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NEURAL REGENERATION RESEARCH 

Genetic targeting of astrocytes to combat 
neurodegenerative disease

Astrocytic Response to Neurodegeneration
Astrocyte signaling and changes in cellular behavior have 
been associated with a wide variety of neurodegenerative 
diseases, including amyotrophic lateral sclerosis (ALS) (Pe-
har et al., 2017), Parkinson’s disease (PD) (Miyazaki and 
Asanuma, 2017), Huntington’s disease (Hsiao et al., 2013), 
and Alzheimer’s disease (AD) (Assefa et al., 2018). Whether 
these changes represent a protective/restorative response or 
a compounding, injurious role is still a matter of controversy. 
Astrocytes secrete a variety of soluble small molecules and 
proteins which likely contribute both to normal neural func-
tioning and to the central nervous system (CNS) response 
to injury (Jha et al., 2018). However, the precise functions of 
many of these astrocytic-secreted factors remain unclear (Jha 
et al., 2018). 

Astrocytes respond to neural injury or disease through 
complex and heterogeneous changes in gene expression and 
glial cell function known as reactive gliosis (Anderson et al., 
2014). Reactive gliosis is necessary for proper recovery from 
brain injury (Anderson et al., 2014; Pekny et al., 2014; Choi 
et al., 2018), but can also have damaging effects (Anderson 
et al., 2014; Pekny et al., 2014). A wide variety of signaling 
pathways and mechanisms can induce astrocytes to initiate 
an immune response, including local hypoxia (Chavez et al., 
2006; Badawi et al., 2012; Huang et al., 2014; Ramamoorthy 
et al., 2019), mast cell infiltration (Kempuraj et al., 2017; 
Kempuraj et al., 2019), microglial signaling (Kirkley et al., 
2017), myelin debris (Ponath et al., 2017), and inflamma-
tion/growth factors released by damaged neurons (Cassina 
et al., 2005; Gontier et al., 2015). Damaged neurons them-
selves release microRNAs and other factors also capable of 
driving astrocytes toward an inflammatory response (Hoye 

et al., 2018).
Protein aggregation, a common feature in various neu-

rodegenerative disorders, can mediate astrocyte activation 
(Kovacs et al., 2017). While astrocytes are generally more 
resistant to the oxidative stress of misfolded protein ag-
gregation as compared to neurons (Zhao et al., 2017), the 
accumulation of such proteins can interfere with healthy 
astrocyte functions (Croisier and Graeber, 2006; Fellner et 
al., 2011; Lim et al., 2018), and lead to astrocytic-mediated 
neuroinflammation (Sankar et al., 2018). Reactive astrocytes 
cluster together around amyloid plaques and tau tangles in 
post-mortem tissue samples taken from AD patients (Ser-
rano-Pozo et al., 2011). In healthy murine astrocytes, the 
over-accumulation of amyloid-β (Aβ) triggers an astrocytic 
immune response (Sankar et al., 2018). Fibrinogen plaques, 
a common feature in AD, multiple sclerosis, stroke, and 
traumatic brain injury, can also mediate astrocyte activation 
(Clark et al., 2018). Similarly, the aggregation of α-synuclein, 
a key step in the pathogenesis of PD, can be directly passed 
from neurons to astrocytes, triggering an astrocyte-medi-
ated inflammatory response (Lee et al., 2010a, b). Mice that 
over-express a PD-associated mutant form of α-synuclein 
in an astrocyte-specific manner have been shown to display 
Parkinsonian motor symptoms (Cu et al., 2010). Analogous-
ly, expression of mutant huntingtin protein in murine as-
trocytes leads to an age-dependent recapitulation of certain 
aspects of Huntington’s disease symptomatology (Bradford 
et al., 2009). These data taken together suggest that astro-
cyte-mediated neuroinflammation, triggered by protein ag-
gregation may be an important potential therapeutic target 
for treating neurodegenerative disorders. While astrocytes 
are not the resident immune cells of the CNS, a role canon-

Abstract
Astrocytes, glial cells that interact extensively with neurons and other support cells throughout the central 
nervous system, have recently come under the spotlight for their potential contribution to, or potential 
regenerative role in a host of neurodegenerative disorders. It is becoming increasingly clear that astrocytes, 
in concert with microglial cells, activate intrinsic immunological pathways in the setting of neurodegener-
ative injury, although the direct and indirect consequences of such activation are still largely unknown. We 
review the current literature on the astrocyte’s role in several neurodegenerative diseases, as well as high-
lighting recent advances in genetic manipulation of astrocytes that may prove critical to modulating their 
response to neurological injury, potentially combatting neurodegenerative damage. 

Key Words: Alzheimer’s disease; amyotrophic lateral sclerosis; glia; immune system; inflammation; Parkinson’s 
disease; reactive astrocyte; regeneration 

REVIEw

*Correspondence to:
Gregory W. Kirschen, PhD, 
Gregory.kirschen@
stonybrookmedicine.edu.

orcid: 
0000-0003-1371-8137
(Gregory W. Kirschen)

doi: 10.4103/1673-5374.265541

Received: February 1, 2019
Accepted: April 8, 2019

Rachel Kéry1, 2, Allen P. F. Chen1, 2, Gregory W. Kirschen1, *

1 Medical Scientist Training Program (MSTP), Stony Brook Medicine, Stony Brook, NY, USA 
2 Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, NY, USA
  
Funding: The work was supported by National Institutes of Health (NIH) Grants 1F30MH110103 (to GWK) and 1F30MH116650 (to RK).



200

Kéry R, Chen APF, Kirschen GW (2020) Genetic targeting of astrocytes to combat neurodegenerative disease. 
Neural Regen Res 15(2):199-211. doi:10.4103/1673-5374.265541

ically attributed to microglia, astrocytes do utilize immune 
signals in response to perceived stressors and protein aggre-
gates in a complex fashion. 

This review was compiled via PubMed and Google Scholar 
searches, without date restrictions. Selection criteria includ-
ed articles written in or translated into English, pertaining 
to or including the terms astrocyte, glia, neurons and/or 
inflammation, and/or neuroinflammation, and/or neurode-
generation, and/or genetic manipulation.  

Consequences of Astrocyte Activation
Astrocytes respond to inflammatory challenges using many 
of the same signaling cascades utilized by bona fide myeloid- 
and lymphoid-lineage cells, including microglia. In the 
course of responding to the insult, astrocytes may lose func-
tions important for supporting healthy neurons and synaps-
es, while gaining abnormal functions that can have negative 
consequences for neural survival and activity (Sofroniew, 
2009). However, not all astrocytic transcriptional changes in 
response to neurodegeneration are necessarily maladaptive, 
for example clearing debris, and containing protein aggre-
gates within a particular area (Pekny et al., 2007; Sofroniew, 
2009; Anderson et al., 2014; Hoshi et al., 2018).

Astrocytic responses to inflammation
Astrocytes respond to inflammatory challenges with a wide 
variety of gene expression changes, dependent on animal age 
(Kluge et al., 2018), systemic immune status (Rakic et al., 
2018), and the specific immune trigger (Perriot et al., 2018). 
One of the most common pathways activated by immune 
insult is the nuclear factor kappa-light-chain-enhancer of ac-
tivated B cells (NFκB) immune signaling cascade (Kempuraj 
et al., 2017, 2019). NFκB-mediated astrocyte dysfunction can 
initiate neurodegeneration through different mechanisms 
(Lattke et al., 2017; Kim et al., 2018), including astrocytic 
release of apoptotic factors (Kia et al., 2018), and cytokines/
chemokines. These signals orchestrate bidirectional inter-
actions between astrocytes and microglia in the context of 
neuroinflammation. 

Immune-reactive astrocytes produce a number of cyto-
kines and chemokines which can activate the local microglia. 
For instance, under conditions such as expression of mutat-
ed ALS-associated protein, reactive astrocytes can release tu-
mor necrosis factor-α (TNF-α) (Kia et al., 2018), which can 
activate microglia, driving them toward a pro-inflammatory 
(M1) phenotype (Boche et al., 2013). Astrocytes can also 
synthesize lactosylceramide and interleukin-6, other pro-in-
flammatory drivers of microglia (Mayo et al., 2014; Savarin 
et al., 2015). Astrocytic production of interleukin-12 can 
induce interleukin-7 expression in both human and murine 
microglia (Jana et al., 2014), which, in turn, can amplify lym-
phocyte proliferation (Lin et al., 2017). T-cell lymphocytes 
can in turn secrete interferon-γ (Savarin et al., 2015), which 
enhances inflammatory microglial recruitment and prolifer-
ation (Subramaniam and Federoff, 2017). Reactive astrocytes 
tend to increase their nitric oxide (NO) production (Cassina 
et al., 2002; Xie and Yang, 2015), which is needed to prime 

microglial cytokine/chemokine release (Xia and Zhai, 2010), 
and trigger vasodilation and subsequent immune cell infil-
tration (Xie and Yang, 2015). Thus, astrocytes triggered by 
an inflammatory insult, participate actively in the recruit-
ment of resident microglia to sites of injury.

The relationship between reactive astrocytes and microg-
lia is far from one-sided, however, with astrocyte-activated 
microglia feeding back onto the astrocytes to modulate the 
extent of the inflammatory response. For instance, activated 
microglia utilize the C-C chemokine receptor-5 signaling 
pathway to regulate astrocytic neurotransmitter production, 
which may be relevant in the context of AD and possibly 
sporadic PD (Huerta et al., 2004; Xia and Zhai, 2010; Choi et 
al., 2013; Sahin-Calapoglu et al., 2016). Additionally, anti-in-
flammatory (M2) microglia produce interleukin-10, which 
upregulates astrocytic production of anti-inflammatory fac-
tors, including transforming growth factor (TGF)-β, which 
promotes the M2 microglial phenotype (Norden et al., 2014), 
as well as assisting in neuroprotection. More specifically, one 
of the principal roles of reactive astrocytes in the context of 
inflammation is to protect the integrity of synapses. For in-
stance, astrocyte-derived TGF-β1 has been shown to protect 
synapses from the potentially damaging effects of Aβ aggre-
gation in cultured murine hippocampal neurons (Diniz et 
al., 2017). Reactive astrocytes may also increase their release 
of neurotrophic factors, which have been shown to protect 
cortical synapses against the harmful effects of Aβ aggrega-
tion (Guo and Mattson, 2000). Astrocytic TGF-β signaling 
can also limit the extent of inflammation in response to cere-
bral infections, such as that caused by the parasite Toxoplas-
ma gondii (Cekanaviciute et al., 2014), and following stroke 
(Cekanaviciute et al., 2014). The efficiency of astrocyte-mi-
croglia signaling appears to dwindle with age, however, per-
haps helping to explain the onset of many neurodegenerative 
diseases later in life. The Figure 1 demonstrates the bidirec-
tional relationship between astrocytes and microglia in the 
setting of an inflammatory/neurodegenerative insult.

As evidence of this changing cell-cell interaction over 
time, in aged murine brains, astrocytes have decreased 
responsiveness to inter leukin-10, leading to prolonged 
microglial activation following a peripheral immune insult 
(Subramaniam and Federoff, 2017). TGF-β expression is also 
elevated in post-mortem human brain tissue samples taken 
from patients with AD relative to healthy controls, again 
implicating it as a marker of immunological stress in the 
brain and potentially of disease severity as well (Zhang et a., 
2016). On the other hand, microglia can also increase astro-
cyte reactivity. In response to increases in NO production by 
reactive astrocytes, microglia produce interleukin-1β (Sudo 
et al., 2015), which can further activate astrocytes, increase 
astrocytic NO production (Hu et al., 1995), and promote 
astrocytic migration to the site of injury (Yang et al., 2015). 
Interleukin-1β also upregulates glial fibrillary acid protein 
(GFAP) expression and subsequent glial scarring (Sticozzi 
et al., 2013). There is evidence to suggest that this cross-talk 
could be maladaptive. For instance, blocking such microgli-
al-induced astrocyte conversion has been shown to be neu-
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Figure 1 Bidirectional interaction between 
astrocytes and microglia in regulating 
neuroinflammation. 
Shown is a schematic of the coordinated astro-
cyte-microglia response to an inflammatory 
insult, as well as the coordinated de-escalation 
and return to non-reactive or resting state, re-
spectively. IL: Interleukin; NO: nitrous oxide; 
NT: neurotransmitter; TNF: tumor necrosis 
factor. 

roprotective in transgenic mice with the familial PD-associ-
ated A53T α-synuclein mutation (Yun et al., 2018).

Apart from their control by microglia, astrocytes exhibit 
several other modes of regulation. Peripheral immune cells, 
such as regulatory T lymphocytes, also regulate astrogliosis 
(the formation of a scar comprised of reactive astrocytes 
and other glia and inflammatory cells that borders a focus of 
inflammation) and the neuro-immune response (Sofroniew, 
2009; Ito et al., 2019). Moreover, reactive astrocytes are capa-
ble of auto-regulation. For instance, in response to oxidative 
stress, astrocytes upregulate their expression of toll-like re-
ceptor-3 which upregulates neuroprotective anti-inflamma-
tory cytokines like interleukin-10, and reduces production of 
pro-inflammatory cytokines like interleukin-12 (Bsibsi et al., 
2006). Reactive astrocytes can also produce neuroprotective 
lipoxins in response to injury (Livne-Bar et al., 2017). 

What factors determine whether astrocytes will assume 
a pro- or anti-inflammatory phenotype? Astrocyte-derived 
interferon-1β production appears to be important for this 
fate determination. Upregulating the expression of interfer-
on regulatory factor 3, a transcription factor required for 
astrocyte interferon-1β production inhibits astrocyte inflam-
matory gene expression by suppressing pro-inflammatory 
microRNAs (Tarassishin et al., 2011). Astrocyte interferon-1 
production is known to regulate immune responses of the 
endothelial cells of the blood-brain barrier, and is associat-
ed with anti-inflammatory effects in viral infections of the 
CNS, and in multiple sclerosis in humans (Rothhammer et 
al., 2016; Daniels et al., 2017). However, in post-mortem AD 
brains, upregulation of astrocytic interferon-1 signaling has 

been associated with promotion of a pro-inflammatory sig-
naling cascade (Taylor et al., 2018). Reactive astrocytes also 
regulate the peripheral cytokine/chemokine responses by re-
leasing peroxisome proliferator-activated receptor α (Dickens 
et al., 2017).

The chronicity of CNS inflammation appears to play an 
important role in determining astrocyte activation status. 
Chronic activation, for example in the setting of neurode-
generation, increases astrocytic responses to immune insult 
(Hennessy et al., 2015). In addition, some neurodegenerative 
diseases are associated with mutations in key astrocyte genes 
which interrupt astrocytic autoregulation of the neuro-im-
mune response. For instance, fyn tyrosine kinase mutations 
associated with AD can facilitate persistent inflammatory 
responses (Lee et al., 2017), and increased microglial inflam-
matory activity (Panicker et al., 2015). Mutations in the gene 
for TGF-β have been associated with AD risk (Caraci et al., 
2012, 2018), suggesting that defects in astrocytic regulation 
of microglia may enhance neurodegeneration. Conversely, 
familial-PD loss-of-function mutations in PTEN-induced 
putative kinase (PINK1) (Valente et al., 2004) appear to have 
anti-inflammatory effects (Sun et al., 2018). However, PINK1 
loss also induces mitochondrial damage, increasing meta-
bolic stress (Valente et al., 2004). Increased PINK1 expres-
sion has been reported in AD and multiple sclerosis lesions 
(Wilhelmus et al., 2011), where it is thought to stimulate in-
terleukin-1β signaling (Sun et al., 2018). On the other hand, 
frameshift mutations of the ubiquitin gene, seen in aging and 
AD-brains can actually suppress inter leukin-1β/TNF-α-me-
diated astrocyte activation (Choi et al., 2013). Aside from 

α,
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their role in immune modulation, astrocytes assume funda-
mental functions in CNS metabolic homeostasis.

Metabolic support
A major astrocyte function is the provision of metabolic 
support for neurons, which is critical in limiting the extent 
of neuronal oxidative stress (De Miranda et al., 2018). Such 
support is controlled principally by neurotransmitters (espe-
cially glutamate), but also by other small molecule regulators 
of synaptic signaling including cytokines. Breakdown of 
metabolic regulation, as may occur in the context of neu-
rodegeneration, highlights the key role of astrocytes in this 
critical housekeeping function.

Under physiological conditions, astrocytes sense synap-
tic glutamate levels and use this as a surrogate for neuronal 
activity, in turn recruiting nutrients and oxygen to meta-
bolically active areas while shunting blood flow away from 
less metabolically active regions (Bélanger et al., 2011). On 
the other hand, when the CNS experiences an inflammatory 
stressor, astrocytes undergo a series of cellular changes to 
divert their resources to dealing with the stressor. Astrocytic 
activation causes these cells to neglect their neuro-support-
ive roles as they instead gear their activity toward inflamma-
tory cell recruitment and glial scar formation (Allaman et 
al., 2010; Fuller et al., 2010; Steele and Robinson, 2012). For 
example, in the context of a superoxide dismutase 1 (SOD1) 
mutant mouse model of ALS, NFκB signaling regulates both 
the expression of oncogene astrocyte elevated gene-1 and 
excitatory amino acid transporter-2, decreasing astrocyte 
clearance of synaptic glutamate in times of oxidative stress 
(Vartak-Sharma et al., 2014; Yin et al., 2018). This forces 
neurons to slow down their metabolic activity or else suffer 
the consequences of oxidative stress. 

Fortunately, compensatory mechanisms exist to ensure 
that neurons decrease their metabolic demand for the pur-
pose of neuronal preservation in the context of oxidative 
stress. Anti-inflammatory cytokines such as interleukin-10 
alter intracellular Ca2+ responses to ischemia, preserving 
neuron viability in the setting of heightened metabolic de-
mand (Tukhovskaya et al., 2014). Following an inflammatory 
insult, astrocytes also upregulate expression of aquaporin-4 
(AQP4), and down-regulate expression of glutamate trans-
porter-1 to reduce neuro-excitability (Ikeshima-Kataoka, 
2016; Lan et al., 2016), thereby reducing cellular metabolic 
activity. Additionally, interleukin-1β, which is known to 
activate astrocytes (Xia and Zhai, 2010), also upregulates as-
trocyte glutathione synthesis, protecting astrocytes (He et al., 
2015) and neurons (Chowdhury et al., 2018) from oxidative 
stress. Mild astrocytic oxidative stress appears to be benefi-
cial, helping to decrease astrocyte inflammatory activation 
and resultant blood-brain barrier hyper-permeability (Wang 
et al., 2018).

However, many of the inflammatory factors released as 
the result of astrogliosis largely have negative consequences 
for astrocyte metabolic support. For example, interferon-α, 
released as a consequence of activation, can negatively regu-
late astrocyte growth and glucose metabolism (Wang et al., 

2012). Pro-inflammatory factors released by lymphocytes 
(interferon-γ) and microglia (TNF-α) can stimulate produc-
tion of Aβ, potentially increasing plaque load in AD (Yama-
moto et al., 2007; Zhao et al., 2011). Astrocytic activation 
additionally leads to increased production of new astrocytes 
(Hernández-Guillamon et al., 2009), but also increases 
astrocyte apoptosis (Saha and Biswas, 2015), potentially ex-
acerbating oxidative/metabolic stress. Abnormal astrocyte 
metabolism can, in turn, modulate neuroinflammatory re-
sponses. For instance, PARK7, a regulator of astrocyte me-
tabolism found to be mutated in some cases of familial PD 
(Bandopadhyay et al., 2004) is important for astrocyte mito-
chondrial function (Larsen et al., 2011). Loss of functional 
PARK7 increases intracellular protein accumulation and 
subsequent oxidative stress (Kumaran et al., 2007). PARK7 
is also important for neural repair, as it helps to actively pro-
mote astrogliosis by stabilizing Sox9, a positive regulator of 
astrogliosis (Choi et al., 2018). An analogous process likely 
occurs in AD pathology, wherein mutations in the astrocyte 
protein apolipoprotein E4 can impair Aβ clearance (Liu et 
al., 2013; Prasad and Rao, 2018), and may increase oxidative 
stress by impairing the glia-neuron lactate shuttle, leading 
to an inflammatory response (Liu et al., 2015). In summary, 
astrocytes not only ensure that nutrient and oxygen supply 
and demand are balanced at baseline, but are also essen-
tial in mediating decreased neuronal energy expenditure 
in times of oxidative stress for cellular preservation. Aside 
from their critical role in energy budgeting under neurode-
generation-inducing stress, astrocytes have the added task 
of ensuring efficient synaptic transmission and are key reg-
ulators of neuroplasticity, which are also likely relevant in 
neurodegeneration.  

Synaptic transmission and plasticity
Astrocytes contribute a great deal to the regulation of syn-
aptic transmission and plasticity. In this regard, astrocyte 
contributions are multifaceted, regulating cholinergic and 
endocannabinoid synaptic signaling (Navarrete et al., 2012, 
2014; Gómez-Gonzalo et al., 2015), setting thresholds for 
long-term potentiation and long-term depression (Bonans-
co et al., 2011), and regulating neurotransmitter release 
probability (Perea and Araque, 2007). In fact, the loss of ap-
propriate synaptic and plasticity regulation due to astrocyte 
activation may help to explain some of the behavioral man-
ifestations of neurodegenerative disorders, for example, the 
sleep disturbances seen in patients with AD (Vanderheyden 
et al., 2018).

Again, astrocyte regulation of synaptic transmission ap-
pears to be intimately connected to the immunological and 
metabolic statuses of the CNS. Astrocytes are known to re-
lease neurotransmitters such as glutamate at the synapse in 
a process known as gliotransmission (Halassa et al., 2007). 
Glutamatergic gliotransmission can be adversely affected by 
the increased oxidative stress frequently seen in neurodegen-
erative diseases (Liu et al., 2006). Additionally, inflamma-
tory factors like histamine can trigger increased astrocytic 
glutamate release (Kárpáti et al., 2018), which could have a 
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potentially negative impact on neural survival. TNF-α, an 
important astrocyte inflammatory mediator is also import-
ant for regulating glutamatergic gliotransmission (Santello 
et al., 2011). Therefore, it is possible that over-production 
of TNF-α by astrocytes responding to immune insult could 
alter gliotransmission. 

Aside from neurotransmitter regulation, ion flux is also 
a key role of astrocytes, the dysregulation of which can 
exacerbate inflammatory or cytotoxic insults. Astrocytic 
potassium homeostasis is key for regulation of synaptic 
plasticity (Djukic et al., 2007), with disruptions potentially 
contributing to oxidative stress and neurodegeneration. For 
instance, decreased expression, or loss of expression of the 
potassium channel Kir4.1 interferes with astrocytic gluta-
mate uptake (Djukic et al., 2007; Kucheryavykh et al., 2007). 
Glial Kir4.1 expression is progressively lost in mice lacking 
SOD1, a well-established mouse model for a subset of genet-
ically-linked ALS (Kaiser et al., 2006; Bataveljić et al., 2012), 
directly implicating astrocytic synaptic dysfunction in this 
pathological state (Benkler et al., 2013). Activated astrocytes 
in the spinal cord of SOD1 mutant mice also produce exces-
sive endothelin-1 which can induce excitotoxicity in motor 
neurons due to over-activation of AMPA receptors (Ranno 
et al., 2014).

Growth factor signaling
Astrocytes produce a wide array of growth factors, including 
nerve growth factor, brain-derived growth factor (BDNF), 
and fibroblast growth factor which are all important for 
neuron health and survival (Miyazaki and Asanuma, 2016). 
Some of these astrocyte-produced growth factors are im-
portant for maintaining healthy neuronal metabolism by 
activating anti-oxidative enzymes to reduce over-production 
of reactive oxygen species (Cabezas et al., 2019). Others 
help support healthy synapse function: astrocytic fibroblast 
growth factor supports axon and dendrite outgrowth (Le 
and Esquenazi, 2002) and BDNF is a well-known regulator 
of synaptic plasticity (Bramham and Messaoudi, 2005). Still 
others help to support neuron survival and neurogenesis 
(Palmer and Ousman, 2018).

Astrocyte production of these growth factors may decrease 
with age, which may partially account for age-associated in-
creases in incidence of neurodegenerative disorders (Palmer 
and Ousman, 2018). Upon activation, astrocytes may fail 
to produce the necessary growth factors to maintain the 
local neuron population for which they are responsible. For 
example, mice with the ALS-associated G93A SOD1 muta-
tion harbor reactive astrocytes that fail to produce sufficient 
nerve growth factor to allow for motor neuron survival 
(Pehar et al., 2004). Further, changes in serum BDNF levels 
have been associated with cognitive impairment in patients 
with AD, frontotemporal dementia, Lewy body dementia, 
and vascular dementia, potentially implicating these growth 
factors in these neurodegenerative diseases, although their 
source is still to be determined (Budni et al., 2015). There 
is evidence that loss of BDNF in the hippocampus may be 
associated with various cognitive and emotional symptoms 

of AD, presumably related to a disruption in healthy experi-
ence-driven synaptic plasticity (Budni et al., 2015). In sum-
mary, astrocyte-derived growth factors may guard against 
neurodegeneration by promoting neuronal survival/viability, 
although more direct evidence will be needed to further 
establish a causative role of astrocyte-specific growth factor 
deficiency in neurodegeneration, as well as the therapeutic 
potential of growth factor therapy in neuroprotection for 
this purpose. 

Conclusions
Astrocytic response to neurodegeneration is diverse, with 
both positive and negative effects (Sofroniew, 2009; Pekny et 
al., 2014; Ferrer, 2017). In part this may be due to variability 
within the overall astrocyte population. There is abundant 
evidence from transcriptomic and morphological data to 
suggest that multiple astrocytic subtypes likely exist (Jha et 
al., 2018; Kirschen et al., 2018; Neal and Richardson, 2018). 
For instance, consistent with astrocytes’ known interaction 
with the immune system given inflammatory signals, mi-
croarray data have revealed that astrocytes assume a pro-in-
flammatory transcriptional profile when exposed to cytokine 
or other soluble molecular signals (Michelucci et al., 2016). 
Still, more investigation will be required before definitive 
subcategories of astrocytes can be created. Additionally, 
astrocyte response to activation can vary with age (Jiang 
and Cadenas, 2014; Bellaver et al., 2017; Kluge et al., 2018), 
systemic immune status (Rakic et al., 2018), and depending 
on the specific trigger for activation (Perriot et al., 2018). A 
full-understanding of astrocyte transcriptomic and proteom-
ic profiles will be needed in order to determine which targets 
are most likely to contribute to, versus aid in recovery from 
neurodegeneration. Despite the many unknowns, astrocytes 
do appear to be a potentially viable target for precision med-
icine and may have immense and hitherto largely untapped 
therapeutic potential (Allen et al., 2017; Barreto et al., 2017). 

Potential Therapeutic Targets
Given the wide variability of astrocytes’ responses to in-
flammation, and consequences of astrogliosis, it becomes 
challenging to determine which, if any of the mediators of 
astrogliosis might produce beneficial effects as a therapeutic 
target for neurodegenerative disease. For example, astrocytic 
release of TGF-β has been shown to have anti-inflammato-
ry effects: dampening microglial activation (Norden et al., 
2014) and potentially limiting the negative synaptic effects 
of protein accumulation (Diniz et al., 2017). However, con-
stitutive over-expression of TGF-β in mice promotes AD-
like microvascular degeneration, suggesting that long-term 
over-production of TGF-β may ultimately have detrimental 
effects such as neuronal apoptosis and excessive extracellular 
matrix protein deposition (Wyss-Coray et al., 2000; Zhang et 
al., 2016).

It may be more beneficial, therefore, to attempt to target 
the initiation of the astrogliosis response. There are several 
potential therapeutic targets that might help to ameliorate 
protein-accumulation-mediated astrocyte activation. The 
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presence of heme and hemoglobin modulates the astrocytic 
inflammatory response to the over-accumulation of Aβ in 
otherwise healthy murine astrocytes, specifically by upreg-
ulating phosphoinositide 3-kinase/Akt pathway, ultimately 
increasing activity of phagocytes via cytokine-mediated re-
cruitment (Sankar et al., 2018). By contrast, in the substantia 
nigra, activation of astrocytic nicotinic acetylcholine recep-
tors can dampen astrocytic reactivity to immune insults by 
inhibiting release of cytokines such as TNF- α and interleuk-
ins 1β, 2 and 6 (Jurado-Coronel et al., 2016).

Toll-like receptor 2, a protein frequently over-expressed 
in post-mortem tissue taken from patients with PD and 
Lewy body dementia (Doorn et al., 2014; Dzamko et al., 
2017), may mediate the transmission of α-synuclein between 
neurons and glia (Kim et al., 2018), and appears to trigger 
microglial activation through the NFκB pathway (Kim et al., 
2016). Astrocytic NFκB signaling may also be modulated by 
estrogen receptor signaling (Mitra et al., 2016), and by the 
oncogene astrocyte elevated gene-1 (Vartak-Sharma et al., 
2014; Yin et al., 2018). Disrupting astrocytic NFκB signaling 
greatly reduces astrocytic release of cytokines/chemokines, 
and subsequent activation (Davis et al., 2015). Thus, a num-
ber of potentially druggable pathways exist to attempt to 
modulate astrocyte immunological function.

It is also desirable to be able to better regulate certain con-
sequences of astrogliosis, as such scarring can greatly limit 
the degree of potential regeneration after traumatic injury 
(Pekny et al., 2007). While astrocytes are by no means the 
only cell type involved in glial scarring, they are integral to 
glial scar formation. Astrocytic proteins vimentin (VIM) and 
GFAP are known to modulate transcriptional responses in 
astrocytes following immune insult (Kamphuis et al., 2015), 
and are important for glial scar creation (Wilhelmsson et al., 
2004). Deleting VIM and GFAP in mice prevents astroglial 
process hypertrophy, greatly improving post-traumatic re-
generation (Wilhelmsson et al., 2004). However, in transgen-
ic mice expressing AD-associated mutant proteins amyloid 
precursor protein and presenilin-1, loss of GFAP and VIM 
lead to major increases in Aβ plaque load and neuron dys-
function, suggesting that VIM and GFAP-induced astrocyte 
activation and subsequent glial scarring may help to contain 
and limit Aβ plaque growth (Kraft et al., 2013). Given that, 
whether targeting of glial scar formation serves as a fruitful 
approach to combatting neurodegeneration remains unclear.

Genetic Strategies for Targeting Astrocytes
Genetic technologies are emerging as a method to target 
the CNS both for basic studies and for clinical intervention. 
Here, we will discuss how genetic strategies have been used 
to understand astrocytes and how they may hold promise 
for targeting astrocytes in neurodegenerative disease. These 
strategies allow for specific targeting of astrocytes without 
affecting other CNS cell types, although various challenges, 
limitations, and optimization detailed below will be required. 
Given astrocytes’ regulation of neurotransmitter and ion 
cycling, neuroplasticity, and neuronal growth and survival, 
it has been posited that astrocytes may be key to improving 

cognitive function in the setting of neurodegenerative dis-
eases (Dallérac and Rouach, 2016). Indeed, there is evidence 
for example that pathological cellular damage induced by ex-
citotoxicity in ALS may be partially attributable to astrocyte 
expression of GLT1 (Fumagalli et al., 2008). Thus, it stands 
to reason that experimental manipulation of astrocytes may, 
under certain circumstances, be able to reverse if not slow 
the molecular underpinnings of neurodegeneration with the 
hopes of restoring or preventing cognitive decline among 
other functions.

To this end, researchers have made large advances in this 
regard by developing viral gene constructs and transgenic 
mouse lines that are astrocyte-specific (Shigetomi et al., 
2010, 2016; Tsai et al., 2012). The basis of these develop-
ments stand on efforts made to define what an astrocyte ac-
tually is in terms of the cell’s genetic and morphological fea-
tures (Khakh and Sofroniew, 2015). Crucial transcriptomic 
studies have demonstrated that astrocytes express particular 
genes that are not highly expressed in other CNS cells such 
as neurons or oligodendrocytes (Gong et al., 2003; Lovatt et 
al., 2007; Cahoy et al., 2008; Allen and Eroglu, 2017). Com-
bined with prior knowledge, researchers have used the genes 
Gfap, Aldh1I1, Slc1a3, and Gjb6 as markers for astrocytes 
(Srinivasan et al., 2016). Using the promoters for these genes, 
one is able to selectively express proteins in astrocytes that 
allow for the monitoring and manipulation of astrocytes. In 
particular relation to neurodegenerative intervention, viral 
strategies are emerging as a clinical candidate for targeting 
the CNS (Oswald et al., 2017). 

Viral constructs targeting astrocyte gene expression
Viruses have been widely adopted as a way to introduce 
transgenes to the CNS for both preclinical and clinical stud-
ies. Compared to other methods such as nanoparticle deliv-
ery, viruses have been capitalized for their efficiency of gene 
transduction and long-term expression (Bouard et al., 2009). 
Viruses have been widely used to discover both basic and 
disease-oriented mechanisms regarding neurons, astrocytes, 
and microglia (Jahn et al., 2015; Luo et al., 2018). Inducing 
the expression of optogenetic and activity-based fluorescent 
proteins has allowed many research groups to both manip-
ulate and monitor cells of the CNS in behaving animals. At 
the same time, clinical studies have attempted to use viruses 
to ameliorate deficits in neurological disease by modulating 
molecular or physiological deficits. Thus, we will review how 
viruses have been used to investigate astrocytes keeping in 
mind how these tools may be used to target astrocytes in 
clinical disease.

Researchers have used viruses to introduce genes implicat-
ed in neurodegenerative disease specifically into astrocytes 
in order to isolate astrocyte contributions to such diseases. 
There are a variety of viruses that have demonstrated tro-
pism for astrocytes in the CNS. Lentiviruses, adeno-asso-
ciated viruses (AAV), and canine adenovirus (CAV) have 
been successfully used to introduce transgenes to astrocytes. 
Combined with the ability to introduce astrocyte-pro-
moter-dependent genes through viruses, a high astrocyte 
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specificity can be achieved. While the majority of viral CNS 
studies have focused on neurons, recent studies demonstrate 
that such viral-based approaches are useful for understand-
ing astrocyte function as well. For instance, using viral 
transduction strategies, astrocyte’s have been implicated in 
neurovascular coupling (Stobart et al., 2018), fear behavior 
(Martin-Fernandez et al., 2017), and feeding behavior (Chen 
et al., 2016) among other aspects of brain function. 

Lentiviruses have been used successfully to target astro-
cytes in mice, and offer several advantages (Colin et al., 2009; 
Faideau et al., 2010; Delzor et al., 2013; Fassler et al., 2013). 
Lentiviral transgenes are transduced with high efficiency, 
with long term expression that is often required for in the 
context of neurodegenerative models (Park, 2007). Using a 
lentiviral strategy, Faideau et al., 2010 revealed that astrocyte 
expression of mutant Htt contributes to the mouse Hunting-
ton disease phenotypes. Aside from this study, Fassler and 
colleagues have developed a lentivirus construct that has 
preferential tropism for astrocytes (Fassler et al., 2013). Their 
construct expresses an anti-GLAST IgG on the lentivirus’ 
surface. GLAST is an amino acid transporter linked to as-
trocyte synapse support function and is highly expressed in 
astrocytes (Zhou et al., 2006), thus, preferentially targeting 
astrocytes 

In comparison to lentiviruses, AAVs have been much 
more commonly used to study astrocytes in both health 
and disease. Several serotypes of AAVs (AAV2/1, AAV2/5, 
AAV2/8, AAV2/9) have been tested to have tropism for as-
trocytes (Foust et al., 2009; Tong et al., 2014; Hammond et 
al., 2017; Pignataro et al., 2017). Using AAV transduction 
(serotype 2/5), the Khakh group was able to show that as-
trocyte expression of the potassium channel Kir4.1 rescues 
deficits in a Huntington disease mouse model (Tong et al., 
2014). This study demonstrated that astrocytes play a role in 
regulating the excitability of neurons in the dorsal striatum, 
the principle region implicated in Huntington disease.  Fur-
ther demonstrating the role of astrocytes in Huntington dis-
ease, Meunier et al. (2016) have also used the AAV2/5 vector 
to selectively express mutant forms of Huntingtin in striatal 
astrocytes. They demonstrated that astrocyte expression of 
mutant Huntingtin contributes to pathological features of 
the Huntington mouse model. In comparison to AAV2/5 
serotypes, researchers have demonstrated that AAV2/8 may 
transduce astrocytes with the higher efficiency in the CNS 
(Aschauer et al., 2013). Martin and colleagues used the 
AAV2/8 vector to employ a chemogenetic strategy to manip-
ulate astrocytes. This work demonstrated the role astrocytes 
play in the central amygdala for fear and anxiety behaviors. 
Overall, AAVs represent a feasible tool to manipulate the 
genes of astrocytes and will likely continue to facilitate our 
understanding of astrocytes in a variety of disease states. 

Our laboratory has recently reported that intravenously 
delivered CAV2 targets perivascular astrocytes throughout 
the adult brain (Kirschen et al., 2018). This has translational 
implications as other methods described above for trans-
gene introduction is invasively hindering. Additionally, 
perivascular astrocytes in particular have been implicated in 

neurodegenerative disease (Montagne et al., 2015). Another 
advantage of this viral delivery strategy is that it can systemi-
cally manipulate astrocytes. Methods of stereotactic infusion 
may be region-specific, but it would not allow for the anal-
ysis of astrocytes in multiple communicating brain regions. 
Stereotactic infusion is also well known to cause reactive 
astrogliosis and thus may confound studies of astrocyte-in-
trinsic behavior (Dashkoff et al., 2016). Overall this finding 
indicates that CAV2 may provide tool to investigate the role 
of astrocytes in disease.  

In the clinical realm, gene therapy via viral transduction 
has emerged as a promising method for addressing diseases 
of the CNS (Hocquemiller et al., 2016). There are varieties 
of ongoing clinical trials using intraparenchymal infusion of 
viruses in order to treat neurodegenerative diseases by mod-
ulating gene expression. For instance, intrastriatal infusion 
of AAVs has been used in phase I/II clinical trials for PD 
(Marks et al., 2008, 2010; Christine et al., 2009). While these 
represent landmark efforts for neurological therapy, these 
viruses introduced genes under the control of ubiquitous 
promoters and thus may induce gene expression in neurons 
and astrocytes alike. As mentioned previously, a major utility 
of genetic strategies is the ability to target specific cell types 
implicated in disease. In order to consider how astrocytes 
may be targeted in disease, it will be important to consider 
what promoter elements may be more specific to astrocytes 
(Cahoy et al., 2008). We list astrocyte-specific promoters 
(Gfap, Slc1a3, and Gjb6) used previously (Dabir et al., 2006; 
Nomura et al., 2010; Magnusson et al., 2014; Aida et al., 
2015; Benedykcinska et al., 2016), with Aldh1I1 (Chai et 
al., 2017; Octeau et al., 2018; Yu et al., 2018) being recently 
validated as the most specific astrocyte promoter in murine 
studies (Srinivasan et al., 2016). One major caveat of using 
common promoters of astrocytes is the difficulty for packag-
ing promoters of all sizes into viral vectors. For instance, it 
has been reported that AAV vectors have a limited physical 
space that may be required for large mammalian promoters 
(Dong et al., 1996; de Leeuw et al., 2016). To circumvent this 
issue, the Simpson group has worked on creating a variety of 
shortened promoters, termed “MiniPromoters” in order to 
target specific cell populations of the brain (de Leeuw et al., 
2016). This work will be essential to identifying constructs 
that will allow gene manipulation specifically in astrocytes of 
patient brains. 

Transgenic mouse models for studying astrocytes in 
neurodegeneration
Transgenic mouse models are widely used to study astro-
cytes. On the other hand, in the context of neurodegener-
ative disease, there has traditionally been a neuron-centric 
bias in which neuronal protein expression is thought to be 
the principal if not exclusive link to pathogenesis. Trans-
genic lines have allowed for the determination of glial cells’ 
specific contributions to disease. For instance, researchers 
have used of the Cre/loxP system to restrict gene expression 
to astrocytes. Astrocyte promoters of Gfap and Ald1I1 have 
been used to express Cre recombinase in astrocytes (Jahn et 
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al., 2015; Srinivasan et al., 2015, 2016). When introducing 
Cre-dependent genes, either through a double-transgenic 
cross or through viral transduction, one is able to manipulate 
genes specifically in astrocytes. Using a Cre-based condition-
al deletion scheme, the Cleveland lab showed that astrocytes 
play a major role in the progression of amyotrophic lateral 
sclerosis in the mutant SOD1 mouse model (Yamanaka et al., 
2008). Researchers have used similar transgenic mouse line 
approaches to selectively express genes in astrocytes in the 
contexts of Parkinson disease, Alzheimer disease, and Hun-
tington disease (Bradford et al., 2009; Gu et al., 2010; Lian et 
al., 2016; Wood et al., 2019). These studies served to dissect 
the contribution of astrocytes to neurodegenerative models. 
Recently, the Khakh lab generated an Aldh1I1 Cre line that 
allows for the specific expression of genes in all astrocytes 
of the CNS (Srinivasan et al., 2016). As opposed to previous 
lines based on other promoters such as GFAP and GLAST, 
these mice serve to restrict genetic expression to be more 
highly specific for a wider range of astrocytes in the CNS. 
This will allow for more sophisticated experiments in explor-
ing the specific contribution of astrocytes to disease states. 

Off-target effects of genetic strategies
Basic neurobiologists and developers of pharmaceuticals 
alike are wary of potential off-target manipulations that 
accompany both viral manipulation and transgenic mouse 
development. In terms of using viral constructs to target 
astrocytes in clinical contexts, immunogenic responses and 
oncogenic effects are principal concerns (Cotter and Muruve, 
2005; Marks et al., 2008). As illustrated above, there has been 
an immense interest in using AAVs for therapeutic interven-
tion for their relatively non-immunogenic and non-onco-
genic profiles (Hocquemiller et al., 2016; Naso et al., 2017). 
However, it should be noted that patients can develop anti-
bodies against AAVs and give rise to the risk of developing 
immune responses to AAVs (Louis et al., 2013). Fortunately, 
strategies that locally target CNS regions (intraparenchymal) 
benefit from being relatively immune privileged systems 
(Christine et al., 2009). In contrast, recent preclinical studies 
indicate that systemic introduction of high-dose AAVs may 
result in severe toxicity affecting the nervous and hepatic 
systems (Hinderer et al., 2018; Hordeaux et al., 2018). While 
local CNS delivery of AAVs appear to be clinically promis-
ing, mechanisms of intracellular transport and transynaptic 
spread in the CNS remains unclear (Nonnenmacher and 
Weber, 2012; Castle et al., 2014; Zingg et al., 2017). Thus, the 
specificity of CNS viral delivery may be difficult to ascertain, 
and future studies are needed to determine whether or not 
astrocytes may be targeted in a region-specific manner. Last-
ly, one potential way to more specifically target astrocytes is 
to utilize astrocyte promoters studied in transgenic models in 
order restrict gene expression to astrocytes. However, there 
are two problems with this strategy. As discussed above, 
astrocytes display heterogeneity and traditional promoters 
such as GFAP and GLAST may be neither astrocyte-specific 

nor pan-astrocyte targeting throughout the CNS (Sofroniew, 
2009; Srinivasan et al., 2016). In addition, recent studies have 
remarked that there are significant differences between mu-
rine and human astrocytes, potentially confounding the con-
tribution of astrocyte-specific genes and pathology to neu-
rological diseases (Vasile et al., 2017). Together, these points 
serve as cautions for considering astrocyte gene therapy and 
for interpreting studies of astrocytes in general.

Conclusions and Perspective
Based on a wealth of recent investigations, the specific roles 
and molecular pathways implicated in astrocytes’ response 
to neurodegenerative injury are becoming increasingly clear. 
For instance, while it is traditionally held that astrocytes 
interact principally if not exclusively with neurons, the com-
plex cross-talk between astrocytes and microglia especially 
during injury has been acknowledged and is the subject of 
much clinical interest. Based on the existing viral and genet-
ic tools in the field, a number of important astrocyte-auton-
omous functions in neurodegenerative diseases have been 
uncovered, and likely more remain to be seen. Exciting new 
work is beginning to profile the astrocyte inflammasome in 
various pro-inflammatory settings (Dozio et al., 2018). The 
better these functions are understood, the better they can be 
counteracted or modulated, with the goal of controlling neu-
roinflammation and promoting reparative physiology rather 
than exacerbating injury and further compounding neuro-
degenerative phenotypes. Ultimately, much of this work still 
rests on mammalian model systems, and our genetic under-
standing of astrocytes, although emerging technology may 
allow monitoring astrocyte activity in humans (Edison et al., 
2018). These emerging technologies, in tandem with clinical 
genetic strategies, may lead to targeted treatment of astro-
cyte-mediated defects in neurodegenerative disease. Overall, 
there is likely a lot of untapped power in astrocytes that may 
prove fruitful for future clinical studies in the context of cur-
rently unmodifiable neurodegenerative diseases.
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