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Prediction of LC-MS/MS Properties of Peptides
from Sequence by Deep Learning*□S

Shenheng Guan‡§�, Michael F. Moran§¶, and Bin Ma‡

Deep learning models for prediction of three key LC-
MS/MS properties from peptide sequences were devel-
oped. The LC-MS/MS properties or behaviors are indexed
retention times (iRT), MS1 or survey scan charge state
distributions, and sequence ion intensities of HCD spec-
tra. A common core deep supervised learning architec-
ture, bidirectional long-short term memory (LSTM) recur-
rent neural networks was used to construct the three
prediction models. Two featurization schemes were pro-
posed and demonstrated to allow for efficient encoding of
modifications. The iRT and charge state distribution mod-
els were trained with on order of 105 data points each. An
HCD sequence ion prediction model was trained with 2 �
106 experimental spectra. The iRT prediction model and
HCD sequence ion prediction model provide improved
accuracies over the start-of-the-art models available in
literature. The MS1 charge state distribution prediction
model offers excellent performance. The prediction mod-
els can be used to enhance peptide identification and
quantification in data-dependent acquisition and data-in-
dependent acquisition (DIA) experiments as well as to
assist MRM (multiple reaction monitoring) and PRM (par-
allel reaction monitoring) experiment design. Molecular
& Cellular Proteomics 18: 2099–2107, 2019. DOI: 10.1074/
mcp.TIR119.001412.

The ability to directly predict LC-MS/MS1 behaviors from
peptide amino acid residue sequence will power the next
generation of proteomics research. Currently, the major be-
havior or properties of peptides in the context of LC-MS/MS
are obtained experimentally, suffering from high cost and
inhomogeneous accuracies. This work intends to address
those issues directly using a common deep learning model
architecture trained with experimental data to predict useful
LC-MS/MS properties, such as indexed retention times (iRT),
MS1 or survey or precursor scan charge state distributions,
and MS/MS sequence ion intensities. Those properties can be
directly used for enhancing peptide identification and quanti-
fication in both data-dependent acquisition and data-inde-

pendent acquisition (DIA) experiments as well as for designing
MRM and PRM experiments.

The previous research into prediction of those three major
classes of LC-MS/MS properties varies significantly. The first
use of machine learning algorithms for retention time predic-
tion was with simple dense neural networks (1). Since then,
many algorithms have been proposed (2). DeepRT is the most
recent method utilizing a deep learning model to predict re-
tention time (3). It is surprising that information of charge state
distributions of MS1 scans has not been extensively used to
facilitate peptide identification and quantification. Studies for
prediction of charge state distributions were carried out with
simple models and limited data (4, 5). Prediction of MS/MS
spectra is both theoretically interesting and practically useful.
Development of the kinetic models by Zhang (6–9) requires
deep understanding of ion fragmentation mechanisms. The
kinetic model development is a reminiscence of knowledge-
based artificial intelligence in proteomics. Like in the other
fields, such as image processing and language processing,
deep-learning-based approaches in the field of proteomics
quickly outperform any knowledge-based approaches. Deep-
Novo (10), a deep learning model based de novo sequencing
method provides an accurate peptide sequencing strategy
without the reference to a predetermined protein sequence
database and digestion rules. The deep-learning-based de
novo sequencing method has been extended for DIA experi-
ments (11). The recently developed pDeep algorithm allows
for prediction of MS/MS spectra with peptide sequences
without incorporating detailed fragmentation mechanisms
into the model (12). Schoenholz et al. (13) developed a similar
long-short term memory (LSTM)-model-based search algo-
rithm called “DeepMatch.” Gessulat et al. (14) recently devel-
oped a deep-learning-based tool called “Prosit” for prediction
of LC retention time and fragment ion intensities from se-
quences of synthetic peptides. Tiwary et al. (15) reported two
deep learning models for MS/MS spectrum prediction.

The core motivation of this work is to identify the key
LC-MS/MS properties that are determined solely by peptide
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sequence. The chosen three properties fit the criteria. The iRT
calibration strategy (16) allows establishment of a common
scale to calibrate experimental retention times. Solvent gra-
dient, column temperature, sample loading, and other exper-
imental conditions can be incorporated into the iRT versus RT
(retention time) or RT versus iRT calibration functions. MS1
charge state distributions may change with many experimen-
tal conditions. One of the most important ones is the charge
detection method of the mass analyzer (see “Discussion”
section). However, given commonly used mass analyzers,
MS1 charge state distributions are stable against many other
experimental conditions. For MS/MS sequence ion intensity
prediction, different ion series may present in an MS/MS
spectrum with different fragmentation methods and fragment
ion intensities also change with different mass analyzer/de-
tector. Spectral behavior changes also with fragmentation
conditions such as activation energy and activation duration.
However, MS/MS spectral behavior is remarkably stable un-
der commonly used instrument classes and standard meth-
ods. Under the constraints discussed above, we demonstrate
in this work that practical deep learning models can be trained
to predict those key LC-MS/MS properties with excellent
accuracies.

Since the beginning of this decade, neural-network-based
deep learning models have made significant impact on image
and natural language processing (17). For peptide property
prediction, recurrent neural network models, such as LSTM
models, are a natural choice because they are able to handle
sequential input data with a variable length, such as peptide
sequences (in spectrum prediction, charge state is also an
input). Deep supervised learning models are capable of clas-
sification and regression tasks. Our iRT and spectrum predic-
tion models are classic regression examples, but the charge
state prediction model can also be considered as a classifi-
cation method in which the output is charge state classifica-
tion probabilities. The three prediction models demonstrated
here represent three levels of data in LC-MS/MS: iRT for LC
behavior, charge state distribution for MS1, and HCD se-
quence ion intensities at MSMS level. They also differ in
output dimensionality: iRT is a scalar, charge state distribution
is a vector, and HCD sequence ion intensities are two-dimen-
sional matrix with one of the dimensions dependent on the
peptide length. However, the core learning blocks are the
same bidirectional LSTM layers, demonstrating the applica-
bility of deep learning models for a wide range of problems. As
in other fields where deep learning made significant impacts,
performance of peptide property prediction models critically
depends on the availability of large quantity and high-quality
data. For example, our HCD sequence ion intensity prediction
model was built on a large pool of spectra of excellent quality
(18), collected from the whole proteomics community.

EXPERIMENTAL PROCEDURES

Sources of Data—iRT data: Data used for training the iRT model
were described in (19). The data were compiled from three DIA
technical runs with HeLa and HEK293 cell lysates, with 1-m long
column and 4-h acquisition time. According to Bruderer et al. (19), the
identification false discovery rate was controlled at 1%. Peptides of
duplicate identifications and different charge states were pooled to-
gether, and the pooled median iRT values were used. After filtering,
such as limiting the peptide length to 40 or less, the total number of
peptides for the iRT model is 125,793, in which 10% were randomly
selected as the test dataset, and the rest 90% were used to train the
iRT model.

Charge state distribution data: For the charge state distribution
model, raw data files of data-dependent acquisition runs (19) were
downloaded from ProteomExchange. Those data-dependent acqui-
sition experiments included 0.5–4-h single-shot runs and high pH
fractionation sample runs. The raw data files were converted to peak-
lists using previously developed PAVA code (20). MS2 or MS/MS
peaklists were searched with the MSGF� search engine (21). The
human proteome (Uniprot Proteome ID: UP000005640) sequences
(71,778 entries) were downloaded on February 6, 2018. Trypsin spec-
ificity with up to five missed cleavages were allowed (filtered after
search). Cysteine carbamidomethylation was the fixed modification.
Variable modifications were oxidation of methionine, pyro-glu from
peptide n-terminal glutamine, and protein n-terminal acetylation with
or without loss of methionine and deamidation of glutamine and
asparagine. Precursor mass tolerance was 10 ppm, and fragment ion
detection instrument was set to “Q Exactive.” The peptide EValue
cutoff of 0.045 was used to obtain the peptide false discovery rate of
1.0%.

For an identified peptide, the ion chromatograms for charge states
1–5 were extracted from survey scans and the XICs (extracted ion
chromatograms) were fitted with a polynomial variance Gaussian
function (20). The intensities of peptide charge states were normalized
by division of their sum. The total number of peptides for the charge
state distribution model is 126,876, in which 10% of randomly se-
lected data were used as the test dataset.

HCD sequence ion intensity prediction data: A human HCD spec-
tral library with 2,154,269 peptide ions was compiled by Wang et al.
(18). Fragment ions were annotated with in-house code, and data
were formatted as the National Institute of Standards and Technology
(NIST) MSP format. Monoisotopic and isotopic ions for singly and
doubly charged b- and y- ions, internal ions, H2O and NH3 neutral
loss ions, and the precursor and their neutral loss ions were anno-
tated. For precursor ions with charge state of 2, b and y ions of charge
state one were collected. For precursors with charge state 3 to 6, both
charge states of 1 and 2 were considered for b and y ions. The ion
intensities of a single spectrum were normalized by division of the
highest intensity. Due to the graphic processing unit, GPU’s memory
limitation, the dataset was separated into two subsets of 1,074,898
spectra each. The membership of the subsets was random. The HCD
prediction model was trained sequentially with the two subsets. Out
of the 1,074,898 spectra in the second subset, 10% were used as the
test dataset.

1 The abbreviations used are: LC-MS/MS, liquid chromatography -
tandem mass spectrometry; DIA, data independent acquisition; CNN,

convolutional neural networks; ETD, electron transfer dissociation;
GPU, graphic processing unit; HCD, higher-energy collisional disso-
ciation; iRT, Indexed retention time; LSTM, long-short term memory;
MRM, multiple reaction monitoring; MS/MS, tandem mass spectrom-
etry; MS1, the first level of mass analysis; MS2, the second level of
mass analysis; NIST, National Institute of Standards and Technology;
PRM, parallel reaction monitoring; PCC, Pearson correlation coeffi-
cient; RT, retention time; SRM, selected ion monitoring; XIC, ex-
tracted ion chromatogram.
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For the selected test cases, raw files from Bruderer et al. (19) and
from ProteomeTools (22) were used.

Feature Structure—Peptide sequence features: A peptide se-
quence is represented with one-hot encoding array of size, MAX_
LENGTH X NO_OF_AAS, in which MAX_LENGTH of 40 is the maxi-
mum length of peptides and NO_OF_AAS is the number of amino acid
types. In all cases, a deamidated glutamine residue is considered as
a glutamic acid and a deamidated asparagine as an aspartic acid. In
the iRT model, only modification allowed is the oxidized methionine,
encoded separately Therefore, NO_OF_AAS is 21 for the iRT model.
For the charge state distribution model, oxidized methionine, pyro-
glutamine, and n-terminal acetylation were separated feature types.
Its NO_OF_AAS is 23.

For the sequence ion intensity prediction model, peptide n-terminal
carbamylation was also considered as a separate type, given its
NO_OF_AAS of 24. The charge state of a peptide ion (precursor ion)
is one-hot encoded as a six-member long array. Therefore, a peptide
ion is encoded as a 40 � 30 matrix (20 natural amino acid types, 4
PTM types, 6 charge state types). As suggested by (12), normalized
collision energy was not used as a feature. For peptides of length less
than 40, zeros were added to both sides (zero padding on both ends).
The one-hot encoding of peptide sequence and modification featur-
ization is illustrated in Supplemental Fig. S2.1.

Learning Models—All the models consist of a masking layer fol-
lowed by two stacks of bidirectional LSTM layers. For regularization,
both dropout and recurrent dropout were applied. The models differ
in output (label) layers: for the iRT model the output was a scalar and
no final activation was used. Two dense layers with activation func-
tion of hyperbolic tangent function (tanh) were used and the final
output has a dimension of one. For the charge state distribution
model, there were two dense layers with the output as one dimen-
sional array of size 5 (corresponding to charge states 1 to 5). The
output activation function was softmax. For the spectral prediction
model, a time distributed dense layer with sigmoid activation function
was used. The output (label) structure is illustrated in Supplemental
Fig. S2.2.

All LSTM models, implemented with Keras framework (23) were
trained on a GeForce RTX 2080 Ti Graphics Card with 11 GB video

memory. The longest training time was 7.2 h for one subset
(1,074,898 spectra) of the HCD sequence ion prediction model.

RESULTS

iRT Prediction—The essence of a deep learning model is to
capture the data generation distribution. However, we do not
have the independent information about the distribution un-
derlying the iRT dataset. The iRT values were obtained from
the DIA experiments (19), and several sources of errors may
be incorporated into the dataset. First, the peptide false dis-
covery rate was about 1%, and therefore, at least 1% of the
iRT values were incorrect, and those incorrect iRT entries are
likely to contribute to outliers. Second, calibration of RT ver-
sus iRT can introduce some uncertainties (RT versus iRT
calibration is briefly described in Supplemental Material Sec-
tion S1). Third, when the iRT values were aggregated from
different LC runs, errors are introduced due to LC alignment
inconsistencies. As can be observed in the Fig. 1, the outliers
are mostly likely due to the incorrect peptide identification.
The variation becomes higher with increased iRT values. For
peptides of later elution or having larger iRT values, intensities
may spread out in more charge states and in wider LC peak
shapes, and retention time measurement becomes less ac-
curate.

Both training and testing error distributions are close to a
Gaussian (Fig. 2), but away from the center there are still
significant deviation of the error distributions from the Gauss-
ian-fitted curves. The 95% confidence intervals were com-
puted from distributions numerically, and they are 7.18 and
9.62 iRT units, for training and test datasets, respectively.

A higher capacity model was also investigated with nearly
twice as many parameters, and it did not result in any im-

FIG. 1. Scatter plots of measured iRT against predicted iRT. Left: the training dataset. Right: the test dataset.

Prediction of LC-MS/MS Properties of Peptides from Sequence

Molecular & Cellular Proteomics 18.10 2101

http://www.mcponline.org/cgi/content/full/TIR119.001412/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001412/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001412/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001412/DC1
http://www.mcponline.org/cgi/content/full/TIR119.001412/DC1


provement in the confidence intervals, suggesting the current
model may have captured the most important characteristics
of the iRT data generation distribution. Several different deep
learning models have also been surveyed, including conven-
tional CNN (convolutional neural networks), temporal CNN
(24), and Capsnet (3). None of the models surveyed performed
better than the current LSTM model with the current datasets.
It is nearly impossible to obtain an optimal deep model be-
cause model hyperparameter optimization is multidimen-
sional and problem dependent. We can, however, make a
rough comparison of performance between our model to that
of DeepRT(3). Our test confidence interval of 9.62 iRT units
(iRT span: �60 to 140) is about 28% narrower than the
DeepRT result of 13.4 (iRT span: �40 to 160, Supplemental
Fig. S7 of reference (3)) for reverse-phase LC experiments.

Prediction of Charge State Distribution—Survey scan or
MS1 charge state distribution provides rich information on
relative charge partition among peptide ions. The information
may also be helpful in assessing the quality of the associated
MSMS spectra and may be used directly for extraction of MS1
ion chromatograms. In two previous studies (4, 5), conven-
tional machine learning models were trained to predict charge
states for electron transfer dissociation spectra. A common
problem with the conventional machine learning algorithms is
the requirement for manual collection of features. In both
case, features are extracted from identified ETD (electron
transfer dissociation) tandem mass spectra. Liu et al. (25)
trained a model with linear combination of amino acid com-
position with Gaussian probability. In our model, only peptide
sequences were used, and the deep learning model is capa-
ble of learning the complex contribution of peptide sequence
to the charge state distribution. The relative intensities of
different charge states detected in a mass spectrum are not
only directly proportional to their abundances. In a Fourier

transform ion cyclotron resonance mass spectrometer, the
detected image current is inversely proportional to the ion’s
m/z (26). In an Orbitrap, the image current is inversely propor-
tional to the square root of the ion’s m/z (27). However, for our
purpose, treating the relative intensities as one of LC-MS/MS
properties is advantageous: the predicted distribution can
facilitate peptide identification and quantification. Therefore,
although we refer to the term “charge state distribution,” it is
an LC-MS/MS behavior other than the true charge partitions
on a peptide. The deep model on the other hand is able to
learn the “behavior” or property with great accuracy. How-
ever, the property should not be transferred to other mass
analyzers without proper intensity calibration.

As shown in Fig. 3, the charge state distribution prediction
produces highly accurate results judged by the test Pearson
correlation coefficient (PCC) distribution, with median PCCs
of 0.998 and 0.997 for the training and testing datasets,
respectively. The distribution for the test dataset is similar to
that for the training dataset, indicating that overfitting is not a
significant issue here.

Two examples of charge state prediction are illustrated
in Fig. 4. For peptide VLPGMHHPIQMKPADSEK and its Q-
deamidated form, the charge state distributions are quite
similar. The missing observed charge state of 2 for the deami-
dated form may be due to its low abundance for experimental
detection.

Prediction of HCD Sequence Ion Intensities—The whole
dataset for training the spectrum prediction model contains
two subsets of 1,074,898 HCD spectra each. The HCD pre-
diction model was trained sequentially with the two subsets.
10% of spectra in the second subset were used as the testing
set. During training, 20% of the training subsets were used to
validate the model. In the whole dataset, 3.85% contains

FIG. 2. Distribution of errors for iRT prediction model. Blue curves are error distributions and orange curves are the corresponding
Gaussian fits. Left: training errors. Right: testing error.
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n-terminal acetylation, 8.10% methionine oxidation, 2.00%
pyro-glutamine, and 5.68% n-terminal carbamylation.

As shown in Fig. 5, the PCC distributions for training and
testing are also quite similar, indicating that the model does
not overfit much. The median PCCs are 0.955 and 0.953 for
training and testing, respectively. The median test PPC for our
test dataset is slightly better than that obtained in the pDeep
study (12). A breakdown analysis of performance is provided
in Supplemental Table S3. For peptide ions of 20 amino acid
residues or shorter with no modifications, the median test
PCC of 0.965 is a more significant improvement from that
(0.950) for the pDeep model. However, our dataset contains
peptide sequence length up to 40 amino acid residues com-
pared with 20 in the pDeep study. For human proteome, this
adds about 25% more unique peptides (see peptide length
distribution of human protein sequences in Supplemental Fig.

S3). In addition, the pDeep data do not contain modified
peptides, and in our dataset, peptides with the following
modifications are allowed: oxidized methionine, peptide n-ter-
minal pyro-glutamic acid, peptide n-terminal carbamylation,
and protein n-terminal acetylation. In addition to increase
sequence length and inclusion of some common modifica-
tions, our model differs from that of pDeep in the number of
features: our model uses fewer features. One of the core
advantages of deep learning over traditional machine learning
is that it uses multiple layers to learn feature characteristics.
Therefore, deep models are typically much simpler in terms of
feature engineering (feature collection, normalization, reduc-
tion, etc.). We designed our models using the simplest pos-
sible architecture with only 30 feature dimensions (to repre-
sent 20 natural amino acid residues, 2 modified amino acid
residues, 2 separately coded modifications, and 6 charge

FIG. 3. PCC distribution for charge state distribution prediction versus experimental measurement of the test dataset. The MS1
charge state distribution prediction model was trained with 90% of 126,876 experimental distributions. 10% of those were used as the test
dataset to evaluate the model shown in this figure. Left: full range. Right: zoomed range of [ 0.99, 1].

FIG. 4. Charge state prediction of peptide VLPGMHHPIQMKPADSEK (right) and its Q-deamidated form (left). The upper-pointing sticks (blue)
are measured data, and the lower-pointing sticks (green) are the predicted values.
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states) versus 88 in the pDeep model (illustrated in Supple-
mental Fig. S2.1). Our model also aligns n-terminal (b) and
c-terminal (y) ions with the peptide sequence (see Supple-
mental Fig. S2.2 for an example of model label (output) struc-
ture), whereas in the pDeep model the length (19) of the series
of ions is one less than that (20) of the peptide sequence
length.

One of the utilities of HCD sequence ion intensity prediction
is to assist isomeric peptide assignments. Isomeric peptides
concerned here are peptides with exactly the same chemical
composition and nearly identical sequences. The minor dif-
ference in sequence makes them difficult to be distinguished
using MS2 spectra. The authors of the pDeep model (12)
investigated their model’s utility to distinguish three classes of

the extremely similar peptides: (a) substitution of an isoleucine
for a leucine; (b) shared chemical formula of different amino
acid combinations, such as GG for N; and (c) local amino acid
permutations, such as AF for FA.

In Fig. 6, an experimental HCD spectrum was identified by the
MSGF� search engine as LALDLEIATYR 2� ion of the keratin,
type II cytoskeletal 8 (P05787) or LALDIEIATYR 2� ion of the
keratin, type II cytoskeletal 1 (P04264). Because both se-
quences were assigned with the same EValue (4.2 � 10�6, 1%
false discovery rate cutoff � 0.045), the search engine was
not capable of distinguishing them. When the experimental
spectrum was matched with the predicted ion intensities of
the two sequences, the PCC difference for matching be-
tween the experimental and predicted data was small (0.942

FIG. 5. Distributions of PCC between experimental and predicted HCD sequence ion intensities. Left: for training dataset; Right: for
testing dataset.

FIG. 6. Comparison of observed HCD spectrum and predicted sequence ions from two isomeric sequences differed by leucine (left) or
isoleucine (right) at position 4. The low portions are predicted HCD sequence ions and the upper portions are the same experimental spectrum,
Peaks marked with a dark blue color are annotated, while unannotated peaks are in light blue. A noticeable change in relative intensity of y6

ions can be observed. However, the difference is much more quantifiable with a “local” ion PCC.
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for LALDLEIATYR and 0.943 for LALDIEIATYR) if all sequence
ions were used. However, if only some “local” ions were
considered, such as y6, y7, and y8, there is a clear difference
in the relative intensities. The “local” ion PCC values for
the three ions were 0.870 and 0.994 for LALDLEIATYR and
LALDIEIATYR, respectively. Clearly, using the local product
ions near the site of sequence difference can provide more
significant discrimination power. The assignment of the iso-
leucine peptide of LALDIEIATYR was also supported by spec-
tral count information. In the same raw data file, there are 137
spectra including those for the isoleucine peptide (four
spectra) belonging to the protein (P04264), whereas only
11 spectra supporting the protein (P05787) contain the leu-
cine peptide. Four out of the 11 spectra were assigned to
the leucine peptide. It is unlikely that the experimental spec-
trum is a mixture of both peptides because they also have
different retention times. Both the matching analysis of pre-
dicted ion intensities and the spectral counting information sup-
port the assignment of the isoleucine peptide of LALDIEIATYR.
Another example for leucine/isoleucine peptide discrimination is
provided in Supplemental Fig. S4.1. The “local” ions with the
most discriminating power can be selected (i) by choosing ions
near the site of difference and (ii) by examining local PCC values

between the predicted ion intensities of the isomeric
sequences.

The isomeric peptide classes (b) and (c) can be easily
distinguished if a fragment ion is observed for the peptide
bond cleavage between amino acid residue combination or
permutation. If this is not the case, the predicted ion intensity
difference may be used to distinguish the assignment. For
class (b), the pDeep model was able to provide strong support
for assignment of an experimental spectrum from the Pro-
teomeTools dataset to the peptide GGFFSFGDLTK (PCC �

0.98) against NFFSFGDLTK (PCC � 0.87). Using our HCD
sequence ion intensity prediction model, the separation of the
PCC values (0.994 versus 0.838) is even larger, presumably
due to the higher accuracy of our prediction model (see
Supplemental Fig. S4.2).

To demonstrate the utility of charge state distribution pre-
diction for DIA analysis, a peptide (FVNVVPTFGKK) was se-
lected and its ion chromatograms were extracted from a DIA
data file (Fig. 7). Our charge state distribution prediction
model predicts that the 2� precursor charge state (0.32) is X2
less abundant that 3� (0.68).

Even the 3� precursor ion has greater abundance, its MS2
product ion abundance levels are low (bottom panel, Fig. 7),

FIG. 7. Extracted ion chromatograms of FVNVVPTFGKK 2� and 3� precursor ions from a DIA experiment. The first and the third panels
are from survey or MS1 scans; they have the same vertical scale. The labels are 0, the precursor’s monoisotopic peak; 1 and 2, the first and
second isotopic peaks. The second and fourth panels are from MS2 scans with the corresponding selection windows; they also have the same
vertical scale. The labels indicate the six most abundant (determined by the use of the HCD sequence ion intensity prediction model) product
ions used for extraction.
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and only three of the six product ions display signals and they
are very weak. It is therefore more confident to use the MS1
XICs for charge state 3� and MS2 XICs for charge state 2�

for the peptide identification and quantification.
A web service for LC-MS/MS property prediction is pro-

vided (see Supplemental Materials Section S5). The trained
models, training and testing data, and associated Python
codes can be downloaded from Zenodo (see Supplemental
Materials Section S6).

DISCUSSION

Deep learning models have been surveyed for prediction of
three key LC-MS/MS properties of peptides: iRT, MS1 charge
state distribution, and HCD sequence ion intensities. The
three properties characterize peptide behaviors at the three
distinct levels of experiment: chromatography, MS1 or pre-
cursor detection, and MS/MS or fragmentation of a precursor.
The deep learning models share the same peptide sequence
encoding strategy (additional charge encoding for spectrum
prediction) and structure of the first two layers of recurrent
neural network. The output layers and the corresponding
activation functions were chosen to reflect the need for the
different types of output dimensionality.

Those models provide superior performance. The iRT pre-
diction is �28% more accurate compared with that of the
DeepRT model(3). The 95% confidence interval for iRT pre-
diction of Prosit (14) is nearly twice as small as that of this
work. However, training and testing data of Prosit came from
pools of synthetic peptides on the order of 1000 with equal
abundance, whereas data used for this study came from a
complex sample of cell lysate. It is indeed useful to investigate
the impact of sample complexity, gradient length on the iRT
prediction accuracy. For the charge state distribution predic-
tion, a median test PCC of 0.997 was achieved. The perform-
ance of our HCD sequence ion intensity prediction model
outperforms that of the pDeep model (12). Our model is also
able to predict peptide sequence length of 40 compared with
20 for pDeep and allows for common peptide modifications.
The superior performance of our models may come from two
factors. First, our models are simpler with minimal feature
engineering. More complicated feature engineering (as the
case in the pDeep model) may set constraints on the model to
fit data and to generalize well. Second, our training datasets
may be more homogeneous.

Prosit’s fragment ion intensity model uses bidirectional
gated recurrent unit (14), which is less sophisticated and more
efficient to train than the LSTM model used in this study. All
the prediction models are simpler enough, and the computa-
tion effort is not a major practical issue. The other difference
is that our spectrum prediction model (and that for pDeep)
uses a time distributed layer in combination with a masking
layer to discard the useless parameters and output dimen-
sions. The Prosit model sets the useless output labels to �1.

The authors of Prosit (14) claimed to have achieved a me-
dian PCC of 0.99 between the experimental and predicted
spectra. However, as pointed out by the authors of pDeep, the
agreement among their experimental spectra was the PCC of
0.981, which was considered as the upper limit of any pre-
diction model. Tiwary et al. (15) developed two models, Deep-
Mass:Prism and wiNNer. DeepMass:Prism, an LSTM-based
model, achieves a median PCC of 0.925 for HCD spectra.

Our models with current trained parameter values are
practically useful in the right context: for example the iRT
predicted values are only useful in combination of the right
iRT to RT calibration. The current prediction model for HCD
sequence ion intensities does not account for internal frag-
mentation and neutral loss from fragment ions. Extension to
include simple neutral loss can be accomplished with the
expansion of the label dimension (See Supplemental Fig.
S2.2).

Our models for prediction of iRT and charge state distribu-
tion may have learned major portions of the corresponding
data generation distributions because the labels (the meas-
ured iRTs and charge state distributions) contain limited in-
formation. More training data may not improve their perform-
ance. The model for HCD sequence ion intensity prediction on
the other hand may be further improved given more data.

We also proposed two encoding schemes to featurize mod-
ifications: (A) if a modification occurs on many different types
of amino acid residues, a separate feature is created or (B) if
a modification occurs in only on one or two types of amino
acid residues, the modified residues are used as features. As
illustrated in Supplemental Figs. S2.1 and S2.2, featurization
Scheme (A) will increase the space occupied by the sepa-
rately coded modifications in the sequence length dimensions
in both sequence code and label. The Scheme (B) entries will
increase the feature dimension in sequence code. An optimal
design may be a trade-off of the two conflicting effects to
minimize the dimensions for both sequence code and label.

Broad applications of those models are subject to future
studies. The models can supply DIA data extraction algo-
rithms with predicted retention times, charge state distribu-
tions, and spectra for peptides not previously detected. En-
hancement of search engines’ theoretical fragment pattern
generation, expansion of spectral libraries for spectral library
search, selected ion monitoring (SRM), MRM, PRM method
development can all benefit from the models’ capabilities.
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