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ABSTRACT
Objectives: To derive a model of paediatric
postdischarge mortality following acute infectious
illness.
Design: Prospective cohort study.
Setting: 2 hospitals in South-western Uganda.
Participants: 1307 children of 6 months to 5 years
of age were admitted with a proven or suspected
infection. 1242 children were discharged alive
and followed up 6 months following discharge.
The 6-month follow-up rate was 98.3%.
Interventions: None.
Primary and secondary outcome measures: The
primary outcome was postdischarge mortality
within 6 months following the initial hospital
discharge.
Results: 64 children died during admission (5.0%)
and 61 died within 6 months of discharge (4.9%).
Of those who died following discharge, 31 (51%)
occurred within the first 30 days. The final adjusted
model for the prediction of postdischarge mortality
included the variables mid-upper arm circumference
(OR 0.95, 95% CI 0.94 to 0.97, per 1 mm increase),
time since last hospitalisation (OR 0.76, 95% CI 0.61
to 0.93, for each increased period of no
hospitalisation), oxygen saturation (OR 0.96, 95% CI
0.93 to 0·99, per 1% increase), abnormal Blantyre
Coma Scale score (OR 2.39, 95% CI 1·18 to 4.83),
and HIV-positive status (OR 2.98, 95% CI 1.36 to
6.53). This model produced a receiver operating
characteristic curve with an area under the curve of
0.82. With sensitivity of 80%, our model had a
specificity of 66%. Approximately 35% of children
would be identified as high risk (11.1% mortality
risk) and the remaining would be classified as low
risk (1.4% mortality risk), in a similar cohort.
Conclusions: Mortality following discharge is a
poorly recognised contributor to child mortality.
Identification of at-risk children is critical in
developing postdischarge interventions. A simple
prediction tool that uses 5 easily collected variables
can be used to identify children at high risk of death
after discharge. Improved discharge planning and
care could be provided for high-risk children.

BACKGROUND
Acute infectious diseases continue to be the
most important contributor to the 6 million
children younger than 5 years who die every
year, particularly in Africa.1 It is widely
accepted that as a global community we have
fallen short in reducing under-5 mortality, as
demonstrated by the fact that most develop-
ing countries, especially those in sub-Saharan
Africa will not achieve the fourth millennium
development goal of a two-thirds reduction
in child mortality.2 An important but
neglected contributor to infectious
disease-related mortality is the vulnerable
period following hospital discharge.
A recent systematic review of paediatric

studies assessing postdischarge mortality in
resource-poor countries found that post-
discharge mortality often exceeds in-hospital

Strengths and limitations of this study

▪ The primary strengths of this study are prospect-
ive and rigourous data collection, and near-
complete follow-up.

▪ Further strengths include the derivation of
multiple similar models to allow prediction in
circumstances where not all variables may be
available.

▪ Regression models can easily be incorporated
into a mobile health-based tool for simple and
rapid prediction by health workers.

▪ The primary limitations of this study are relatively
few outcomes, and lack of external validity.
Despite few outcomes, our models performed
quite well.

▪ These limitations highlight the need for further
research on this important but neglected topic.

▪ The identification of high risk does not imply
that risk can be reduced. Further work is needed
on the development of postdischarge interven-
tions to reduce this burden.
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mortality.3 Thus, attention to at-risk populations post dis-
charge is sorely needed. However, while several factors
were consistently found to be associated with mortality
following discharge, including malnutrition, HIV and
severe pneumonia, easy identification is essential in
order to develop targeted postdischarge interventions.
Ideally, the unacceptably high risk of morbidity and mor-
tality following discharge suggests that all children
should be afforded follow-up care. However, significant
resource constraints in the countries most affected by
this issue preclude any significant intervention for all
discharged children. Therefore, the ability to quickly
and effectively identify at-risk children would be an
invaluable step towards the implementation of life-saving
postdischarge interventions. An important and easily
identified dichotomy among hospital admissions are
infectious diseases and non-infectious disease-related
admissions such as trauma, cancer and congenital dis-
eases. Although further divisions based on aetiology of
infection or an underlying risk factor, such as malnutri-
tion or HIV status, may be an attractive approach in risk
stratification, significant difficulties in disease definitions
and often overlapping risks makes this approach very dif-
ficult. The development of a robust yet simple
risk-scoring algorithm could significantly advance a sys-
tematic and evidence-based approach in postdischarge
care.
The purpose of this study was to derive simple predic-

tion models that could efficiently stratify children
according to postdischarge mortality risk.

METHODS
Population
Mbarara, a city of approximately 195 000, is the largest
city in the South-western region of Uganda. This study
was conducted at two hospitals in Mbarara. The
Mbarara Regional Referral Hospital (MRRH) is the main
referral hospital in South-western Uganda. It is a public
hospital funded by the Uganda Ministry of Health.
MRRH is associated with the Mbarara University of
Science and Technology, and is a primary training site
for its healthcare graduates. The paediatric ward admits
approximately 5000 patients per year. The Holy
Innocents Children’s Hospital (HICH) is a faith-based
children’s hospital offering subsidised fee-for-service for
outpatient and in-patient care in Mbarara. The HICH
admits approximately 2500 patients per year.
This was a prospective observational study conducted

between March 2012 and December 2013. This study
was approved by the institutional review boards at the
University of British Columbia (Canada) and the
Mbarara University of Science and Technology
(Uganda), as well as the Uganda National Council for
Science and Technology and Office of the President.
This study was voluntary and written informed consent
was provided by a parent or guardian of all children
who were enrolled.

Eligibility
All children aged 6 months to 5 years who were admitted
with a proven or suspected infection were eligible for
enrolment. The upper age limit was chosen to coincide
with the under- 5 target group of the millennium devel-
opment goals. The lower age limit was chosen for logis-
tic (census enrolment with limited research staff) and
statistical considerations (group homogeneity).
Participants already enrolled in the study were not eli-
gible to be enrolled during subsequent admissions.

Study procedure
Following enrolment, a research nurse obtained and
recorded clinical signs including a 1 min respiratory
rate, blood pressure (automated), axillary temperature,
Blantyre Coma Scale (BCS) score, and by using the
Phone Oximeter,4 the 1 min photoplethysmogram
(PPG), blood oxygen saturation (SpO2) and heart rate.
Anthropometric data (height, weight, mid-upper arm
circumference (MUAC)) were also measured and
recorded. Age-dependent demographic variables col-
lected at enrolment were converted to age-corrected
z-scores according to the WHO Child Growth
Standards.5 The age-corrected heart rate and respiratory
rate z-scores were obtained by standardising the raw
measurements using the median and SD values provided
by Fleming et al.6 The age-corrected z-scores for systolic
blood pressure were calculated using participants’
height, according to the procedures previously
described.7

A blood sample was taken for measurement of haemo-
globin, HIV and a malaria blood smear (microscopy).
HIV status was determined using the national rapid diag-
nostic test serial algorithm.8 All positive tests on the
Determine Antibody Test were confirmed by a separate
test (UniGold). Children under 12 months of age with a
positive test were confirmed using PCR. Haemoglobin
was measured on a Beckman Coulter Ac.T Hematology
Analyzer.
An interview was conducted with the participant’s

parent/guardian and information about previous admis-
sions, distance from health facility, transportation costs,
bed-net use, maternal education, maternal age, maternal
HIV status, history of sibling deaths and drinking water
safety were elicited. Participants received routine care
during their hospital stay and were discharged at the dis-
cretion of the treating medical team. The discharge
status of all enrolled participants was recorded as death,
referral, discharged alive, and discharged against
medical advice. The diagnoses made by the medical
team were also recorded. On discharge, families with
active telephone lines were contacted at months 2 and 4
to determine the vital status of the child. Families with
no telephone access received in-person follow-up by a
field officer. At approximately 6 months following dis-
charge, all participants received in-person follow-up. In
addition to postdischarge vital status, health seeking and
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rehospitalisations since the initial discharge were also
recorded.
Study data were collected and managed using

REDCap electronic data capture tools hosted at the
Child and Family Research Institute, Vancouver,
Canada.9 REDCap (Research Electronic Data Capture)
is a secure, web-based application designed to support
data capture for research studies and provides: (1) an
intuitive interface for validated data entry; (2) audit
trails for tracking data manipulation and export proce-
dures; (3) automated export procedures for seamless
data downloads to common statistical packages and (4)
procedures for importing data from external sources.
Candidate predictor variables were derived using a

two-round modified Delphi approach. Briefly, 23 experts
in relevant disciplines were solicited to complete an
online survey and provide feedback on an initial list of
proposed predictors. Predictors were evaluated on con-
siderations of utility as predictors, availability, cost and
resource-related applicability. Experts were asked to
provide additional potential variables which were then
evaluated during a second round of surveys. Data was
evaluated by the research team and a final list of candi-
date predictor variables for modelling was then
determined.10

Outcomes
The primary outcome was postdischarge mortality at any
time during the 6-month postdischarge period.

Sample size
For the derivation of prediction models, standard calcu-
lations of sample size do not apply since these calcula-
tions do not account for the model development
process (ie, selection of variables and the optimisation
to achieve specified sensitivity and specificity cut-offs).
For this study, we determined the sample size needed to
validate the derived model and plan to use an equal
number of patients for the derivation phase. For the val-
idation study, assuming that the derived model achieves
a sensitivity of 85% with at least 50% specificity, 100
events, corresponding to a total sample of approximately
1000 live-discharges (assuming a postdischarge mortality
rate of 10%), would be needed to obtain 80% power for
ensuring that the lower 95% confidence limit on sensi-
tivity will be at least 75%. Since resources are scarce, a
higher sensitivity at the expense of specificity would
further limit practical application of such a model. An
interim analysis of the study showed that the post-
discharge mortality rate would likely not exceed 5% and
enrolment was stopped when 1307 participants were
enrolled.

Statistical analysis
All variables were assessed using univariate logistic
regression to determine their level of association with
the primary outcome. Continuous variables were
assessed for model fit using the Hosmer-Lemeshow

test.11 Missing data was imputed by the method of multi-
variate imputation using chained equations.12 Following
univariate analysis, candidate models were generated
using a stepwise selection procedure minimising
Akaike’s Information Criterion (AIC). This method is
considered asymptotically equivalent to cross-validation
and bootstrapping.13 14 All models generated in this
sequence having AIC values within 10% of the lowest
value were considered as reasonable candidates. The
final selection of a model was judged on model parsi-
mony (the simpler the better), availability of the predic-
tors (with respect to minimal resources and cost), and
the attained sensitivity (with at least 50% specificity). All
analyses were conducted using SAS V.9.3 (Carey, North
Carolina, USA) and R 3.1.3 (Vienna, Austria; http://
www.R-project.org). Additional models were created
using the above process but with the absence of key vari-
ables used in deriving the primary model, including a
model not including any variables likely to change over
the course of admission. This was done to increase appli-
cation in a variety of settings were certain variables may
not be available.

RESULTS
During the period of study, 1822 participants were
screened for eligibility, of which 516 (28%) were
excluded. Reasons for exclusion included isolated mal-
nutrition (n=192), readmission of previously enrolled
participant (n=51), refusal of consent (n=22), cardiac
disease (n=19), poisoning/drug reaction (n=19) and
cancer (n=12) as well as a plethora of other non-
infectious admissions (n=165). In total, 1307 participants
admitted with a presumed or proven infection were
enrolled at the time of their admission. During the
course of admission, 64 (5.1%) participants died, and
1242 (94.9%) were discharged alive (figure 1). Among
the children discharged, 54% were male, and the
median age was 18.1 months (IQR 10.8–34.6).
Pneumonia, malaria and gastroenteritis were the most
common clinical discharge diagnoses and were present
in 31%, 50%, and 8% of discharged participants,
respectively. According to anthropometric variables col-
lected at admission, 30% of participants were considered
underweight (weight for age z-score <−2), 35% were
considered wasted (weight for height/length z-score <
−2), and 29% were considered stunted (height/length
for age z-score <−2) (table 1). Missing observations were
minimal (table 2).

Postdischarge mortality
The rate of successful follow-up during the post-
discharge period was 98.3%, with only six participants
receiving no follow-up during this period. Overall, 61
(4.9%) children died following discharge. Of those who
died, the median time to death was 30 days (IQR 7–81).
Of the 61 deaths, 41 (67%) occurred outside of a hos-
pital and 20 (33%) occurred during a hospital
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readmission. Thirty variables were tested for univariate
associations with postdischarge mortality (table 2).
MUAC was the variable with the highest area under the
receiver operating characteristic (ROC) curve, 0.76
(95% CI 0.70 to 0.83), and was highly significant
(p<0.0001). Other anthropometric variables, including
weight for age z-score, length/height for age z-score,
and weight for length/height z-score were also highly
associated with postdischarge mortality but had much
lower areas under the ROC curve. Oxygen saturation
was the most predictive of the non-anthropometric vari-
ables, with an area under the ROC curve of 0.65 (95%
CI 0.57 to 0.73), followed by age and parasitaemia with
areas under the ROC curve of 0.64 (95% CI 0.56 to
0.70) and 0.60 (95% CI 0.55 to 0.65), respectively. Other
variables achieving statistical significance, but showing
lower areas under the ROC curve, included systolic
blood pressure, axillary temperature, HIV status, abnor-
mal BCS (yes vs no), duration of illness prior to admis-
sion >7 days and time since last hospitalisation (analysed
as continuous variable and ordered as <7 days, 7 to
30 days, 30 days to 1 year, >1 year, and never).
Haemoglobin level, history of sibling deaths, maternal
HIV status, maternal education and distance from admit-
ting health facility were not associated with post-
discharge mortality in the univariate analysis.

Multivariate prediction models
One primary model and three alternate models of equal
sensitivity were developed for the prediction of 6-month
postdischarge mortality (table 3). Two alternate models
were developed while systematically excluding oxygen
saturation, and HIV status, respectively, since these may
not be routinely available in all clinical settings. A fourth
model was developed excluding variables most likely to
change over the course of admission (ie, clinical vari-
ables), giving the model utility for variables collected at
any time throughout the hospital stay. The primary
model included MUAC in mm, oxygen saturation
(SpO2) at admission (per cent), time since previous hos-
pitalisation, the presence of abnormal BCS score at
admission, and HIV status. The area under the ROC
curve was 0.82 (95% CI 0.76 to 0.87) (figure 2). The
model, at a cut-off of >80% sensitivity, had a final sensi-
tivity of 82% (95% CI 0.75% to 0.87%) and a specificity
of 66% (95% CI 64% to 69%). In a population similar
to this model derivation cohort, we would expect the
positive predictive value to be 11.1% and the negative
predictive value to be 98.6% (table 4). The final model
equation for the primary model was: logit(p)=7.71 +
(−0.041; MUAC) + (−0.041; SpO2) + (−0.28; time
period since last hospitalisation) + (1.09; HIV positive) +
(0.87; BCS<5).

Figure 1 Consort diagram of

study flow.
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Model 2 excluded oxygen saturation (table 3). The
final model included MUAC, time since last hospitalisa-
tion, HIV status and the presence of an abnormal BCS
score. The area under the ROC curve was 0.81 (95% CI
0.75 to 0.87). This model had a sensitivity of 80% (95%
CI 70% to 90%) and specificity of 68% (95% CI 65% to
70%), and would generate a positive and negative pre-
dictive value of 11.3% and 98.5%, respectively, in a
population similar to the derivation cohort.
The third model excluded HIV status (table 3). This

model had a final area under the ROC curve of 0.80
(95% CI 0.74 to 0.86), and a sensitivity of 80% (95% CI
70% to 90%) and specificity of 63% (95% CI 60% to
66%). The positive and negative predictive values were
10.2% and 98.4%, respectively.
The final model excluded all time-changing clinical

parameters (eg, vital signs, SpO2, coma score, etc) so as

to be applicable to data collected at any time during
admission, including discharge. This model contained
only three variables, MUAC, HIV status and the most
recent hospitalisation. This model achieved good per-
formance characteristics including an area under the
curve (AUC) of 0.80 (95% CI 0.73 to 0.86). The sensitiv-
ity was 82% (95% CI 72% to 92%) and the specificity
was 61% (95% CI 59% to 64%), and the positive and
negative predictive values were 9.9% and 98.5%,
respectively.

DISCUSSION
This study represents the first systematic approach to the
development of a simple risk-scoring algorithm for post-
discharge mortality following admission for an acute
infectious illness using prospectively collected data. The
variables used in these models are easy to collect and
include MUAC, oxygen saturation, BCS score, time since
last hospitalisation, and HIV status. Four prediction
models were developed to ensure its effective application
in a variety of clinical circumstances. All four models
had very similar performance characteristics with the
most parsimonious model including only MUAC, HIV
status and time since last hospitalisation, with only mar-
ginally lower AUC than the full model with five vari-
ables. The models which were developed use only
variables collected at admission and can, therefore,
easily be incorporated into the discharge planning
process during the hospital stay. Using these models, the
identification of at-risk children would ensure that most
children likely to die in the postdischarge period (about
80%) would be identified. These children have an
average mortality risk of approximately over 10%, justify-
ing the exploration of potentially life-saving interven-
tions. Interventions found to be effective could likely be
brought to scale without inordinately burdening the
already stressed healthcare systems.
The development and implementation of predictive

models into routine clinical care is not common in
resource-poor countries. The high prevalence of overlap-
ping diseases (such as pneumonia, malaria and malnu-
trition), and the difficulty in creating reliable diagnostic
algorithms to identify eligible populations cause signifi-
cant difficulty in the application of disease-specific
models. To create models with uptake potential, these
would need to be linked with existing clinical practices
and resources, and would also require a shift in how
infectious illness is viewed—not as an episodic disease
but as a continuum beyond the acute episode. The
Integrated Management of Childhood Illness (IMCI),
while not a predictive tool per se, is an algorithm-based
approach for the diagnosis and management of acute
infectious illnesses.15 IMCI has seen significant uptake
in many countries throughout sub-Saharan Africa, and
has provided a systematic approach to the care of chil-
dren within health facilities. More importantly, it has
been shown to improve care in the regions where it has

Table 1 General characteristics of discharged

participants (N=1242)

Characteristic Frequency (%)

Age, months

<12 378 (30)

12–24 m 379 (30)

24–36 m 198 (16)

36–48 m 150 (12)

>48 m 138 (11)

Male sex 682 (55)

Length of stay, days

<3 487 (39)

3–5 487 (39)

6–10 173 (14)

>10 96 (8)

Discharge AMA 120 (10)

Diagnoses

Pneumonia 390 (31)

Clinical malaria 621 (50)

Parasitaemia 418 (34)

Gastroenteritis 96 (8)

SSTI 7 (0.5)

Meningitis 32 (2.5)

Tuberculosis 17 (1.4)

Measles 15 (1.2)

Comorbidities

HIV 58 (4.7)

Sickle cell 7 (0.5)

Tuberculosis 21 (1.7)

Admission anthropometric characteristics

Underweight (WAZ<−2) 347 (30)

Severe underweight (WAZ<−3) 188 (15)

Wasting (WHZ<−2) 436 (35)

Severe wasting (WHZ<−3) 232 (17)

Stunting (HAZ<−2) 357 (29)

Severe stunting (HAZ<−3) 187 (15)

MUAC<125 mm 183 (15)

MUAC<115 mm 96 (7.7)

AMA, against medical advice; HAZ, height/length for age z-score;
MUAC, mid-upper arm circumference; SSTI, skin and soft tissue
infection; WAZ, weight for age z-score; WHZ, weight for height/
length z-score.
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been implemented.16 However, the IMCI does not
address the important issue of postdischarge vulnerabil-
ity and therefore, fails to provide any guidance beyond
the period of acute illness in the hospital, even though
the postdischarge period will claim as many lives as the
acute hospital period. The integration of a postdischarge
risk score into IMCI could begin to address this need.
This study is participant to several limitations.

A primary limitation of this study is the relatively low
number of outcomes observed. Although our initial
sample size estimates were to observe 100 outcomes, we
only observed 61. Our comprehensive follow-up of parti-
cipants ensured that missed outcomes are unlikely.

Further, the performance of our model was good, with
the lower limits of the calculated 95% CIs for AUC, sen-
sitivity and specificity remaining in an acceptable range.
A further limitation is the lack of external validity. While
our research sites represented the typical East African
context, further research is required to ensure the valid-
ity of these models elsewhere, especially in areas with sig-
nificant differences in the distribution of important
diseases such as malaria, diarrhoea and pneumonia, and
malnutrition. A limitation to application of the predic-
tion models developed is that the risk score is based on
a regression equation and cannot be easily computed
without the assistance of a computer or similar device.

Table 2 Univariate analysis of potential predictor variables

Variable

Missing

observation OR (95% CI) AUC (95% CI) p Value

Male sex 0 0.90 (0.54 to 1.51) 0.51 (0.45 to 0.58) 0.700

Age (months) 3 0.97 (0.97 to 0.97) 0.64 (0.56 to 0.70) 0.003

MUAC (mm) 14 0.97 (0.96 to 0.98) 0.76 (0.70 to 0.83) <0.001

Weight for age z-score 5 0.66 (0.57 to 0.76) 0.68 (0.60 to 0.76) <0.001

Weight for length/height z-score 15 0.81 (0.72 to 0.91) 0.62 (0.55 to 0.70) <0.001

Length/height for age z-score 16 0.79 (0.70 to 0.89) 0.63 (0.56 to 0.71) <0.001

HR for age z-score 3 0.86 (0.74 to 0.99) 0.61 (0.53 to 0.69) 0.036

HR (raw) 0 1.00 (0.99 to 1.01) 0.53 (0.47 to 0.62) 0.728

RR for age z-score 3 0.99 (0.92 to 1.06) 0.53 (0.45 to 0.60) 0.747

RR (raw) 0 1.01 (1.00 to 1.03) 0.57 (0.50 to 0.63) 0.100

SBP z-score 21 0.94 (0.79 to 1.12) 0.50 (0.45 to 0.61) 0.526

SBP (raw) 6 0.98 (0.96 to 1.00) 0.58 (0.50 to 0.66) 0.018

DBP (raw) 6 0.99 (0.97 to 1.01) 0.55 (0.50 to 0.65) 0.255

Temperature (transformed) 0 1.02 (0.90 to 1.16) 0.51 (0.45 to 0.57) 0.789

Temperature (raw) 0 0.76 (0.62 to 0.93) 0.58 (0.50 to 0.65) 0.007

SpO2 (raw) 13 0.94 (0.92 to 0.96) 0.65 (0.57 to 0.73) <0.001

SpO2 (transformed) 13 1.04 (1.02 to 1.05) 0.65 (0.57 to 0.73) <0.001

HIV positive (vs negative) 25 5.21 (2.55 to 10.65) 0.57 (0.52 to 0.62) <0.001

Haemoglobin (g/dL) 10 0.95 (0.87 to 1.03) 0.56 (0.49 to 0.63) 0.227

Blantyre Coma Scale <5 (vs 5) 0 2.40 (1.27 to 4.57) 0.56 (0.50 to 0.61) 0.007

Positive blood smear (vs negative) 11 0.33 (0.16 to 0.68) 0.60 (0.55 to 0.65) 0.002

Illness >7 days prior to admission 1 0.50 (0.30 to 0.83) 0.58 (0.52 to 0.65) 0.008

Time since last hospitalisation* 3 0.75 (0.62 to 0.90) 0.59 (0.52 to 0.67) 0.003

Sibling deaths 0 1.54 (0.89 to 2.65) 0.55 (0.48 to 0.61) 0.121

Number of children in family 2 1.02 (0.92 to 1.13) 0.50 (0.43 to 0.58) 0.750

Boil all drinking water 0 0.82 (0.47 to 1.42) 0.52 (0.46 to 0.58) 0.471

Maternal age (years) 0 1.00 (0.97 to 1.04) 0.52 (0.41 to 0.57) 0.892

Maternal HIV (ref: negative)

HIV positive, n=142 0 1.79 (0.87 to 3.67) 0.54 (0.48 to 0.61) 0.113

HIV status unknown, n=220 0 1.27 (0.64 to 2.52) 0.499

Maternal education (ref: <primary 3)

Primary 3–7, n=630 0 1.18 (0.62 to 2.23) 0.54 (0.50 to 0.63) 0.619

Some secondary, n=269 0 0.72 (0.31 to 1.70) 0.457

Postsecondary, n=93 0 1.18 (0.41 to 3.36) 0.762

Bed-net use (ref: never)

Sometimes 0 1.00 (0.48 to 2.09) 0.52 (0.45 to 0.59) 0.996

Always 0 0.85 (0.46 to 1.58) 0.612

Distance from hospital (ref: <30 min)

30–60 0 0.71 (0.31 to 1.64) 0.56 (0.49 to 0.62) 0.421

>60 0 1.30 (0.70 to 2.41) 0.401

*Ordered as <7 days, 7 to 30 days, 30 days to 1 year, >1 year and never (analysed as continuous and coded and 1–5, respectively).
AUC, area under the curve; DBP, diastolic blood pressure; HR, heart rate; MUAC, mid-upper arm circumference; RR, respiratory rate; SBP,
systolic blood pressure.
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However, with the increasing prevalence of mobile
phones in developing countries, health interventions are
increasingly focused on utilising the computational
power of mobile phones to implement life-saving tech-
nology. Several important health interventions use
mobile technology to improve care.17–19

It is clear that malnutrition plays a major role in post-
discharge mortality. MUAC provided a significant pro-
portion of the predictive power in our models by
providing an AUC of 0.76, only 7% lower than the final

full model. No models meeting our prespecified criteria
could be developed without the use of any anthropo-
morphic measure. The importance of malnutrition has
also been clearly demonstrated in other studies of post-
discharge mortality.20–22 Although first described over
50 years ago, environmental enteropathy (also called
tropical enteropathy or environmental enteric dysfunc-
tion) has received significant attention in recent years. It
has been suggested that changes in the gut microbiome
and the small intestinal wall (flattened villi,

Table 3 Models developed for prediction of 6-month postdischarge mortality

Variable Regression estimate p Value OR (95% CI)

Model 1—primary model, intercept=7.7172

MUAC −0.0462 <0.0001 0.95 (0.94 to 0.97)

SpO2 −0.0411 0.0029 0.96 (0.93 to 0.99)

Time since last hospitalisation −0.2775 0.0085 0.76 (0.62 to 0.93)

HIV positive 1.0915 0.0064 2.98 (1.36 to 6.53)

Abnormal BCS score 0.8723 0.0150 2.39 (1.18 to 4.83)

Model 2—model without SpO2, intercept=4.4538

MUAC −0.0505 <0.0001 0.95 (0.94 to 9.97)

Time since last hospitalisation −0.2503 0.0153 0.78 (0.64 to 0.95)

HIV positive 1.0902 0.0061 2.98 (1.37 to 6.48)

Abnormal BCS score 1.0664 0.0022 2.91 (1.47 to 5.75)

Model 4—model without HIV, intercept=8.2813

MUAC −0.0492 <0.0001 0.95 (0.94 to 0.97)

SpO2 −0.0412 0.0027 0.96 (0.93 to 0.99)

Time since last hospitalisation −0.2870 0.0058 0.75 (0.61 to 0.92)

Abnormal BCS score 0.8040 0.0248 2.23 (1.11 to 4.51)

Model 4—model without clinical variables, intercept=4.4511

MUAC −0.0492 <0.0001 0.95 (0.94 to 0.97)

HIV positive 1.0143 0.0108 2.76 (1.26 to 6.01)

Time since last hospitalisation −0.2458 0.0164 0.78 (0.64 to 0.96)

BCS, Blantyre Coma Scale; MUAC, mid-upper arm circumference.

Figure 2 Performance of the

primary prediction model derived

with data from admission (AUC,

area under the curve; NPV,

negative predictive value; PPV,

positive predictive value; ROC,

receiver operating characteristic;

Sens, sensitivity; Spec,

specificity).
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inflammation and increased permeability) soon after
birth can lead to early and irreversible stunting, frequent
diarrhoeal illness and persistent systemic subclinical
inflammation.23–26 These appear to promote a vicious
cycle of infection and malnutrition. While difficult to
address, a focus on nutrition (micronutrient and macro-
nutrient) before, during and following the acute phase
of illness may reduce the exacerbation of this cycle. Half
of the children who died during the course of this study
did so after >30 days following discharge. Therefore,
emphasis must also be placed on preventing reinfection
in vulnerable children. Promotion of good health behav-
iour (including hygiene) during the postdischarge
period is, therefore, likely to play an important role.
One further area for intervention is education on

timely health seeking. Sixty-seven per cent of the deaths
in this study occurred outside of a hospital context, but
28% of the out-of hospital deaths occurred on the way to
hospital. The education of mothers on the early warning
signs of recurrent illness should also be emphasised
during discharge since the common perception may be
that recovery from infection brings a child back to a base-
line level of risk, which is clearly not true. Since all chil-
dren were enrolled during a hospital admission, physical
inaccessibility was generally not an initial barrier. A previ-
ous study on the hospital burden of paediatric acute
lower respiratory infections found that although 62% of
children are treated in the hospital, 80% of deaths occur
outside of the hospital.27 While this study did not address
the timing of the out-of-hospital deaths in relation to the
hospital visit, it is possible that many of these deaths
occurred in the vulnerable months following discharge.

CONCLUSION
This study has derived a parsimonious risk-scoring tool
for paediatric postdischarge mortality. Further work is
required in external validation of this tool and for the
development of effective postdischarge interventions.
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