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Abstract

Pichia pastoris is commonly used for the production of recombinant proteins due to its preferential secretion of
recombinant proteins, resulting in lower production costs and increased yields of target proteins. However, not all
recombinant proteins can be successfully secreted in P. pastoris. A computational method that predicts the likelihood of a
protein being secreted into the supernatant would be of considerable value; however, to the best of our knowledge, no
such tool has yet been developed. We present a machine-learning approach called Presep to assess the likelihood of a
recombinant protein being secreted by P. pastoris based on its pseudo amino acid composition (PseAA). Using a 20-fold
cross validation, Presep demonstrated a high degree of accuracy, with Matthews correlation coefficient (MCC) and overall
accuracy (Q2) scores of 0.78 and 95%, respectively. Computational results were validated experimentally, with six b-
galactosidase genes expressed in P. pastoris strain GS115 to verify Presep model predictions. A strong correlation
(R2 = 0.967) was observed between Presep prediction secretion propensity and the experimental secretion percentage.
Together, these results demonstrate the ability of the Presep model for predicting the secretion propensity of P. pastoris for
a given protein. This model may serve as a valuable tool for determining the utility of P. pastoris as a host organism prior to
initiating biological experiments. The Presep prediction tool can be freely downloaded at http://www.mobioinfor.cn/Presep.
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Introduction

Pichia pastoris is one of the most frequently used organisms for

the heterologous production of recombinant proteins. It is well-

characterised, easy to manipulate genetically, requires minimal

safety precautions, and can be grown quickly and inexpensively to

high cell densities [1,2]. In addition, the majority of recombinant

proteins expressed in this organism are secreted directly into the

culture medium. This preferential secretion of recombinant

proteins allows for direct isolation of target proteins from culture

media, eliminating the need for high-cost, low-yield cell disruption.

Furthermore, this feature limits toxicity issues resulting from

intracellular accumulation of target proteins. However, not all

recombinant proteins can be successfully secreted in yeast, and the

intracellular retention of some highly expressed proteins is still a

problem, limiting more widespread use.

A variety of methods have been developed to enhance the

secretion of recombinant proteins in P. pastoris. Studies have shown

that increases in gene dosage [1], changes to promoters or signal

sequences [3], and co-overexpression of molecular chaperones

[4,5,6], protein disulfide isomerase (PDI) [7,8] and unfolded

protein response factor (UPR) [9] can enhance the secretion of

some recombinant proteins. While the efficacy of these methods

has been demonstrated for a variety of proteins, they may not be

sufficient for proteins not normally secreted by the original cell.

Therefore, attempts to express such proteins in P. pastoris may

consume significant time and resources, with no way to predict the

likelihood of success. A method that predicts the likelihood of a

protein being secreted into the supernatant before being expressed

in P. pastoris would be of considerable value; however, to the best of

our knowledge, no such tool has yet been developed.

Secretion signals have recently been shown to exist in internal

regions of proteins, outside of traditional N-terminal signal

sequences. For example, a single mutation (N184Q or N250Q)

in the protein hFasLECD can enhance the level of protein

secretion when expressed in P. pastoris [10,11]. A study on a methyl

parathion hydrolase OPHC2 (GenBank No. CAE53631) exoge-

nously expressed in P. pastoris showed high expression levels

(,5.5 g/L) using 3 L high-cell-density fermentation [12]; howev-

er, another methyl parathion hydrolase (MPH, GenBank No.

ACC63894), which shares 46% sequence identity with OPHC2,

was not secreted into the culture supernatant. These results suggest

that internal protein sequences may contain signals that affect

secretion. Therefore, these sequences may be used to predict the
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likelihood of protein secretion when exogenously expressed in P.

pastoris.

In this study, we propose the Presep method (Predicting the

propensity of a protein being secreted into the supernatant when

expressed in P. pastoris) to identify the secretion state of proteins in

P. pastoris based on the ensemble learning method random forests

(RF). A dataset (Secreprot) was constructed, containing 136

positive proteins experimentally shown to be secreted into the

supernatant upon expression in P. pastoris, along with 957 negative

samples. A pseudo amino acid composition (PseAAC) method was

exploited to encode these proteins. Both the predicted and

experimental results showed that Presep was an effective classifier

for predicting the secretion propensity of a given protein. This

method can be used to predict and optimise the secretion

possibility of a given protein prior to heterologous expression in

P. pastoris.

Results and Discussion

Training and Validation
To train the models used for Presep, we constructed the

Secreprot dataset containing 1093 proteins experimentally vali-

dated in P. pastoris. To generate a representative set of protein

sequences that could accurately identify proteins secreted into the

supernatant, we investigated the prediction performance of Type I

and Type II PseAAC, respectively. Type I PseAAC is a parallel-

correlation type analysis that generates 20+ l discrete numbers to

represent a protein [13]. Type II PseAAC is a series-correlation

type analysis that generates 20+ i * l discrete numbers to represent

a protein, with i defined as the number of amino acid attributes

selected. The parameter of l denoted the correlation rank of

amino acids along a protein sequence, which can reflects the rank

of correlation and is a non-Negative integer. [14]. Type I and

Type II PseAAC models were generated using PseAAC-Builder

[15] with different parameters selected for each analysis; the

prediction performance for each of these methods is shown in

Figure 1. Using a 20-fold cross validation, this method displays a

high degree of accuracy for both strategies, with MCC and overall

accuracy (Q2) scores of 0.78 and 95%, respectively. However, the

parameters used in these analyses, w and l, had remarkably

different effects on model performance depending on the method

used. Using the Type I encoding strategy, w exhibited a much

weaker effect on model performance than l. This effect was not

seen with the Type II encoding method, with w greatly affecting

model performance. These results highlight the need to optimize

parameter settings based on the encoding method used. The top

10 parameter settings identified in this analysis are shown in

Table 1.

Prediction Performance of Presep
Receiver operating characteristics (ROC) scores are often used

as the primary measure to gauge the performance of machine-

learning methods and provide an overview of possible cut-off levels

[16]. The ROC scores of the random classifier and Presep

classifier are shown in Figure S1. The area under the curve with

the best parameters of the two encoding schemes was 0.94. This

result clearly demonstrates that the Presep classifier was not a

random predictor, and could efficiently distinguish between

soluble proteins and inclusion body proteins.

When machine-learning approaches are used to classify

samples, it is important to know the reliability of the prediction

result [17,18,19]. In this study, a reliability index (RI) ranging from

0 to 1 was assigned to a predicted protein based on the RF output.

Provided that an output of RF for a protein is O, the value of RI is

computed as RI = INTEGER (206bsolute [O–0.5]). The closer

the prediction output is to 1, the greater the chance of that protein

being secreted into the supernatant when expressed in P. pastoris.

Conversely, the closer the prediction score is to 0, the lower the

chance that protein will be secreted into the supernatant. The RI

value provides a rough measure of certainty for a given

classification, and therefore may be used as an indicator of

prediction certainty for a particular protein. Figure 2 shows the

expected prediction accuracies along with the fraction of proteins

with a given RI value. For example, approximately 74% of the

proteins obtained an RI $ 5, and of these 98% were predicted

correctly. This result was obtained using RF with a 20-fold cross

validation.

Terminal Effect on the Secretion of the Target Protein
Different protein lengths, measured from either the N- or C-

terminal, were used to test classification performance. As shown in

Figure 3, significant differences in prediction performance were

seen between the N- and C-terminal sequences. The classifier

obtained a high degree of accuracy using 17 amino acids at the N-

terminal, not including the signal peptide. In contrast, the

prediction accuracy using short C-terminal sequences was very

low. These results indicate a greater degree of N-terminal

sequence variability between secretion-positive and secretion-

negative proteins, suggesting that N-terminal sequences may be

more important for protein secretion than equivalent regions from

the C-terminal.

Experimental Results
We used b-galactosidase as a reporter to test the prediction

performance of Presep. Six galactosidase genes were used to verify

prediction performance. Two b-galactosidase genes, LacB from

Aspergillus candidus and BglKL from Kluyveromyces lactic, were isolated

from eukaryotes; the remaining four genes were isolated from

bacteria. Among the four bacterial strains, three genes were

isolated from Gram-positive strains (BglZQ, GalC168, and BG42–

106) and one (CelB) was from a Gram-negative strain. Three genes

(CelB, BglZQ and GalC168) were from aerobic bacteria, and one

gene (BG42–106) was from anaerobic bacteria.

For these constructs, protein secretion levels were quantified as

a percentage of extracellular activity relative to total b-galactosi-

dase activity. The Presep model predicted a high likelihood of

secretion for LacB; this result was confirmed by experimental

analyses, with LacB showing the highest secretion percentage

(92.3%) among all b-galactosidases tested (Table 2). The three b-

galactosidases with low predicted secretion propensities (CelB,

BglZQ and GalC168) were also validated experimentally, with

very low b-galactosidase activity detected in culture media.

Overall, the predicted secretion propensities for all six constructs

tested were highly correlated with secretion percentage

(R2 = 0.967; Figure 4).

In addition to the examples of b-galactosidase, we also predicted

the secretion propensity of the two methyl parathion hydrolases,

which the sequence identity of the two proteins is 46%. The

predicted secretion propensities of the two proteins, OPCH2 and

MPH were 0.68 and 0.48, respectively. The results indicated that

the protein OPCH2 could secret, but MPH is difficult to secret in

Pichia pastoris. The predicted results are consisting with the

experimental results. All of the results indicate that internal

protein sequences contain detectable signals that may affect the

protein secretion in P. pastoris, consistent with the Presep model

hypothesis.

The evidence presented here demonstrates the utility of the

Presep model for predicting protein secretion propensity. Howev-

Predict Protein Secretion Propensity in P. pastoris
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er, more work is necessary to identify the sequence factors affecting

protein secretion, and to develop protein design methods to

improve secretion efficiency. Such work will require characteriza-

tion of additional proteins with known secretion percentages,

along with development of advanced machine-learning methods to

better understand the factors influencing protein secretion.

Materials and Methods

Datasets
We constructed the Secreprot dataset to train the model and test

the robustness of Presep. All proteins secreted into the supernatant

upon expression in P. pastoris were defined as positive samples; all

other proteins were defined as negative samples. Positive samples

were collected in three steps. First, related papers with the words

‘‘Pichia pastoris, express, and supernatant’’ in the abstract, title, or

key words were selected from the Web of Science, with a cut-off

date of August 8, 2012; a total of 1080 papers were identified.

From these, we selected papers that successfully demonstrated

expression of foreign genes in P. pastoris, along with secretion of

these proteins into the culture supernatant; the accession numbers

of these genes were found in each of these papers. Furthermore,

the secretion of the protein needed to be independent of secretion-

enhancing fusion tags or chaperone co-expression. These criteria

were used to ensure that the observed secretion in P. pastoris was

due to its own sequence features rather than sequence-indepen-

dent factors. Finally, sequences for each of these proteins were

downloaded from the National Center for Biotechnology Infor-

mation (NCBI). From this analysis, a total of 136 proteins were

identified; these proteins were used to define the secretion-positive

samples in the Secreprot dataset.

Negative samples were difficult to collect from the published

reports, as publication of negative data is rare. However, many

studies have described proteins that are not secreted in the native

host, and are therefore difficult to secrete in P. pastoris [20,21].

Therefore, we collected sequences of proteins from the PSORT

database that was experimentally proven to be expressed only in

cytoplasm [22,23] to construct a large dataset of secretion-negative

samples.

Proteins that encode one or more transmembrane helices were

removed from the dataset, as membrane proteins contain distinct

sequence features not generally found in soluble proteins. To avoid

any bias conferred by homologous sequences, the CD-HIT tool

[24,25,26,27] was used to remove sequences exhibiting .80%

sequence identity. Signal peptides were removed using the

software SignalP 4.0 [28]; short proteins of ,50 amino acids

were also excluded. As a result, the final Secreprot dataset

consisted of 1093 proteins, including 136 positive and 957 negative

samples. These proteins can be downloaded from the Presep

website at http://www.mobioinfor.cn/Presep.

Figure 1. The effect of parameter settings on the prediction performance of Presep for Type I (A) and Type II (B) PseAAC modes. The
x-axis represents the weight factor (w), and the y-axis represents the lambda parameter (l). Colour changes indicate differences in the Matthews
correlation coefficient (MCC).
doi:10.1371/journal.pone.0079749.g001

Table 1. Prediction performance of Presep with different
parameters.

Coding Type w l MCCa Q2b Sensitivity Specificity

I 0.05 19 0.78 0.95 0.82 0.97

II 0.05 20 0.78 0.95 0.78 0.98

I 0.05 20 0.78 0.95 0.82 0.97

I 0.35 20 0.78 0.95 0.82 0.97

I 0.5 16 0.78 0.95 0.82 0.97

II 0.45 2 0.78 0.95 0.83 0.97

I 0.25 19 0.77 0.95 0.81 0.97

I 0.45 20 0.77 0.95 0.81 0.97

II 0.15 4 0.77 0.95 0.82 0.97

II 0.2 3 0.77 0.95 0.82 0.97

Results are based on the Secreprot dataset with 20-fold cross validation.
aMCC, Matthews correlation coefficient.
bOverall prediction accuracy.
doi:10.1371/journal.pone.0079749.t001

Predict Protein Secretion Propensity in P. pastoris
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Random Forests
Random forests (RF) is an ensemble machine-learning meth-

odology introduced by Leo Breiman [29]. The basic idea of

ensemble learning is to boost the performance of a number of

weak learners by means of a voting scheme, where a weak learner

can be an individual decision tree, a single perceptron/sigmoid

function, or another simple and fast classifier [30]. Moreover, RF

does not require optimization of a large number of parameters.

Here, the RF algorithm was run in the R programming

environment (http://www.r-project.org/).

Figure 2. The average prediction accuracy calculated cumulatively with RI above a given value. This result was obtained using RF with a
20-fold cross validation.
doi:10.1371/journal.pone.0079749.g002

Figure 3. Prediction performance of Presep with different protein lengths. The x axis represents the selected residues at N or C terminal
that were used to predict the secretion propensity in the dataset. The y axis represents the prediction performance, which was evaluated by
Matthews correlation coefficient (MCC). A Type I PseAAC coding scheme was used with a weight factor (w) of 0.05 and a lambda parameter (l) of 19.
Results are based on the Secreprot dataset with 20-fold cross validation.
doi:10.1371/journal.pone.0079749.g003
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Protein Encoding Schemes
To develop a classification model of RF, each protein sequence

in the training dataset should be encoded by a feature vector. In

the present study, we attempted to use the PseAAC of proteins to

predict the propensity of a given protein being secreted into the

supernatant when expressed in P. pastoris [31,32]. The software

PseAAC-Builder was used to transform protein sequences of

variable length into fixed-length feature vectors [15]. Three

different parameters can be used to generate distinct PseAAC

outputs. Six physicochemical characteristics of amino acids,

hydrophobicity, hydrophilicity, side chain mass, pKa of the a-

COOH group, pK of the a-NH3+ group, and pI at 25uC, are

employed to calculate the correlations between amino acids at

different positions along the protein sequence, which the values of

the six physicochemical characteristics of amino acids were shown

in the Table S2.The resulting dimension is (20+ l) for a type I

PseAAC output and (20+ i * l) for a type II output, where l and i

denote the correlation rank of amino acids along a protein

sequence and the number of amino acid characters, respectively.

Assessment of Prediction System
The performance of the method was assessed based on a 20-fold

cross validation. True positives (TPs) and true negatives (TNs)

were identified as positive and negative samples, respectively. False

positives (FPs) were secretion-negative samples incorrectly identi-

fied as positive; false negatives (FNs) were secretion-positive

samples incorrectly identified as negative. Prediction performance

was tested for sensitivity (TP/(TP+FN)), specificity (TN/(TN+FP)),

and overall accuracy (Q2), and quantified using the Matthews

correlation coefficient (MCC). Q2 and MCC values were

calculated as follows:

MCC~
TP|TN{FP|FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TNzFN)|(TNzFP)|(TPzFN)|(TPzFP)

p ð1Þ

Q2~
TPzTN

TPzTNzFPzFN
ð2Þ

Experimental Verification
For direct experimental verification of our predictions, six b-

galactosidase genes (LacB, CelB, BglZQ, BglKL, GalC168 and

BG42–106) were expressed in P. pastoris (Table S1). Each of these

genes was cloned and inserted into the pPIC9 vector (Invitrogen,

USA) to generate recombinant constructs, cloned into Escherichia

coli Trans1-T1TM (Transgen, China), and then expressed in P.

pastoris strain GS115 (Invitrogen) according to the manufacturer’s

instructions. Recombinant genes were inserted downstream of the

a-mating factor signal of vector pPIC9, and its expression was

controlled by the AOX1 promoter (Figure S2). In addition, the

Table 2. Predicted propensity and the experimental results
on the six b-galactosidase.

Predicted propensity Experiment (%)

Protein No secretion Secretion Intracellular Extracellular

LacB 0.10 0.90 7.761.3 92.360.3

CelB 0.65 0.35 93.062.2 7.062.2

BglKL 0.50 0.50 69.863.3 30.263.3

BglZQ 0.82 0.18 99.660.1 0.460.1

GalC168 0.77 0.23 94.263.8 5.863.8

BG42–106 0.77 0.23 99.860.1 0.260.1

The coding scheme of six b-galactosidase proteins using the Type I PseAAC
mode, with a weight factor (w) of 0.05 and a lambda parameter (l) of 19.
doi:10.1371/journal.pone.0079749.t002

Figure 4. Correlation between the predicted secretion propensity, as determined by Presep, and the extracellular percentage (%)
determined using the experimental method.
doi:10.1371/journal.pone.0079749.g004
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inserted b-galactosidase gene was without its original signal

peptide. Transformed cells were plated onto RDB plates and

incubated at 30uC for 2–3 days until colonies appeared. Twenty-

four positive P. pastoris transformants for each recombinant

construct were randomly selected, according to the manufacturer’s

instructions. Each positive clone was transferred into 20 mL

BMGY medium and cultivated at 30uC in an orbital shaker at

200 rpm for 48 h. Cells were pelleted by centrifugation at

5,0006 g for 5 min, suspended in 10 mL BMMY medium

(containing 0.5% methanol), and then cultured at 30uC for

another 48 h (methanol was added every 12 h at a concentration

of 0.5%); then cell density was measured based on absorbance at

600 nm. Next, the culture was centrifuged and the medium

supernatant was collected to detect extracellular b-galactosidase

activity, determined as described previously [33]. Pelleted cells

were frozen in liquid nitrogen and ground into a fine powder, then

suspended in the appropriate pH buffer. After centrifuged at

5,0006 g for 5 min, the supernatant was used to detect

intracellular b-galactosidase activity. Total protein concentration

was calculated using a protein assay kit (Bio-Rad). For each

recombinant P. pastoris strain, the protein secretion level was

defined as the level of extracellular b-galactosidase activity relative

to total b-galactosidase activity (defined as the sum of all

extracellular and intracellular activity).

Supporting Information

Figure S1 ROC curves of random prediction and Presep
prediction with two different parameters. The parameter

1 means that w is 0.05, l is 19 and the type I coding scheme. The

parameter 2 means that w is 0.05, l is 20 and the type II coding

scheme. The ROC curves were obtained using Random forests

with the 20-fold cross validation test on the Secreprot dataset.

(DOC)

Figure S2 Schematic diagram of the recombinant
constructs.
(DOC)

Table S1 Predicted propensity and the experimental
results on the six b-galactosidases.
(DOC)

Table S2 The hydrophobicity, hydrophilicity, mass,

pK1(alpha-COOH), pK2(NH3) and pI(at 256C) values.
(DOC)
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