
Is nonangiogenesis a novel pathway for cancer progression?
A study using 3-dimensional tumour reconstructions
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The nonangiogenic lung tumour is characterized by neoplastic cells co-opting the pre-existent vasculature and filling the alveoli space.
3-Dimensional reconstruction of the tumour reveals that this particular tumour progresses without neovascularization and there is no
major destruction of the lung’s architectural integrity.
British Journal of Cancer (2006) 94, 1176 – 1179. doi:10.1038/sj.bjc.6603039 www.bjcancer.com
& 2006 Cancer Research UK

Keywords: lung cancer; angiogenesis; 3D reconstruction

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

In recent years, the role of angiogenesis in neoplastic growth has
become controversial. Initially, it was thought that the formation
of new capillaries (neovascularization) usually mediated by
angiogenic molecules released by tumour cells and activated
macrophages was essential for all tumour growth (Perez-Atayde
et al, 1997; Passalidou et al, 2002; Pezzella et al, 1997). Now there is
growing evidence that in certain situations tumours can obtain
sufficient blood supplies from pre-existing vascular beds to grow
without angiogenesis. This form of neoplastic growth has been
termed nonangiogenesis (Holash et al, 1999; Pezzella et al, 2001). A
pattern of nonangiogenic growth has been described by Wesseling
et al (1994) Al in glioblastoma multiforme and by our group in a
large series of non-small cell lung carcinoma (Pezzella et al, 2001).
In the latter, neoplastic cells filled the alveolar spaces (Pezzella
et al, 2001) and showed no evidence of vascularization but grew by
co-opting pre-existing pulmonary blood vessels. These nonangio-
genic cases made up about 16% of the series (Pezzella et al, 1997)
and were more aggressive clinically than the predominant
angiogenic tumours (Pezzella et al, 2001).

To date these studies have given little consideration to the fact
that tumour growth both angiogenic and nonangiogenic occurs in
3 dimensions. In this study, we have used computer aided three-
dimensional (3D) reconstructions to demonstrate the distinct
differences in vascularity and morphology between the nonangio-
genic and angiogenic lung tumours. We also show that in
nonangiogenic tumours the integrity of the lung architecture is
retained while these alveolar entrapped neoplastic cells continue to
thrive without producing new vessels of their own.

MATERIALS AND METHODS

Our model for this reconstruction is non-small cell carcinoma of
the lung. Both angiogenic and nonangiogenic tissues are embedded
in paraffin. The region of the tissue used for the study is 2 cm in
depth. In all, 200 5 mm thick sections of paraffin-embedded tissue
were cut from each case and mounted on slides coated with poly-L-
lysine.

Clinical details of tissue samples

Primary non-small cell lung cancer tissues (angiogenic and
nonangiogenic) were obtained with informed consent from two
patients who underwent radical surgical resection. The normal
tissue was obtained from a patient with a lung secondary who also
underwent radical resection. This research project was approved
by the local ethical committee. The diagnosis was established on
routine formalin-fixed paraffin-embedded material. One section
was stained with haematoxylin and eosin to verify the presence of
viable tumour; another was immunostained for CD34 to assess the
vascular pattern as previously described.

Antigen retrieval

Antigen retrieval is as previously described by Pileri et al (1997).

Immunocytochemistry

Blood vessels and cytoskeleton on the dewaxed sections were
identified by simultaneous immunostaining with 1 : 500 dilution of
anti CD34 antibody QBEnd/10 (DAKO, UK) and 1 : 25 dilution of a
pan-cytokeratin rabbit polyclonal antiserum (Novacastra, UK).
The primary antibody staining was allowed to incubate for 1 h,
followed by a 5 min wash with TBS. Immunodetection was carried
out for blood vessels and cytoskeleton by another simultaneous
1 h incubation with 1 : 200 dilution of both Alexa Fluor 488 goat
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anti-rabbit and Alexa Fluor 568 goat anti-mouse (Molecular
Probes, USA). The immunostained sections were washed in TBS
for 5 min and then mounted in antifade Dako Fluorescent
mounting medium (DAKO, USA) containing a 1 : 500 dilution
of 40,6-diamidine-20-phenylindole dihydrochloride DAPI (Roche
Molecular Biochemicals, UK).

Image acquisition and processing

Specific areas on immunostained sections were examined with the
� 10 Plan fluor objective lens of a Nikon Eclipse E600
Fluorescence microscope and photographed by an interfaced Zeiss
Axiocam (Germany). Photographed images were then captured by
Axiovision software in an interfaced computer. The emitting
fluorescence signals were selected, respectively, by a group of
filters, Dappi, FITC, Tx Red and exhibited with a resolution of 1300
by 1030 pixels of Red Green Blue (RGB). Acquired images were
then batch converted from Axiovision to Photoshop where all
three colours of individual images were superimposed and
consecutive slide images were then stacked on top of each other
for 3D reconstruction/restoration of the spatial orientation of
section images. The stacked image was then imported to Imaris
(Bitplane) software for the 3D rendering of the images.

RESULTS

As we expected, it was evident from the 2D picture and 3D
rendering (supplement) that the architectural contour of the
nonangiogenic lung tumour is a replica of the normal lung. When
we compared the vascular network staining (CD34) of the normal
to the nonangiogenic lung, they appeared to be indistinguishable
from each other. The only difference between the normal and the
nonangiogenic lung is seen when the cytokeratin staining is
superimposed on CD34 staining; then the spongy like morphology
of the normal lung is tumour filled in the nonangiogenic lung
marked by the green cytokeratin fluorescence colour delineating
these tumour cells. These nonangiogenic tumour cells are growing
within the boundaries or confines of the already existing blood
vessels of the lung and this pattern of the tumour growth very
obviously extends beyond the surface to deep within the tissue as
depicted by the 3D (supplement). Also, it is quite clear from the 3D
picture (supplement) that this tumour growth pattern seen in the
nonangiogenic is very distinct from the angiogenic form. The
angiogenic cancer has no defined pattern of growth. Its vascular
network is chaotically distributed with many blood vessels dilating
twice to triple the size of adjoining vasculature. Also some of these
angiogenic blood vessels appear to have blind endings while the
eruption of others incite destruction of pericytes leading to the
leakiness of blood vessels usually observed in angiogenic tumours.

DISCUSSION

For this experiment, we chose to use the fluorescence staining
technique because its advantage over regular optical microscopy is
the convenience of selectively observing the structure of the nuclei
(blue), vasculature (red) and cytokeratin (green) staining indivi-
dually. With this technique, there is also the option to superimpose
any of the image staining upon each other. This way, we were able
to trace specific regions and easily construct the 2D (Figure 1) and
3D morphology of the normal, nonangiogenic and angiogenic lung
tumours.

What we have done with this study is to provide morphological
evidence that a nonangiogenic tumour phenotype does exist. This
then raises the question of whether this nonangiogenic phenotype
has relevant biological differences to the angiogenic form. If this
were the case, it would have major implications with respect to any
antiangiogenic treatments.

Studies in mice have shown that not all experimental metastases
respond to antiangiogenic agents (Breast Cancer Progression
Working Party, 2000). Clinical trials results suggest the possibility
that some of these unresponsive tumours are of a distinct
phenotype from the responsive angiogenic tumours (Gasparini
et al, 2005). Studies in our laboratory have shown evidence of a
variant lung tumour phenotype (the nonangiogenic form) that
grows filling the alveoli without the neovascularization of
angiogenesis. The idea that these alveolar filling neoplastic cells
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Figure 1 (A) H&E slide of normal lung with a spongy appearance of the
alveoli membrane, which are characteristically lined by thin blood vessels.
(B) Nonangiogenic lung tumour on H&E with the filling of alveoli by
neoplastic cells, a lack of parenchymal destruction, as well as an absences of
neovascularization and tumour associated stroma. The only blood vessels
present are those of the alveoli septa. (C) H&E of angiogenic lung tumour
with the hallmark destruction of normal lung architecture with the
production of tumour-associated stroma and of new blood vessels
erratically scattered within a sea of neoplastic cells.
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are mostly likely thriving through co-opting of the pre-existent
normal lung blood vessels is supported by our 2D (Figure 2) and
3D models (Figure 3) (supplemental). In contrast, the angiogenic
tumours have no distinct patterns of growth and consist of
heterogeneous amalgams of blind ended, tortuous blood vessels of
varied sizes (Figure 4).

Having established the existence of a putative nonangiogenic
tumour phenotype, we propose that a possible explanation for this
phenomena could be as a result of the evolution of tumour genes
via clonal selection. Owing to hypoxic events that frequently occur
during cancer cell progression, genes such as those governing
efficient regulation of oxygen homeostasis could be properties
clonally coselected for by evolving cancer cells (Pugh and Ratcliffe,
2003). This suggestion is supported by Hu et al (2005) who have
described finding higher levels of genes coding for proteins
involved in mitochondrial metabolism in nonangiogenic tumours.
It is also known that clonal chromosomal changes found in
malignant tumours have a strong correlation with tumour
morphology (Gisselsson et al, 2001; Gisselsson, 2002). Hence, we
suggest that by means of natural selection either through
interaction between the microenvironment and the variability
inherent in cell populations (Kozlov, 1996) tumours cells have
evolved to this nonangiogenic form in an effort to establish a
survival advantage by being able to highly regulate their
mitochondria and co-opting pre-existing vessels.
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Figure 2 (A) 2D rendering of a normal lung. (B and C) Orthogonal
views of the normal lung with the staining of the vascular network followed
by the superimposition of cytokeratin staining.
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Figure 3 (A) 2D of Nonangiogenic cancerous lung with blood vessel
lining still intact and similar to that of the normal lung except that in the
former, the alveoli are filled with tumours. (B) 2D orthogonal view showing
that the blood vessel staining of the nonangiogenic lung looks like a replica
of a normal lung with no destruction to the vascular network. Followed by
the superimposition of the cytokeratin staining showing neoplastic cell filled
alveoli. (C) 2D orthogonal view of the nonangiogenic tumour of a large
long blood vessel that remains intact and snakes through from the surface
deep into the tissue with not evidence of vascular eruption.
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Figure 4 2D of angiogenic lung showing tortuous blood vessels of
heterogeneous sizes. There evidently is no retention of the original
architecture of the normal lung’s blood vessel as in the nonangiogenic
tumour.
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