forming proteins of the MOM may directly allow release of cytochrome c and pro-
apoptotic proteins from the intermembrane space ①. Channels of the IMM may: 1) decrease efficiency 
of oxidative phosphorylation (respiratory chain complexes are depicted as green rectangles) ②, 
thereby reducing ATP production that is necessary for the function of ABC type multidrug resistance 
pumps at the plasma membrane (depicted as ABC); 2) by modulating oxidative phosphorylation 
efficiency ②, IMM channels may lead to increased ROS release that in turn triggers opening of MPTP ③ and subsequent release of cytochrome c and other pro-apoptotic factors ④; 3) by modulating 
membrane potential of IMM, different IMM channels may trigger MPTP opening ⑤. See text for 
further details. 

In the present review we summarize our current knowledge regarding the contribution of 
different classical and of some peculiar ion channels of both MOM and IMM to the modulation of 
MOMP and MPT, and to other forms of chemo-resistance. Emphasis will be given mainly to recent 
advances and from the point of view of the channel activities, as MOMP and MPT activation cover a 
vast literature. Figure 2 summarizes the proteins displaying channel activities that are discussed in 
the present review. In general, classical MOM ion channels include isoforms of the mitochondrial 
porin, the mitochondrial form of nicotinic acetylcholine receptor (see below) and an inwardly rectifier 
potassium-selective channel [11], while IMM channels comprise the calcium uniporter MCU (see 
below), the magnesium-transporting channel Mrs2 and various K+ channels (Big conductance 
potassium channel (BKCa)[12], Intermediate-conductance K+ channel (IKCa)[13], Small conductance 

Figure 1. Possible contribution of mitochondrial ion channels to counteracting chemo-resistance. Ion
channels and pore-forming proteins of the MOM may directly allow release of cytochrome c and
pro-apoptotic proteins from the intermembrane space 1O. Channels of the IMM may: 1) decrease
efficiency of oxidative phosphorylation (respiratory chain complexes are depicted as green rectangles)
2O, thereby reducing ATP production that is necessary for the function of ABC type multidrug resistance

pumps at the plasma membrane (depicted as ABC); 2) by modulating oxidative phosphorylation
efficiency 2O, IMM channels may lead to increased ROS release that in turn triggers opening of MPTP 3O
and subsequent release of cytochrome c and other pro-apoptotic factors 4O; 3) by modulating membrane
potential of IMM, different IMM channels may trigger MPTP opening 5O. See text for further details.

In the present review we summarize our current knowledge regarding the contribution of
different classical and of some peculiar ion channels of both MOM and IMM to the modulation
of MOMP and MPT, and to other forms of chemo-resistance. Emphasis will be given mainly to
recent advances and from the point of view of the channel activities, as MOMP and MPT activation
cover a vast literature. Figure 2 summarizes the proteins displaying channel activities that are
discussed in the present review. In general, classical MOM ion channels include isoforms of the
mitochondrial porin, the mitochondrial form of nicotinic acetylcholine receptor (see below) and
an inwardly rectifier potassium-selective channel [11], while IMM channels comprise the calcium
uniporter MCU (see below), the magnesium-transporting channel Mrs2 and various K+ channels (Big
conductance potassium channel (BKCa) [12], Intermediate-conductance K+ channel (IKCa) [13], Small
conductance K+ channel (SKCa) [14], voltage-gated shaker type K+ channels Kv1.3 [15], Kv1.5 [16]
and Kv7.4 [17], the ATP-dependent potassium channel (mitoKATP) [18], two-pore potassium channel
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TASK-3 (TWIK-related acid-sensitive K+ channel) [19] (for recent reviews see e.g., [6,7])). In addition,
the Inner Membrane Anion Channel (IMAC), the uncoupler proteins (UCPs) and the mitochondrial
permeability transition pore (MPTP) (see below) were shown to mediate ion transport in the IMM
(for review see e.g., [6]). During the last decades, a considerable number of these distinct channels are
being investigated in the context of cancer in addition to the pore-forming BCL-2 family members.
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2.1. The Role of Pore-Forming Pro-Apoptotic MOM Proteins of the BCL-2 Family in MOMP 

Two extensively studied crucial players of MOMP are two pro-apoptotic BCL-2 family members, 
namely BAK and BAX. While BAK is resident in the MOM, BAX migrates to the MOM upon various 
intrinsic apoptotic signals such as for example cytotoxic stress, DNA damage and p53 activation (for 
reviews see e.g., [20,21]) or upon extrinsic signals transduced to BAX via tBID, a truncated form of 
BH3-only protein BH3-interacting domain death agonist (BID). Unfortunately, the tumor suppressor 
p53 is mutated in a considerable number of cancer patients, therefore BAX migration to mitochondria 
and p53-linked activation of downstream caspases (proteases responsible for the effective, controlled 
“dismantling” of the cells) is impaired. In addition, BAX expression is very often downregulated in 
many types of cancer. These two factors, namely p53 mutation and BAX down-expression, prevent 
BAX-induced MOMP (e.g.,[22]) and crucially contribute to drug resistance. Excellent, recent reviews 
describing the mode of action of BAX/BAK and giving subtle details are available [23,24]. Briefly, 
BAX activation is a multi-step process characterized by hetero-and homotypic interactions resulting 
in MOMP that requires the pore-formation by some pro-apoptotic proteins, and possibly other 
components [25]. The currently accredited view is that BAX oligomers form small pores in the MOM 
that can initially release smaller intermembrane space (IMS) proteins (such as cytochrome c (13 kDa)) 
and following further activation, oligomers form leading to pore expansion and the release of larger 
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Figure 2. Mitochondrial ion channels and pores involved in apoptosis and chemo-resistance. The
figure summarizes the channels/pores treated in this review, i.e., those linked to chemo-resistance. See
text for details. The negative membrane potential across IMM (approximately −180 mV) represents
considerable driving force for cation entry into the matrix. The nature of the ions transported via the
mitochondrial nicotinic acetylcholine receptor has not been defined. UCP mediates the transfer of
protons down the electrochemical gradient.

2. Defective Mitochondrial Outer Membrane Permeabilization as a Cause of Chemo-Resistance

2.1. The Role of Pore-Forming Pro-Apoptotic MOM Proteins of the BCL-2 Family in MOMP

Two extensively studied crucial players of MOMP are two pro-apoptotic BCL-2 family members,
namely BAK and BAX. While BAK is resident in the MOM, BAX migrates to the MOM upon various
intrinsic apoptotic signals such as for example cytotoxic stress, DNA damage and p53 activation
(for reviews see e.g., [20,21]) or upon extrinsic signals transduced to BAX via tBID, a truncated
form of BH3-only protein BH3-interacting domain death agonist (BID). Unfortunately, the tumor
suppressor p53 is mutated in a considerable number of cancer patients, therefore BAX migration
to mitochondria and p53-linked activation of downstream caspases (proteases responsible for the
effective, controlled “dismantling” of the cells) is impaired. In addition, BAX expression is very
often downregulated in many types of cancer. These two factors, namely p53 mutation and BAX
down-expression, prevent BAX-induced MOMP (e.g., [22]) and crucially contribute to drug resistance.
Excellent, recent reviews describing the mode of action of BAX/BAK and giving subtle details are
available [23,24]. Briefly, BAX activation is a multi-step process characterized by hetero-and homotypic
interactions resulting in MOMP that requires the pore-formation by some pro-apoptotic proteins, and
possibly other components [25]. The currently accredited view is that BAX oligomers form small
pores in the MOM that can initially release smaller intermembrane space (IMS) proteins (such as
cytochrome c (13 kDa)) and following further activation, oligomers form leading to pore expansion
and the release of larger IMS proteins, such as for example SMAC (54 kDa dimer). The model of this
flexible-sized pore formation by BAX reminds the pores formed by the Twin-Arginine Targeting (TAT)
system components that, similarly to BAX pores, allow the translocation of fully folded proteins across
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the thylakoid membrane [26]. In the case of TAT, it has been proposed that an oligomer (comprising
4 to 9 subunits) elicits a severe, destabilizing distortion at the level of intermolecular contacts of the
transmembrane helices, leading to local bilayer rupture [27].

The mechanism of pore formation by BAX in the MOM instead has been debated for long time.
The intrinsic ability of BAX to form pores/channels has been demonstrated for the first time by
incorporating the recombinant, purified protein into planar lipid bilayers, where it formed pH- and
voltage-dependent ion-conducting channel with high conductance [28]. The same team reported that
two small molecules, able to inhibit BAX channel activity, were also blocking cytochrome c release and
prevented ischemic damage of neurons [29]. In accordance, using the electrophysiological technique
patch clamp on mitochondria, the MOM was shown to harbor a mitochondrial apoptosis-induced
channel (MAC), whose characteristics are very similar to the channels formed by recombinant BAX.
Indeed, a correlation between the quantity of BAX molecules and MAC activity suggested that BAX
is an essential constituent of MAC [30,31]. Based on cysteine accessibility assay, BAX was shown to
insert into the MOM in apoptotic cells via α helices 5, 6 and tail-anchoring helix 9 and to subsequently
oligomerize to allow MOM permeabilization [32]. According to a more recent model, dimerization
precedes oligomerization and helices α5 and α6 are only partially inserted into the lipid bilayer
creating an aromatic planar surface on the membrane, while other helices are embedded into the
bilayer [33]. In this scenario, BAX monomers would dimerize and then interact with each other
forming a so-called toroid pore and being stabilized by α9–α9 interactions between dimers [24,25].
Interestingly, a BAX point mutation (T182A) exactly in the C-terminal α9 constitutively localizes
the protein to mitochondria [34], while a BAX mutant (K128E) harboring the mutation of a highly
conserved lysine amino acid residue located between α5 and α6 do not trigger apoptotic downstream
signaling anymore and leads to resistance towards multiple apoptosis-inducing agents [35]. The
use of such mutants could help elucidation of the molecular details leading to pore formation and
the relation of pore formation to cytochrome c release. Evidence for pore formation by BAX has
been obtained, in addition to electrophysiology, also by atomic force microscopy of lipid nanodiscs
containing BAX [36]. Super-resolution microscopy of GFP-tagged BAX revealed the presence of BAX
oligomers with different sizes [37], in accordance with the above-mentioned flexible pore hypothesis.
For BAK itself, that similarly to other MOM components might hetero-oligomerize with BAX aiding
pore formation, pore formation was not evident [38]. Interestingly, BAX seems to actively permeabilize
via pore formation not only the MOM but also the lysosomes, a process of proposed pathophysiological
relevance during e.g., Parkinson disease [39].

Even though BAX oligomerization-triggered channel (pore) formation in the MOM is certainly
instrumental for MOMP, the emerging view is that the control of apoptosis and MOMP by BAX/BAK
is modulated by additional cellular components [25]. In fact, assembly of BAX oligomers in cells
lacking a component of the mitochondrial fission machinery [40], Drp1, was not sufficient to mediate
cytochrome c release [37]. Similarly, the observation that both BAX and the BAX K128E mutants are
able to form channels in planar lipid bilayer experiments but the latter does not induce cytochrome
c release [35], supports the view that additional interactions of BAX are required for pro-apoptotic
protein release. Extensive literature deals also with the regulation of BAX/BAK via posttranslational
modifications and via their association with various BCL-2 family proteins: i) antiapoptotic proteins
(BCL-2, BCLX-L, MCL-1) that counteract BAX pore formation by sequestration; ii) BH3-only activators
BID and BIM that promote BAX insertion into MOM. There are also sensitizer proteins, such as
BAD and NOXA, that do not directly interact with BAX/BAK but remove the inhibitory effect of
anti-apoptotic proteins by sequestration (for recent review see [24]). All these binding interactions are
reversible and depend on the equilibrium among the above players (Figure 3). This equilibrium is
affected by the expression level of the different BCL-2 proteins—indeed, one of the most often occurring
chemo-resistance mechanism is ascribed to the overexpression of anti-apoptotic proteins in several
types of cancer, for example in hematologic malignancies [41,42]. Due to intensive exploration in
this direction, new molecules targeting anti-apoptotic BCL-2 proteins and affecting this equilibrium,
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successfully entered clinical trials (e.g., venetoclax [43]). The equilibrium is also affected by affinities of
the partners, that may change via modification of the local lipid environment and/or interactions with
other molecules (e.g., 14-3-3 proteins [44]). Thus, the final outcome, i.e., formation of large BAX pores
allowing MOMP thus likely depends on a plethora of different factors in addition to the ability of BAX
itself to form channels. However, direct evidence that lack of pore formation by BAX accounts for
chemo-resistance in cells of patients has not been obtained so far, to our knowledge. Once identified, a
channel-dead single point mutant of BAX could be expressed to investigate the channel-formation
dependent chemo-resistance mechanisms. Alternatively, differences in the channel-forming properties
of the N-terminal located P13A BAX mutant could be studied, since WT and mutant BAX display the
same subcellular distribution in both healthy and apoptotic cells, but the mutant protein induces a
more rapid mitochondrial permeabilization and staurosporine-induced death than the WT protein [45].
No differences were detected concerning membrane insertion and oligomerization between WT and
mutant BAX or their interaction with anti-apoptotic proteins or tBID [45], suggesting that the mutation
might have introduced a conformational change that accelerates/stabilizes pore formation. This idea
could be tested using super-resolution microscopy or AFM, possibly in native membranes.
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Figure 3. Possible ways of drug resistance due to defective MOM permeabilization (MOMP). In contrast
to normal cells where DNA damage leads to p53 activation that in turn triggers migration of BAX to
mitochondria and subsequent cytochrome c release leading to apoptosis, in chemo-resistant cells the
following events might prevent MOM permeabilization: 1) mutation of p53; 2) mutation of BAX; 3)
down-regulation of BAX expression; 4) overexpression of BCL-2 family anti-apoptotic proteins..

2.2. Dual Role of Voltage-Dependent Anion Channels (VDAC) in Chemo-Resistance

A further class of players in MOMP that reside in the MOM are porins. Mitochondrial porins
are also called voltage-dependent anion channels based on their characteristic biophysical properties
(opening of the channel with maximal conductance occurs at 0 mV transmembrane potential while
higher voltages induce partial closure). The family includes three isoforms, VDAC1, VDAC2 and
VDAC3 [46], with VDAC1 and VDAC2 being involved in MOMP (for reviews see e.g., [47–50]). As the
major channel for small hydrophilic molecules in the MOM, VDAC1 mediates flux of metabolites (e.g.,
ATP, ROS), of ions (e.g., Ca2+) and of water across the membrane in physiological conditions, therefore
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crucially contributing to metabolic pathways and calcium signaling. Given the high conductance of
porins, the MOM has long been viewed as a molecular sieve allowing the flux of several molecules
without the need of specific transport systems. However, this view has recently been changed, at
least in yeast, following the discovery of several new, solute-specific channels in the MOM [51–53].
Independently of the exact nature of the molecules crossing through VDAC1, this channel received
much attention in the context of tumorigenesis as well as of apoptotic signaling (Figure 4).
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Figure 4. The role of voltage-dependent anion channels in outer membrane permeabilization and
in development of chemo-resistance. In healthy cells, VDAC1 oligomerization may lead to MOMP
either by homo-oligomerization or by interaction with BAX. Interaction of BAK and BAX with VDAC2
isoform also contributes to MOMP. Instead, expression of a truncated form of VDAC1, association
of VDAC1 with anti-apoptotic BCL-2 protein or downregulation of VDAC2 expression contribute to
chemo-resistance in cancer cells. See text for further details.

VDAC1 is overexpressed in several types of cancer cells [48] and gives a selective advantage to
these cells by allowing direct tunneling of ATP (produced in the mitochondrial matrix and exported
to the inter-membrane space via the adenine nucleotide carrier) to the first enzyme of the glycolytic
pathway, hexokinase. This enzyme is equally overexpressed in many cancer cells and its function
contributes to the maintenance of the Warburg effect, as it catalyzes phosphorylation of glucose that
enters cancer cells at high rate (e.g., [54–56]). The importance of VDAC1 in the context of apoptosis
versus survival is illustrated by the findings that VDAC1 expression is linked to chemo-resistance in
patients: a truncated but still channel-forming, active VDAC1-∆C [57] was detected in tumor tissues of
late-stage and chemotherapy-resistant lung adenocarcinoma patients [58,59]. The findings indicate
that under hypoxic conditions the hypoxia-inducible factor-1 (HIF-1) confers selective protection
from apoptosis via induction of VDAC1-∆C, that allows maintenance of ATP level and cell survival.
In another case, transcript analysis from dexamethasone resistant childhood acute lymphoblastic
leukemia (ALL) patients revealed a significantly lower expression of VDAC1 with respect to control
samples [60]. Thus, VDAC1 might serve as potential prognostic and chemotherapy-response biomarker
in childhood ALL. In contrast, silencing VDAC1 expression was found to inhibit cancer cell growth
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and trigger metabolic rewiring in mouse xenograft models of human glioblastoma (U-87MG), lung
cancer (A549), and triple negative breast cancer (MDA-MB-231) [61].

These latter observations might seem contradictory, however the multiple role played by VDAC
in cancer cells has to be taken into account when trying to interpret the different results. On one hand,
VDAC1 can oligomerize in apoptotic cells, as revealed by chemical cross-linking or by Bioluminescence
Resonance Energy Transfer (BRET) assays [62], and in such state, it might be implicated in cytochrome c
release [63]. Recently, mutation of VDAC1 E73 to either alanine or glutamine has been shown to reduce
dimer formation, which was proposed to play a significant role in mitochondrial metabolic regulation
when cytosolic acidification occurs and in cytochrome c release [64]. Another study determined
high-resolution crystal structures of oligomeric human VDAC1 and proposed a heptameric structure,
which however does not highlight a possible cytochrome c passage pathway [65]. Thus, the exact way
how VDAC1 alone could permit cytochrome c release is not fully elucidated.

In addition to self-oligomerization, VDAC1 has also been shown to interact with BAX and
proposed to participate in the formation of a pore with sufficient size for pro-apoptotic protein release
from IMS [66,67]. Such interaction might be facultative however, as a cyathane-type diterpenoid,
that is efficient even in vivo, is able to induce apoptosis in BAX/BAK-deficient cells (by promoting
oligomerization of VDAC1), but not when VDAC1 is depleted [68]. Another VDAC isoform, VDAC2
is also able to interact with BAK [69] as well as BAX (e.g., [70,71]). VDAC2 was indeed identified from
an unbiased genome-wide CRISPR/Cas9 screen, as a crucial protein for BAX (but not BAK) function.
Deletion of VDAC2 resulted in impairment of killing of tumor cells by anti-cancer agents and the ability
to suppress tumor formation, similarly to the loss of BAX [72]. On the other hand, high transcript
levels of VDAC2 were found to be associated with increased levels of tumor recurrence and resistance
to hormonal therapy in high risk breast cancer patients [73].

VDAC1 was also demonstrated to serve as anchoring site for BCL-2 and BCL-XL anti-apoptotic
proteins with BCL-2 able to decrease VDAC1 channel conductance [74]. In the same work, the authors
also defined the VDAC1 amino acid residues that are important for interaction with BCL-2. Expression
of peptides corresponding to the VDAC1 N-terminal region that is mediating interaction with BCL-2,
prevented protection against staurosporine-induced apoptotic cell death in BCL-2 overexpressing
cells, suggesting that interfering with the binding of BCL-2 to MOM by using these VDAC1-based
peptides may potentiate the efficacy of conventional chemotherapeutic agents. In the last years, this
hypothesis received confirmation in different systems and preclinical models [75] and the usefulness of
these peptides, able to detach hexokinase II as well as BCL-XL in addition to BCL-2, is emerging even
in vivo [76,77]. Since VDAC is also a pharmacologically targetable channel [78,79], any information
arising from these recent studies might be rapidly exploited, although specificity of action on VDAC1 has
to be assessed in order to avoid side effects. To our knowledge, no VDAC isoform specific modulators
of channel activity are available, and all three members form channels, although with different
properties [80,81]. In summary, both VDAC1 and VDAC2 are important players in chemo-resistance.

2.3. Other Proteic Channels and Lipids of The MOM that Modulate MOMP

Acetylcholine receptors (nAChRs) that are ligand-gated ion channels are found prevalently in the
plasma membrane (PM). However, nicotinic α7 AChRs (nAChRs) were shown to be expressed in the
MOM and to regulate early proapoptotic events like cytochrome c release [82,83]. Interestingly, the
homo-pentamericα7 nAChRs belong to the most ancient branch of this receptor family and are expressed
in neurons and non-excitable cells, where they mediate pro-proliferative and anti-inflammatory
signaling. Gastric cancer cells, where α7 nAChR expression was knocked-down, showed resistance
to 5-fluorouracil (5-FU), a clinically used chemotherapeutic agent [84] but were reportedly more
sensitive to docetaxel, paclitaxel and ixabepilone treatment [85,86]. The specific role of mitochondrial
nAChRs versus the plasma membrane-located channel was not addressed in these studies. Recently,
a protective role of mitochondrial nAChRs in supporting the cell viability during the early phase of
liver regeneration was reported [87]. Another study pointing to the importance of mitochondrial



Cancers 2019, 11, 761 8 of 23

nAChRs showed that specific α7 nAChR agonists, such as PNU-282987, impaired intra-mitochondrial
Ca2+ accumulation at very low, 30 nM concentration, and significantly decreased cytochrome c release
stimulated by oxidative stress (Figure 5). Since α7 nAChRs and VDAC were shown to interact in
a sandwich Elisa assay, the authors suggested that α7 nAChRs downregulate the VDAC-mediated
Ca2+ transport and thus dampen the onset of Ca2+-induced mitochondrial permeability transition [88].
The α7-containing nAChRs can be activated not only by acetylcholine, but also by choline, which
is abundant in the cytosol and can bind to MOM α7 nAChRs. The exact mechanism by which the
activated mitochondrial acetylcholine receptor affects VDAC activity has however not been elucidated.
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α7 nAChRs and ceramide channels were linked to MOMP. Agonists of α7 nAChRs downregulate
the VDAC-mediated Ca2+ transport and thus dampen opening of the permeability transition pore
(MPTP), leading to chemo-resistance. BAX can favor, while BCL-XL dampen channel/pore formation
by ceramide that would allow release of cytochrome c. See text for further details. Different lipids
are shown with different colors (phosphatidylcholine (dark blue), phosphatidylethanolamine (light
orange), phosphatidylinositol (light gray), phosphatidylserine (brown), phosphatidic acid (light green),
cardiolipin (light violet), ceramide (red)).

In line with the effect of PNU-282987, nicotine, a specific nAChR agonist was shown to abolish
chemotherapy-induced apoptosis and conferred resistance to cell death induced by gemcitabine in
pancreatic cancer cells and in pancreatic tumors xenografted into mice [89]. Nicotine can permeate cell
membrane and activate mitochondrial nAChRs, that is coupled to inhibition of the MPTP opening [88],
thus preventing apoptosis [90] (Figure 5). Thus, the emerging novel concept links activation of plasma
membrane nAChRs to growth promotion of cancer cells through activation of various growth factor
signaling pathways [91], while activation of mitochondrial-nAChRs would result in inhibition of
intrinsic apoptosis through prevention of opening of MPTP. From mechanical point of view, the role of
α7 nAChR in chemo-resistance envisions anti-apoptotic activity of nicotine through the activation of
the PI3K/AKT pathway, overexpression of survivin, or by induction of BCL-2 through extracellular
signal–regulated kinases (ERK) phosphorylation [92]. This proposed chain of events is based on the
observation that activated mitochondrial-nAChRs were found to physically associate also with the
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intra-mitochondrial protein kinases PI3K and Src, resulting in upregulated expression of cyclin D1,
activation of ERK1/2 and consequent inhibition of MPTP opening [83]. Thus, MPTP opening seems
to be abolished by mitochondrial α7 nAChRs in an indirect way, both by activating ERK1/2 and by
reducing Ca2+ flux via VDACs.

In addition to the abovementioned proteic channels, lipids of the MOM also seem to play a
role in MOMP (Figure 5). In particular, accumulating evidence suggests that MOM lipids promote
BAK/BAX activation and pore formation [93]. The MOM contains several ubiquitous lipids, including
phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylserine and
smaller amounts of phosphatidic acid and possibly cardiolipin (typically found in the IMM).
BAX-dependent MOMP was shown to require this latter lipid in vitro [94,95] but not in vivo in yeast [96],
so the question of whether cardiolipin is required for MOMP is still unanswered. Sphingolipids are
another class of lipids that might alter MOMP through interaction with pro-and/or anti-apoptotic
proteins; in particular, multiple sphingolipids cooperate with BAK and BAX to promote MOMP (for
summarizing review see [93]). For example, sphingosine-1-phosphate and hexadecenal participate in
BAK/BAX activation [97]. The exact step(s) of BAK/BAX activation controlled by these sphingolipid
metabolites however remains to be elucidated.

Particular attention can be given to the finding that a specific class of sphingolipids, ceramide
themselves can induce large pore formation in the MOM (with diameter up to 10 nm) in a BAX-favored
and BCL-XL-inhibited manner (for recent review see [98]). Evidence in intact cells in favor of
this hypothesis was obtained: BCL-XL point mutants specifically affecting the interaction between
ceramide and the proteic inhibitor BCL-XL were exploited to assess the role of ceramide channels
in apoptosis [99]. Interestingly, chemo-sensitive HL-60 acute myeloid leukemia cells are able to
generate ceramide upon treatment with drugs, while chemo-resistant cells do not produce ceramide
during treatment. Expression of sphingosine kinase-1 resulting in block of ceramide synthesis in
chemo-sensitive HL-60 cells resulted in block of apoptosis, that was ascribed to the inhibition of
mitochondrial cytochrome c efflux [100]. Measuring the mitochondrial ceramide content in various
chemo-resistant primary tumor cells could be useful to further confirm this connection. In any
case, the above data are in line with the control of apoptosis by ceramide at the mitochondrial level,
however do not prove that indeed the channel formation by ceramide itself is crucial. In this respect, a
novel observation regarding the ability of ceramide to specifically bind to VDAC1 and VDAC2 is of
relevance: loss of VDAC2 or mutation of its binding site to ceramide rendered the cells resistant to
ceramide-induced apoptosis [101].

3. Defective Mitochondrial Inner Membrane Permeabilization Leading to Chemo-Resistance

3.1. The Mitochondrial Permeability Transition

It has long been known that mitochondria can undergo a Ca2+-dependent increase of inner
membrane permeability (the permeability transition, PT) causing inner membrane depolarization and
interruption of ATP synthesis (see e.g., [9,102]). The PT has been ascribed later on to the opening of a
proteic pore, the MPTP, based on the ability of cyclosporin A (CSA) to specifically block the PT [103].
The mitochondrial megachannel (MMC), recorded by direct patch clamping of the IMM, was found to
be equally inhibited by CSA [104] and displayed the same pharmacological features of the PT [105–107].
This finding further confirmed the proteic pore nature of MPTP/MMC, that requires matrix Ca2+ for
opening. PTP is favored by IMM depolarization, Ca2+ overload in the matrix and by oxidative stress,
while it is efficiently inhibited by matrix H+, various divalent cations and Mg2+/ATP(ADP). Cyclophilin
D (CyPD) is instead a protein modulator of the MPTP and acts as a receptor for the high-affinity
inhibitor, CSA (e.g., [6]).

MPTP received renewed attention when experimental evidence accumulated showing that
long-lasting openings of MPTP may cause matrix swelling and, as a consequence, MOM rupture
leading to the release of inter-membrane pro-apoptotic proteins. During cell stress and apoptosis,
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various pro-apoptotic proteins, including cytochrome c may leave the IMS due to MPTP opening,
therefore this process is a critical episode in the chain of events leading to chemotherapy-induced
apoptosis. Therefore, the scientific community invested considerable effort to find specific activators
of MPTP to be exploited in the context of cancer treatment and of chemo-resistance (for reviews see
e.g., [108–110]). A number of chemicals and natural substances have been identified (for a list see
e.g., [111]), however most studies deal with PTP activation in vitro, and the relatively few studies
addressing the in vivo effects of these drugs do not normally investigated possible side effects. One
promising example however is hirsutine, extracted from Uncaria rhynchophylla, recently shown to exert
anti-cancer activity in a lung cancer xenograft mouse model through a signalling cascade leading
to GSK3β dephosphorylation and PTP opening [112]. Although the issue of toxicity has not been
fully explored, the presented data suggest that hirsutine does not cause additional toxic effects on
normal tissues like liver and kidney in vivo. Another useful drug is betulinic acid, a plant-derived
triterpenoid that exerts potent anti-cancer effects both in vitro and in vivo, without exerting toxicity
towards untransformed cells. This drug induces CSA-sensitive cytochrome c release directly via PTP,
even in BAX/BAK-less cells [113]. Betulinic acid is highly efficient against tumor cells of different
origin as well as against tumor cells that are resistant to other, classical chemotherapeutic agents.
Honokiol from magnolia is another example of a drug able to induce death of a variety of cancer cells by
triggering PTP opening and to overcome BCL-2 and BCL-XL-mediated apoptotic resistance. Honokiol
was efficient in preclinical models of angiosarcoma [114] and in the case of apoptosis-resistant B-cell
chronic lymphocytic leukemia (B-CLL) cells as well as in chemo-resistant multiple myeloma patients’
cells [115]. Importantly, the dose of honokiol that killed cancer cells was not toxic to normal blood
cells, suggesting specificity.

The exact way how these and other drugs trigger PTP opening awaits clarification, like the
molecular nature of the pore itself. Despite long-lasting research and various hypotheses during
the last fifty years (see e.g., [8,9]), the protein(s) constituting the pore is (are) still elusive. In the last
years, the hypothesis that PTP originates from specific, Ca2+-dependent conformations of the F-ATP
synthase [116–118] divided the scientific community. To date, evidence based on combination of
mutagenesis of F-ATP synthase subunits with single-channel (protein) electrophysiological analysis
(see e.g., [119–121]) strongly suggests that indeed ATP synthase activity is linked to PTP, although the
exact mechanism of pore formation awaits clarification.

3.2. Calcium Channels in the Inner Mitochondrial Membrane Linked to Chemo-Resistance

PTP opening can be triggered as mentioned above by Ca2+ overload in the matrix. Calcium is
imported prevalently via the mitochondrial calcium uniporter (MCU). The molecular identity of MCU
was elucidated only less than a decade ago [122–126]. Briefly, MCU complex (MCUC) is currently
proven/proposed to be formed in mammals by the pore-forming protein MCU, an MCU paralog
(MCUb that acts as dominant-negative pore-forming subunit), the Essential MCU REgulator (EMRE),
the regulatory MICU proteins (three isoforms), and the mitochondrial calcium uniport regulator 1
(MCUR1). The best characterized MCUC component in vivo is the EF-hand containing regulatory
subunit, MICU1. Patients with loss-of-function mutation of MICU1 display myopathy, cognitive
impairment and extrapyramidal movement disorder [127], likely due to an increased agonist-induced
mitochondrial Ca2+ uptake at low cytosolic Ca2+ concentrations and a decreased cytosolic Ca2+ signal.
Chronic increase of the mitochondrial matrix Ca2+ load seems to lead to moderate mitochondrial stress,
resulting in fragmentation of the mitochondrial network. MICU1 has also been shown to play a crucial
role for tissue repair after injury of liver [128]: in MICU1-deficient hepatocytes Ca2+ overload induced
PTP opening, a finding that underlines the importance of regulating MCU under stress conditions
when the risk of Ca2+ overload is elevated.

Beside its physiological role for muscle function, MCUC has been implicated also in the control
of tumorigenesis and metastasis. MCU-mediated Ca2+ overload might trigger MPTP opening – in
accordance, microRNA-mediated (miR-25) downregulation of MCU is associated with resistance
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to apoptosis in colon and prostate cancers [129]. On the other hand, cells require MCU for cell
cycle progression and proliferation and many tumors seem to depend and thrive on a basal level of
mitochondrial Ca2+ uptake (see e.g., [130,131]). Breast cancer patients’ survival negatively correlated
with increased MCU and decreased MICU1 expression [132], suggesting that in particular MICU1 might
function as a tumor-suppressor gene. MCU expression was reported to correlate with metastasis and
invasiveness of breast cancer also in another work, likely due to its ability to regulate store-operated
Ca2+ entry (SOCE), that is known to be involved in migration [133]. In an independent study,
MCU expression has been related to breast tumour size and lymph node infiltration. Indeed, in
a MDA-MB-231 xenograft model, ablation of MCU induced a reduction in tumour growth and
metastasis formation [134]. The mechanism proposed to account for slower tumour progression
in MCU-lacking cells envisions reduction in mitochondrial ROS production and via HIF-1α and
expression of its target genes. In another work, it has been proposed that a small molecule, AG311,
shown to retard tumor growth and to reduce lung metastases, might induce breast cancer cell death
by activating MCU, although direct proof is missing [135]. More recent work highlights that the
receptor-interacting protein kinase 1 (RIPK1) that is upregulated in human colorectal cancer interacts
with mitochondrial Ca2+ uniporter (MCU) to promote proliferation by increasing mitochondrial Ca2+

uptake and energy metabolism [136], suggesting that the RIPK1-MCU pathway is a promising target to
treat colorectal cancer. Instead, post-translational modification of MICU1, namely its phosphorylation
by a mitochondrial pool of Akt kinase was shown to increase the basal mitochondrial Ca2+ level,
reactive oxygen species (ROS) production and tumor progression [137]. On the other hand, elevation
of mitochondrial calcium level by downregulation of MICU1 and MICU2 has been proposed to
occur in pancreatic cancer cells through HINT2, a histidine triad nucleotide-binding (HINT2) protein,
whose low expression in patients correlates with poor prognosis and resistance to gemcitabine [138].
Altogether, both MCU and the channel regulator MICU1 may be important targets in the context of
chemo-resistant cancers [79,139,140]. Although some new chemical modulators of MCU have recently
been identified (for recent reviews see e.g., [79,140]), the affinity of these modulators is considerably
lower than that of Ruthenium Red, a rather wide-spectrum inhibitor of MCU. Among the recently
synthesized Ruthenium Red analogues [141,142], the membrane permeant Ru265 deserves attention,
since it more potent than the widely used Ru360, yet, it preserves selectivity for MCU [142]. The task
of finding further high-affinity, yet specific modulators, might be assisted also by structure-activity
relationship (SAR) studies based on the recently reported cryo-EM and X-Ray structures of MCU
proteins [143–145].

As to other possible pathways for calcium, the transient receptor potential cation TRPC3 channel
and the mitochondrial ryanodine receptor (mRyR1) may play a role. It is presently unknown whether
the mitochondria-located counterparts of these channels or the plasma membrane-located forms
contribute to tumor progression.

3.3. Inner Membrane Potassium Channels and Chemo-Resistance

A plethora of potassium channels is present in the IMM, many of them having multiple localization
within the cells [6,7,146,147]. Many of these channels are highly overexpressed in cancer cells/tissues,
giving them a proliferative advantage [148,149]. At the same time, these channels also contribute
to apoptosis resistance. For example, the two-pore leak channel TASK-3 is largely overexpressed in
almost half of breast tumor cases [150] and seem to promote tumor formation and to confer resistance
to hypoxia, at least in vitro [151]. The intermediate conductance calcium-dependent potassium channel
(IKCa called also KCa3.1) is expressed in almost all migrating cells and controls proliferation in
chronic lymphocytic leukemia (B-CLL), in lung cancer human breast cancer and in hepatocellular
carcinoma (for review see [152]). The voltage-gated shaker-type potassium channels Kv1.3 and/or
Kv1.5 are overexpressed in various primary cancer cells (e.g., B-CLL) and tissues as well as in cancer
cell lines [149,153,154] and a negative correlation between Kv1.3 expression and sensitivity to cisplatin
and ceramide was observed, indicating that with decreasing expression of Kv1.3, the resistance of the
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tumour cells against the cytotoxic drugs increases [154]. Other potassium channels, such as small-and
big conductance calcium dependent K+ channels, Kv7.4 and the ATP-dependent K+ channel instead
play a crucial role in defense of the cells against oxidative stress and their pharmacological activation
has been reported to exert protective effects against ischemia (for recent review see e.g., [155]).

As mentioned above, TASK-3, IKCa and Kv1.3/Kv1.5 were shown to contribute to apoptosis
resistance. However, in many cases no information is available about whether the plasma
membrane-located or the intracellular forms of the channels are important for programmed cell
death. Information about this point might be obtained by comparing the effects of channel modulators
that cannot permeate across the plasma membrane (e.g., toxins, small peptides and hydrophilic
compounds) with those that instead pass the membrane (e.g., drugs with hydrophobic nature).
For example, membrane-permeant inhibitors of Kv1.3 such as clofazimine, Psora-4 and PAP-1 trigger
apoptosis, while the inhibitors acting only on the PM-located channel, such as margatoxin and
charybdotoxin do not exert such an effect [156], suggesting that intracellular Kv1.3 is crucial for
apoptotic signaling. Likewise, inhibition of IKCa and likely of mitochondrial IKCa (mtIKCa) by
membrane-permeant inhibitor TRAM-34 was shown to sensitize melanoma cells to vemurafenib (a
BRAF inhibitor) by inducing mitochondrial ROS production [157]. mtIKCa is indeed functional in
HeLa cells and in HCT116 colon carcinoma [158], is inhibited by TRAM-34 and clotrimazole [13] and
was shown to regulate oxidative phosphorylation in pancreatic ductal adenocarcinoma cells [159],
but to our knowledge the effect of TRAM-34 in sensitizing melanoma to vemurafenib cannot be
ascribed with high confidence to the mtIKCa versus PM IKCa. The situation is different in the case of
mtKv1.3: block of depolarizing K+ influx via mtKv1.3 by BAX [35,160] or specific membrane-permeant
inhibitors [156,160] was shown to cause IMM hyperpolarization, increase of ROS release, PTP activation,
swelling, loss of mitochondrial membrane potential (∆ψm), loss of cytochrome c and further ROS
release (Figure 6), allowing the cancer cells to reach a critical threshold of oxidative stress, as they are
characterized by a higher basal ROS level with respect to healthy cells [161].
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Figure 6. Direct pharmacological targeting of a mitochondrial potassium channel triggers cytochrome
c release in cancer cells. Kv1.3 inhibition in the IMM by either BAX or membrane-permeant specific
Kv1.3 inhibitors leads to IMM hyperpolarization that in turn triggers ROS release and subsequent
ROS-induced MPTP opening. This even in turn results in swelling of mitochondria, loss of mitochondrial
integrity and release of cytochrome c, allowing cells to undergo apoptosis.
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In vitro experiments on various cancer cell lines and on primary B-CLL cells demonstrated that
membrane-permeant inhibitors of Kv1.3 can kill cancer cells independently of p53 status [162–164],
BCL-2 overexpression [164] and the presence of BAX and BAK [156]. Subsequent chemical modification
of one of these specific inhibitors of Kv1.3, namely PAP-1 [165], to obtain mitochondriotropic
PAP-1 derivatives (PAPTP and PCARBTP, obtained by conjugation of the positively charged
triphenyl-phoshonium ion (for general strategy see e.g., [166])), increased efficacy of these drugs to
trigger cell death and provided evidence that indeed the mitochondria-located Kv1.3 is the channel
that is important in the context of apoptosis. In vivo experiments in melanoma and pancreatic ductal
adenocarcinoma orthotopic models corroborated the effectiveness of these new mtKv1.3 inhibitors as
apoptosis inducers and showed their selective action on pathological cells only [163], as evaluated
by the lack of side effects in vivo. This selective action depended on the synergy between high Kv1.3
expression and altered basal redox state in cancer cells, since pretreatment of mice with a molecule able
to exert ROS scavenging was able to prevent the tumor-reducing effect of PAP-1 derivatives. mtKv1.3
inhibitors were also able to trigger death in primary tumor cells from patients that underwent classical
chemotherapy and became treatment resistant (Peruzzo et al., unpublished). In summary, considerable
information points to the possibility to exploit IMM Ca2+ and K+ channels to trigger death of cancer
cells, even of those that are resistant to chemotherapies.

3.4. Other Channels

Among the other channels present in the IMM, the magnesium transporter Mrs2 and the
uncoupling protein UCP2 deserves attention in the context of this review. An up-regulation of Mrs2
has been observed in a multidrug-resistant (MDR) gastric cancer cell line compared to its parental
cells by subtractive hybridization, as well as in several types of cancers according to the Oncomine
database [150]. Mrs2 expression positively regulated adriamycin resistance of these gastric cells both
in vitro and in vivo, suggesting that high expression of Mrs2 may protect against death [167,168].

UCPs are inner mitochondrial membrane proteins that are able to partially dissipate the ∆ψm by
mediating proton transfer down the electrochemical gradient. UCP-2 is overexpressed in numerous
tumors, such as breast, ovarian, bladder, esophagus, testis, colorectal, kidney, pancreatic, lung,
prostate cancers and leukemia (for review see e.g., [109,169]). UCP2 overexpression prevented the
death-inducing effect of chemotherapy, in particular of Gemcitabine in different contexts [170–172].
A decrease in cell viability and clonogenicity were induced following inhibition of UCP2 expression
by siRNA and application of tamoxifen in breast cancer cells [173], altogether suggesting that UCP2
expression and function might actively contribute to chemo-resistance in different types of tumors.

4. Conclusions and Perspectives

In the present review we summarized the currently available information regarding the roles of
mitochondrial ion channels and pore-forming proteins in the regulation of apoptosis and in the context
of chemo-resistance. While MOM channels directly regulate MOM permeabilization, IMM channels
may trigger cytochrome c release mainly be regulating opening of the MPTP. A great advantage of
strategies targeting directly inner membrane channels of mitochondria by pharmacological means is
that, as exemplified by the case of mtKv1.3, their modulation might lead to the loss of cytochrome c
independently of the outer membrane permeabilization. Therefore, overexpression of anti-apoptotic
proteins (e.g., BCL-2, BCL-XL), downregulation of pro-apoptotic proteins (e.g., BAX, BAK) and
mutations of p53 and of any apoptotic signaling molecule that is upstream of mitochondria should
not prevent cytochrome c release induced by drugs acting directly on IMM channels. Given that
many of the discussed IMM channels have a differential expression in healthy and in cancer cells, their
modulation, if leading to cytochrome c release, might add a layer of specificity to cancer cell apoptosis
induction by a mitochondrial pathway. Table 1 summarizes the effect of drugs acting on mitochondrial
channels/pores in the context of cell death/chemo-resistance. In summary, treatment of chemo-resistant
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cancer cells with mitochondrial channel/pore modulators that trigger a specific series of events leading
to apoptosis might become an option of choice in the near future.

Table 1. List of ion channels as drug targets against chemo-resistance. The direct effect of AG311 on
MCU has not been proven yet.

Ion Channel/Pore Channel Localization
Within Mitochondria

Drug Affecting
Channel/Pore Activity

Effect on Cell Death/
Chemo-Resistance References

BCL-2 anti-apoptotic
protein MOM Venetoclax (ABT-199) Kills cancer cells by blocking

anti-apoptotic activity of BCL-2 [43]

VDAC1 MOM cyathane-type
diterpenoid

Kills cancer cells even in the
absence of BAX/BAK [68]

VDAC1 MOM VDAC1-based peptides

Detaches hexokinase II and
BCL-XL/BCL-2 from VDAC and

potentiates the effect of
chemotherapeutics

[76,77]

α7 nAChR MOM PNU-282987 Decreases cytochrome c release
stimulated by oxidative stress [88]

α7 nAChR MOM nicotine Confers resistance to cell death
induced by gemcitabine [89]

MPTP IMM Hirsutine, betulinic acid,
honokiol

Activates PTP and counteracts
BCL-2/BCL-XL-mediated

apoptosis resistance

[112]
[113]
[114]
[115]

MCU IMM Ru265
Inhibits MCU—prevents

hypoxia-induced injury (not
tested on tumor cells)

[142]

MCU IMM AG311 Reduces metastasis [135]

IKCa IMM TRAM-34 Sensitizes melanoma cells to
vemurafenib [157]

mtKv1.3 IMM PAPTP, PCARBTP
Kills various cancer cells

independently of p53 mutation
and BAX/BCL-2 expression

[163]
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