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Abstract

Ultraconserved elements (UCEs) are stretches of hundreds of nucleotides with highly conserved cores flanked by variable
regions. Although the selective forces responsible for the preservation of UCEs are unknown, they are nonetheless
believed to contain phylogenetically meaningful information from deep to shallow divergence events. Phylogenetic
applications of UCEs assume the same degree of rate heterogeneity applies across the entire locus, including variable
flanking regions. We present a Wright–Fisher model of selection on nucleotides (SelON) which includes the effects of
mutation, drift, and spatially varying, stabilizing selection for an optimal nucleotide sequence. The SelON model assumes
the strength of stabilizing selection follows a position-dependent Gaussian function whose exact shape can vary between
UCEs. We evaluate SelON by comparing its performance to a simpler and spatially invariant GTRþC model using an
empirical data set of 400 vertebrate UCEs used to determine the phylogenetic position of turtles. We observe much
improvement in model fit of SelON over the GTRþC model, and support for turtles as sister to lepidosaurs. Overall, the
UCE-specific parameters SelON estimates provide a compact way of quantifying the strength and variation in selection
within and across UCEs. SelON can also be extended to include more realistic mapping functions between sequence and
stabilizing selection as well as allow for greater levels of rate heterogeneity. By more explicitly modeling the nature of
selection on UCEs, SelON and similar approaches can be used to better understand the biological mechanisms respon-
sible for their preservation across highly divergent taxa and long evolutionary time scales.
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Introduction
High-throughput DNA sequencing has transformed phyloge-
netics from individual targeting of a subset of genes to
genome-scale approaches for the simultaneous sequence
capture of entire genomes. However, there are important
technical challenges when analyzing genomes across a set
of species. This has led to the development of reduced rep-
resentation approaches such as restriction-site associated
DNA markers sequencing (e.g., Miller et al. 2007), or targeted
capture of entire organellar genomes (e.g., Cronn et al. 2008),
select protein-coding genes (e.g., exome capture; Hodges et al.
2007), and ultraconserved genomic elements (i.e., UCEs;
Bejerano et al. 2004) that specifically target only the informa-
tive portions of the genome. The end result is still an extraor-
dinary wealth of data, which holds great promise for resolving
the tree of life.

With these large phylogenomic data sets also comes op-
portunities for gaining new and important insights about the
evolutionary processes occurring within the genome. For ex-
ample, as their name implies, UCEs are particularly unique in
that they are highly conserved across divergent taxa.
However, because UCEs are so strongly conserved over a
wide range of both time and taxa, and because they may,

in some cases, serve critical regulatory functions within the
genome, there is evidence that they are subject to strong
stabilizing selection (e.g., Bejerano et al. 2004; Woolfe et al.
2004; Katzman et al. 2007). The increasingly variable regions
flanking each UCE suggest that the sensitivity of the element
to selection changes based on nucleotide position (Faircloth
et al. 2012; Van Dam et al. 2017). Although there have been
advances such as automated pipelines for identifying parti-
tioning schemes (Tagliacollo and Lanfear 2018), our goal is to
contribute to developing a more mechanistic understanding
of UCEs and their evolution, in addition to their utility in
phylogenetic inference, by explicitly modeling the spatial var-
iation in selection hypothesized to be responsible for UCEs.

Here, we model nucleotide substitution across a UCE as a
Wright–Fisher process, which includes the processes of sta-
bilizing selection, mutation, and drift, to link fitness to a binary
distance function between an observed nucleotide and the
“optimal” base for a site. With our modeling approach,
unique continuous functions scale each UCE, governing
how the strength of selection changes across nucleotide po-
sition, which provides a more realistic, spatially explicit model
that exists outside the classic substitution-based framework.
We implement and test our model using simulations, and we
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also apply it to a well-cited empirical data set (Crawford et al.
2012) which addressed the phylogenetic position of turtles
relative to archosaurs (i.e., birdsþ crocodiles) and lepidosaurs
(i.e., squamatesþ tuataras). Unlike Crawford et al. (2012),
who used standard substitution-based models, with our
model we find that placing the turtles sister to lepidosaurs
is substantially better supported than placing turtles sister to
archosaurs. Similar to Crawford et al. (2012), we find the es-
timated length of the branches that distinguishes the two
rival hypotheses to be extremely short. We further explore
the information content contained both among and within
each UCE and test whether particular attributes of the UCEs
themselves, or whether how the rate distribution is structured
across sites, correlates with favoring one topology over the
other. On the whole, we show how the UCE-specific param-
eters estimated by our model provide a novel way of quan-
tifying the strength and variation in selection operating
within and across UCE loci.

New Modeling Approach
We begin by constructing the global mutation matrix, M,
whose elements define the mutation rate, lij , from nucleo-
tides i and j across a set of UCEs. For our purposes, we rely on
the general unrestricted model (referred to hereafter as
UNREST; see Yang 1994), because it does not impose any
constraints on the instantaneous rates of change. However,
more constrained nucleotide models could be used instead,
ranging from Jukes–Cantor (JC69; Jukes and Cantor 1969) to
the Hasegawa–Kishino–Yano (HKY85, Hasegawa et al. 1985)
to the general time-reversible (GTR, Taver�e 1986) substitution
models. Since we are defining the relative rates of change, we
arbitrarily set the G!T mutation rate to 1, with the remain-
ing 11 mutation rate parameters freely estimated. As with any
standard nucleotide model, the diagonals lii are set to
�
P

j6¼i lij. We assume that the mutation matrix, M, is shared
across all UCEs.

Following Sella and Hirsh (2005), we allow the processes of
selection and drift to come into the model through the con-
struction of a second matrix, U, whose entries, uij describe the
fixation probability of a nucleotide j introduced via mutation
into a resident population of nucleotide i. First, we let xk

represent the nucleotide position within the element, and
let f(x) be a continuous function that describes the strength
of selection on the element to match a particular optimal

target nucleotide sequence n
! � ¼ fn�x1

; . . . ; n�xl
g, where

l represents the length of the element. For our purposes,

we assume that n
! � is fixed; that is, the optimal target se-

quence does not change along the tree. As we discuss later,
this assumption could be relaxed in future models, but is, to a
rough approximation, consistent with the definitional behav-
ior of UCEs. We let dðnxk

; n�xk
Þ be a function that measures

the functional distance between the nucleotide at position xk,
nxk
; for a given observed nucleotide and the target nucleotide

at that same position, n�xk
. In other contexts, we could treat

this as a continuous distance (e.g., Goldman and Yang 1994;
Beaulieu et al. 2019), but for now, we treat the functional
distance as a binary function such that,

d nxk
; n�xk

� �
¼

0; nxk
¼ n�xk

;

1; nxk
6¼ n�xk

:

(

As mentioned above, the shape of the potential rate dis-
tribution (i.e., site similarity by nucleotide position; also see
Faircloth et al. 2012; Van Dam et al. 2017) for a given UCE
implies that the strength of selection changes with position.
Thus, we define a continuous function, f(x), to describe how
this sensitivity changes with nucleotide position. When f(x) is
large, observed sequences that differ from n� at that position
are assumed under strong stabilizing selection. By contrast,
when f(x) is small, then sequences that differ from n� at that
position are under very weak stabilizing selection. Since the
form of f(x) is unknown a priori, we model site-specific sen-
sitivity to selection according to a Gaussian function,

f xð Þ ¼ Nesmaxe�
ðx��xÞ2

2r2 :

Specifically, we estimate Nesmax, which defines the maxima
of the curve, �x, which defines the position of the center of the
distribution, and r which sets the width of the distribution
(fig. 1B). Because we estimate �x, the Gaussian function need
not always assume that the conserved portion is centered,
and thus can and will produce a variety of shapes (see fig. 2).

Assuming that the contributions to fitness are indepen-
dent between nucleotide positions, we define the fitness of an
observed sequence given an optimal sequence n

! � as,

W n
!
� �

¼ e
�
Pxk

i¼1

d nxk
; n�xk

� �
fðkÞ

� �
:

Assuming weak mutation (i.e., Ne� 1), the fixation prob-
ability of a newly introduced allele depends critically on Ne

and the genotype fitness ratios. In our model, the genotype
fitness ratios can be written as,

W n
! ðrÞ

i

� �
W n

! ðmÞ
i

� � ¼ e
�
Pxk

i2P

fd n
ðrÞ
k
; n�kð Þ�d n

ðmÞ
k
; n�kð ÞgfðkÞÞ

� �
;

where n
! ðrÞ

k is the resident allele and n
! ðmÞ

k is the newly intro-
duced mutant allele and P is the set of nucleotide positions
where the two genotypes differ. As a result, we can now fill
out the entries in U that define the probability that new
mutant j introduced via mutation into a resident population,
i, with effective population size Ne, will go to fixation,

uij ¼

1�
W n

! rð Þ
k

� �
W n

! mð Þ
k

� �
2
4

3
5

b

1�
W n

! rð Þ
k

� �
W n

! mð Þ
k

� �
2
4

3
5

2Ne
;

where b¼ 1 for a diploid population, and b¼ 2 for a haploid
population.
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Finally, we bring the elements of M and U together to form
a single, site-specific substitution rate matrix, Qxk

. Specifically,
the elements in Qxk

at position xk define the substitution rate
from nucleotide i to j as,

qij ¼
2

b
lijNeuij:

We then scale Qxk
by a diagonal matrix Pxk

, whose entries
pii, correspond to the equilibrium frequencies of each base at
position xk. The equilibrium frequencies are determined by
solving Pxk

Qxk
¼0. The final substitution matrix Qxk

is then
multiplied by the reciprocal of a scale factor, C ¼ �

P
i piiqii,

to ensure that at equilibrium, one unit of branch length
represents one expected substitution per site (see supple-
mentary fig. S1, Supplementary Material online). The end re-
sult is that each site has its own unique Qxk

and equilibrium
frequency, which assumes a constant mutation rate and
incorporates sensitivity to selection for the target nucleotide
at that given position. Because we model the evolution of
each site in an independent manner, we can use the standard
likelihood formula, Lxk

¼ PðD xkð ÞjQxk
; TÞ, for observing a

site pattern, DðxkÞ, at position xk given the site-specific Qxk
,

and a fixed topology and a set of branch lengths (denoted by
T). The overall likelihood of the entire element is simply the
product of the site likelihoods across l nucleotide positions.
We do note, however, that although evolution among sites is
technically independent, the shape defined by f(x) necessarily
links sensitivities to selection among neighboring sites, forcing
a kind of autocorrelation in rates among sites (see fig. 1B).
Overall, the log of the likelihood is maximized by estimating
the genome-scale mutation parameters defined by M, the
continuous shape parameters (i.e., Nesmax, �x, and r), and
the optimal nucleotide, n�k , for each position of the alignment.

Results
Simulations were performed to assess the difficulties in esti-
mating the model parameters contained within our selection
model (we will refer to our model hereafter simply as SelON,

which stands for selection on nucleotides). In addition, these
simulations were designed to determine the behavior of stan-
dard models of nucleotide substitution, like the GTR model
with Gamma-distributed (þC) rate variation, when sequen-
ces are generated under SelON. With regards to the param-
eter estimation under SelON, the model can recover the
known values from the generating model quite well.
Among the set of simulated UCEs the individual shapes of
the strength of selection varied considerably (fig. 2 and sup-
plementary figs. S2 and S3, Supplementary Material online),
and SelON properly estimated the centering, width, and mag-
nitude of these shapes with generally very little uncertainty
among the simulation replicates (fig. 2 and supplementary
figs. S2 and S3, Supplementary Material online). However,
even though the overall shapes closely followed those con-
tained within the generating model, there was a slight upward
bias in estimates of the individual width parameter, r, which
was consistent among the two scenarios we tested. This up-
ward bias in our MLE of r is consistent with a general bias in
estimating the mean and variance of a normal distribution.
The parameters that define the global mutation matrix, M,
were estimated quite well, although this is somewhat unsur-
prising given that the matrix is shared among all UCEs, and
thus inferred from all sites in a set of sequences.

In each of the simulation scenarios we examined, the
SelON model fit the simulated data substantially better
than a standard GTRþC partitioned across each UCE. The
average DAICc improvement was 5583.9 AICc units across all
the simulation replicates and simulation scenarios (the aver-
age model weight for SelON¼ 0.9999), and there was never a
single replicate under any scenario in which the
GTRþCmodel fit better. Aside from improvements in the
overall fit, perhaps the most striking difference between the
SelON and GTRþC models were their respective branch
length estimates (fig. 3). It is first worth noting that SelON
had difficulties in properly estimating the lengths of the two
descendant branches from the root (see supplementary fig.
S4, Supplementary Material online). We suspect this is partly
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FIG. 1. (A) An empirical example of the rate distribution across an ultraconserved element (UCE), using site-similarity (i.e., the average distance
between all taxon pairs at a site) as a proxy for rate. (B) A conceptual diagram of the generic Gaussian function used to model sensitivity to
selection. The parameter Nesmax; defines the maxima of the curve, �x , defines the site position of the center of the distribution, and r sets the
width of the distribution. The Gaussian distribution best approximates the overall shape of the rate variation where the strongly conserved portion
of the UCE is under strong selection, flanked on either side by highly variable stretches that are less sensitive to selection.
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FIG. 2. Estimates of the centering, width, and magnitude of the sensitivity to selection distributions for 10 of the 22 simulated UCEs under the
SelON model from the simulation shown in figure 3A. The thick colored lines represent the generating distribution, with each simulated replicate
shown in transparent black lines. The colors are consistent with the color of the points depicted in supplementary figures S2 and S3,
Supplementary Material online.
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an identifiability issue, as arbitrarily rerooting the tree along
any portion of one of these branches had a trivial impact on
the overall likelihood. Currently, we are concerned that, unlike
other nonreversible models (e.g., Huelsenbeck et al. 2002; Zou
et al. 2012; Klopfstein et al. 2015), SelON may be incapable of
locating the root of a tree and so the inclusion of an outgroup
is recommended to absorb the impact of these potential
identifiability issues. When following this procedure, SelON
correctly identifies the location of long and short branches
within the so-called “ingroup,” even when they are distributed
among distantly related taxa (e.g., fig. 3 and supplementary fig.
S4, Supplementary Material online). However, the overall tree
lengths, which were determined by summing the branch
lengths in a given tree, were consistently 10% longer than
the generating trees across both scenarios. By contrast, the
branch lengths inferred by GTRþC from these same data
strongly underestimated the true evolutionary distances
among taxa by roughly 50% (fig. 3C and D; 0.60 in Scenario
1, and 0.49 Scenario 2).

We fit our SelON model to an empirical data set compris-
ing 400 randomly selected nuclear UCE loci used (Crawford
et al. 2012) to determine the predominant signal in the place-
ment of turtles relative to archosaurs (birdþ crocodiles) and
lepidosaurs (lizardsþ tuataras). These data found over-
whelming support for turtles being sister to archosaurs, as

opposed to being sister to lepidosaurs (i.e., “Ankylopoda”
hypothesis) which previous analyses of limited microRNA
data had suggested (see Lyson et al. 2012). It is important
to note that in both Crawford et al. 2012 and our study we
found the branch lengths differentiating the two models to
be extremely short (fig. 4A). When we compared the topol-
ogies consistent with these competing hypotheses, by fitting a
standard GTRþCmodel partitioned across the 400 loci, we
also found strong support for the turtle–archosaur alliance
(four-Ccategories: ln LTAA¼�427,732.0) over the
Ankylopoda hypothesis (DAICc¼ 180.85, four-C categories:
ln LAH¼�427,822.5). The inferred branch lengths were also
strongly consistent with those inferred by Crawford et al.
(2012), with the snakes and lizards showing long branches
relative to the rest of the tree (supplementary fig. S5,
Supplementary Material online). When SelON was fit to these
same data, not only does SelON provide an extraordinary
improvement in overall fit compared with GTRþC
(DAICc¼ 85,701.7), but it also indicated stronger support
for the Ankylopoda hypothesis (DAICc¼ 22.5,
ln LAH¼�213,629.8, vs. ln LTAA¼�213,641.1; fig. 4 and sup-
plementary fig. S5, Supplementary Material online), but with
a very short branch (fig. 4A). The parameters inferred under
SelON implied that there was variation in the magnitude of
the sensitivity to selection across the 400 UCEs, with the

A SelON

C GTR+Γ

B

D

FIG. 3. The two scenarios to test whether the distribution of long branches (0.10 expected substitutions/site) and short branches (0.025 expected
substitutions/site) within a tree can impact branch length estimates. The first and second rows represent the estimated branch lengths inferred
under SelON (panels A and B) and GTRþC (panels C and D), respectively. The tree with the thick branches represents the generating model, and
each transparent line represents the estimates from an individual simulation. In all cases, the trees were estimated with a single outgroup taxon
that is removed. SelON performed reasonably well, whereas the branch lengths inferred by GTRþC strongly underestimated evolutionary
distances among taxa.
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shapes generally following the expected Gaussian distribution
with regions most sensitive to selection often being centered
near the middle of a given sequence (fig. 4C).

To better understand the discrepancy between GTRþC
favoring the turtle–archosaur relationship, and our SelON
model favoring the Ankylopoda hypothesis with the same
data, we examined the log-likelihoods of each individual
UCE. The absolute support of one topology over the other
under either model was more or less split evenly among our
set of UCEs. Of the 400 UCEs used, there were 109 favoring
the turtle–archosaur relationship, and 103 favoring the
Ankylopoda hypothesis under both models. There were 93
UCEs that favored the turtle–archosaur relationship under

GTRþC, but switched to supporting the Ankylopoda hy-
pothesis when fit under the SelON model, and 95 UCEs
with the opposite pattern. Performing a simple bootstrap
procedure, where we sampled with replacement entire
UCEs and summed the log-likelihood differences between
the two competing topologies from the sampled UCEs, we
found that 81% of the pseudoreplicate data sets under SelON
maintained support for the ML topology, whereas with
GTRþC 100% of the pseudoreplicate data sets maintained
support for the turtle–archosaur relationship (fig. 4D).

From a model fit perspective, which we measured using
AICc, SelON fits better than GTRþCand so the inferred to-
pology and inferred branch lengths should, in theory, better
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FIG. 4. (A) A maximum-likelihood phylogram estimated from 400 nuclear UCE loci from Crawford et al. (2012) for determining the placement of
turtles relative to archosaurs (birdþ crocodiles) and lepidosaurs (lizardsþ tuataras). (B) When comparing topologies, there was overwhelming
support under GTRþC for turtles being sister to archosaurs (turtle–archosaur alliance), whereas under SelON, not only does it provide an
extraordinary improvement in overall fit compared with GTRþC, but it also indicated stronger support for the Ankylopoda hypothesis (i.e., turtles
sister to lepidosaurs). (C) The inferred Nesmax shows there is variation in the magnitude of the sensitivity to selection across the 400 UCEs, and their
concomitant shapes generally followed the expected Gaussian distribution where regions most sensitive to selection are centered near the middle
of a given sequence. (D) The results of a bootstrap procedure, which sampled with replacement the log-likelihood differences between the two
competing topologies across the 400 UCEs, found that 81% of the data sets under SelON still maintained support for the Ankylopoda hypothesis,
and with GTRþC 100% of the data sets maintained support for the turtle–archosaur relationship. All silhouettes come from http://phylopic.org.
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reflect the true evolutionary distances among these taxa.
However, whether the SelON model produces data sets
that better resemble the observed data is a separate, but
equally important, question (see, e.g., Goldman and Yang
1994; Bollback 2002; Brown 2014; Beaulieu et al. 2019). We
performed a simple test of model adequacy. This involved
simulating 400 UCEs with the same sequence lengths as the
empirical ones, under both SelON and GTRþC models, using
the MLE parameters estimates on their respective MLE to-
pologies and branch lengths, from which we measured sim-
ilarity to the observed sequences. Surprisingly, SelON and
GTRþC performed equally well—that is, on average, the
simulated alignment matrix under each model was roughly
85% identical to the observed sequences. Thus, both models
adequately described the underlying heterogeneity structure
of a given UCE.

It is unsurprising that the C rate distribution can handle
the spatially structured heterogeneity of UCEs (Yang 1994).
However, it is important to emphasize that the shape of the
discrete C rate distribution is defined by single parameter, a,
optimized based on information coming from all sites, with
the overall likelihood of an individual site being the average
likelihood for that observation under each rate category. In
other words, rather than summing the log likelihoods using
only the rate category with the best likelihood at each site, the
“best” rate is really a weighted average based on the fit of the
different rate categories. Thus, it is possible that the rates used
for generally invariant sites in the middle of a UCE may be
affected by the inclusion of more variable sites at the ends
that require higher rate categories to accommodate their
higher rates. Interestingly, under GTRþC there was a signif-
icant positive relationship (slope¼ 0.456, P¼ 0.045; supple-
mentary fig. S6, Supplementary Material online) between the
average C rate for each individual UCE and topological sup-
port for turtle–archosaur relationship (see fig. 5 and supple-
mentary fig. S7, Supplementary Material online). This was also
consistent when examining the site-wise distribution of to-
pological support based on position from the most conserved
center, where the cumulative support under GTRþC for the
turtle–archosaur relationship increases as one moves towards
the ends. Again, presumably, this is due to the presence of
sites with the highest rates, which also showed the strongest
support for the turtle–archosaur relationship. We also note
that these results are consistent even when comparing topo-
logical support based on estimating branch lengths and fitting
GTRþ C to each UCE individually (see supplementary figs.
S6 and S8, Supplementary Material online). This suggests that
the preference for one topology over the other is likely due to
differences between the two models.

To investigate this pattern even further, we randomly sam-
pled 50 UCEs, first fitting SelON and GTRþC models to each
topology, and then refitting the same models to the same
UCEs, but with 50% of their sites trimmed, targeting the more
variable portions at each end. (note that the proportion of
sites trimmed from a given end depends on the location of
the ultraconserved region; see Materials and Methods). With
GTRþC, trimming had a marked effect on the support for
the turtle–archosaur relationship, both based on site distance

from the most conserved center and for a given weighted-
average C rate at a site (fig. 5). In fact, trimming had the effect
of making support for one topology over the other become
more equivocal under GTRþC. With SelON, overall support
for the Ankylopoda hypothesis actually slightly increased with
the trimmed data set, but overall, tended not to vary sub-
stantially and generally followed the same pattern of support
as the full data set (fig. 5). Given that likelihood models can be
inconsistent with wrong rates (Kolaczkowski and Thornton
2004), the fact that the width of the flanking region can affect
rates throughout a UCE under a GTRþC, but not SelON,
suggests the former may be more prone to issues such as
long-branch attraction.

Discussion
Ultraconserved elements (UCEs) are important loci for phy-
logenetic reconstruction. UCEs consist of a highly conserved
core that makes them easy to align across a divergent set of
taxa (such as humans and birds), and their increasingly var-
iable flanking regions are assumed to contain phylogenetic
information across a variety of evolutionary timescales. From
a mechanistic standpoint, the conserved nature of UCEs
implies that these regions are under strong selection that,
in turn, maintains both deep and shallow homologies
(Bejerano et al. 2004; Woolfe et al. 2004; Katzman et al.
2007). Our work is the first step in analyzing UCEs using
explicit and spatially varying models of stabilizing selection.

Currently, the most widely used substitution-based nucle-
otide models, such as the GTR model with a discrete C rate
distribution (þC), simply describe the relative rates of change
between nucleotide bases. In the context of UCE evolution,
the GTRþC model is not based on any explicit model of
natural selection and, as a result, ignores the spatial structure
of UCEs. This forces the model to impose an inappropriate
rate distribution, resulting in the presence or absence of high
rate sites affecting the support for particular topologies at
more conserved sites (fig. 5 and supplementary figs. S6 and
S7, Supplementary Material online). One approach to miti-
gating this effect would be through a more sophisticated
partitioning of the rate variation across the set of UCEs
(Tagliacollo and Lanfear 2018). Another approach is to explic-
itly model the spatial variation in natural selection along a
UCE. Taking the latter approach here, we model the nucleo-
tide substitution process of a UCE, which includes the effects
of selection, mutation, and drift processes. In addition to be-
ing a better fitting model than the standard GTRþ C, the
spatial structuring in the variation we impose in the substi-
tution process is generally robust to the sequence length and
degree of variation contained within a single UCE. Further,
because selection is modeled explicitly, testing more sophis-
ticated, model-based hypotheses of how selection varies spa-
tially within and between UCEs is relatively straightforward.

Phylogenetic inference with an inadequate model can lead
to the incorrect tree inference (Felsenstein 1979;
Kolaczkowski and Thornton 2004), and so, the discovery
that model choice affects phylogenetic position of lineages
(e.g., the placement of turtles relative to archosaurs and
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FIG. 5. The site-wise patterns of topological support (support defined as Dln L¼ ln LTAA� ln LAH) for 50 randomly selected UCEs, first fit with
GTRþC and SelON (red lines), and then refit, but with 50% of their sites trimmed, targeting the more variable portions at each end (blue lines).
With GTRþC, trimming the variable ends had a marked effect on reducing the support for the turtle–archosaur relationship, both in terms of site
distance from the most conserved center (determined by the location of the inferred Nesmax under SelON using the untrimmed data) and, most
importantly, for a given weighted-average C rate at a site. With SelON, overall support for the Ankylopoda hypothesis (i.e., lines generally falling
below 0) actually increased with the trimmed data set, but overall, tended not to vary substantially and generally followed the same pattern of
support as the full data set.
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lepidosaurs) suggests that this has real-world consequences.
Perhaps more fundamentally, our results emphasize the po-
tential issues with the continual pursuit of candidate loci that
capture multiple levels of relationships (e.g., Shedlock and
Okada 2000; Edwards et al. 2017; Dornburg et al. 2019). As
we show, that in combination with an inadequate model, the
rate variation of a UCE does not structure cleanly across
timescales. In other words, under GTRþC the increasingly
variable flanking regions do not speak exclusively to the shal-
low portions of the tree and have a clear effect on the deeper
splits as well, and so investigator choice of where to cut off a
UCE may have a substantial effect if they use a GTRþC
model. We recognize that our analyses and interpretations
are somewhat biased towards defining what is
“ultraconserved” based on parameter estimates from our
new and relatively untested SelON model. Nevertheless, our
results highlight a need to better understand, and better ac-
count for, the conflicting signal in these flanking regions,
which exhibit generally higher substitution rates that have a
disproportionate impact on the signal (i.e., whether turtles are
sister to archosaurs or lepidosaurs). Our concerns over the
impact of highly variable regions are not completely limited
to UCEs. They also extend to historically used markers fun-
damental to systematic pursuits, such as the small ribosomal
subunits (e.g., SSUs like 18S rRNA, or other parts of the ribo-
somal operon) and new high-throughput approaches that
target conserved regions, but also capture linked and/or
flanking nontarget sequences (e.g., intronic sequences for
exon capture; see Johnson et al. 2019).

Our finding that turtles are placed as sister to lepidosaurs
was based on a concatenation approach, where the overall
likelihood of topology comes from a simple summation of the
log-likelihoods across all the UCEs in the set. We fully ac-
knowledge that this may not be ideal, as gene trees do not
necessarily always match species trees (Maddison 1997).
Indeed, the incredibly short branches that differentiate the
two hypotheses suggest the divergence of these lineages oc-
curred very rapidly which, in turn, would likely lead to a large
amount of incomplete lineage sorting. Nevertheless, we did
look at the signal for each topology for a given UCE by ex-
amining the absolute support for one topology over the
other. This is, of course, different from conducting a full
gene tree-species tree analysis. Nevertheless, whether a con-
catenation approach or a gene tree approach is used, having
an appropriate model that best fits the evolution of sites
within loci of interest is important.

The UCE-specific parameters estimated by SelON provide
a compact way of quantifying the strength and variation in
selection within and across UCEs. By contrast, classic models
of nucleotide substitution are hard to interpret biologically, at
least in the context of UCE evolution. When the rates of
substitution simply reflect mutation, then models within
the GTR family are consistent with models of neutral evolu-
tion. Even if GTR seems to behave phenomenologically like an
explicit model of consistent, stabilizing selection there is no
inherent bias towards any particular nucleotide at a given site
at any given moment. However, the utility of the þC exten-
sion is that it allows for evolution at rates above and below

those expected under neutrality. Although
GTRþCadequately generates data sets very similar to the
observed data sets, the long-term expectations under the
model is that eventually the highly conserved nature of the
UCE will break down. In other words, the model views UCEs
as containing regions with very low rates of neutral evolution
that have not yet reached equilibrium.

Thus, in our view, in order to invoke stabilizing selection as
the evolutionary force underlying the GTRþCmodel one
must assume infinite, but shifting stabilizing selection rather
than finite, but varying stabilizing selection as the way the
model is usually interpreted. That is, under GTRþC, variation
in substitution rates between sites does not reflect variation
in the strength of stabilizing selection. Instead, the variation in
substitution rates represents variation in the rate at which the
optimal nucleotide shifts. Furthermore, in order for the se-
quence to track this change on time scales consistent with
the model, the strength of this stabilizing selection must be
consistently strong across all sites such that the substitution
occurs almost immediately after the shift in the optimal nu-
cleotide (see Beaulieu et al. 2019 for a similar argument about
models of codon evolution). This interpretation is analogous
to fitting models of trait evolution where even though evo-
lutionary change for a focal trait is consistent with Brownian
motion, it is also correlated with another factor and/or trait
that is following a continuously shifting optimum (see
Beaulieu et al. 2012).

Although SelON extends models by allowing the strength
of selection to vary spatially, in its current form, it assumes
that sequences start out already in equilibrium and that the
optimal nucleotide sequence does not change along the tree.
This means that, unlike GTRþC, the general UCE structure is
expected to persist indefinitely. Future extensions of SelON
could easily allow the optimal sequence to vary among line-
ages and over evolutionary time through the use of a hidden
Markov modeling approach (e.g., Galtier 2001; Beaulieu et al.
2013; Beaulieu and O’Meara 2016). Alternatively, one could
relax our current assumption that the magnitude of stabiliz-
ing selection for the optimal nucleotide is solely determined
by its position. In this case, one could treat the position-
dependent strength of selection at a site as an expectation
of a random variable from some distribution, rather than as
an exact value as we do here. For example, the strength of
stabilizing selection for a given site could be modeled as if it
were drawn from a Gamma distribution whose expected
value varies spatially according to a Gaussian function (i.e.,
SelONþC). In fact, a combination of these model extensions
under the SelON framework should be able produce a range
of models with behavior similar to the standard GTRþC but
that is actually more consistent with how this model is com-
monly perceived. Generalizing our model in this manner
would allow for testing specific hypotheses about the funda-
mental and poorly understood biological factors contributing
to the evolution of UCEs. In addition, these model extensions
should allow us to more effectively extract phylogenetic in-
formation on shallower branches by including additional
flanking regions beyond the core of a given UCE that are
currently ignored.
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Despite intense study of UCEs, we still know very little
about the mechanisms responsible for their persistence across
deep evolutionary time and the factors contributing to their
rate heterogeneity. Given the fact that the spatial variation in
nucleotide conservation is a common property of UCEs, it
should not be surprising that a Gaussian model of stabilizing
selection, which employs three parameters to describe the
center of the UCE, the strength of selection at the center, and
how quickly selection decreases away from the center, fits
better than the GTRþ C; a single parameter random effects
model that implicitly, rather than explicitly, models the effects
of selection. Looking further ahead, one could imagine testing
a range of spatial functions, such as a truncated or bimodal
function, rather than exclusively assuming the strength of
stabilizing selection follows a Gaussian function. Fitting other
spatial functions to UCEs should allow finer grade differenti-
ation of UCEs. Better differentiation of UCEs should both
improve phylogenetic reconstruction of evolutionary history
and help researchers exclude or even identify the sources of
selection underlying UCE evolution.

Materials and Methods

Implementation
We implemented our SelON model, as well as carried out all
subsequent simulations and empirical analyses, in our R pack-
age selac (Beaulieu et al. 2019). As input, all that is required is a
directory containing fasta files of the individual UCE sequen-
ces for a set of taxa, and a phylogeny depicting the hypoth-
esized relationships among them (due to computational
constraints only fixed topologies are optimized). The starting
values for Nesmax, �x, and r that define the continuous shape
function are chosen at random, and we start with a global
mutation rate matrix that assumes all rates are 1 (i.e., we start
with a Jukes–Cantor substitution process). The initial optimal
nucleotides, n

! �, are based on the majority rule, where the
most observed nucleotide at each site is considered the start-
ing optimum. Since the branch lengths are shared among all
sequences, the starting values for the branch lengths come
from the estimates under the F81 model (Felsenstein 1981) of
substitution using the R package phangorn (Schliep 2011).

To optimize branch lengths and model parameters, we
employ a four-stage hill-climbing algorithm. The first stage
optimizes the branch lengths, but because our model is non-
reversible, we are unable to make use of the standard fast
rerooting algorithm that is commonly implemented for esti-
mating branch lengths (Felsenstein 1981). Instead, we devised
an alternative procedure that first optimizes the particular
order of branch length “generations,” starting with the termi-
nal branches being optimized, followed by the branches that
subtend them, and so on, until we reach the root. The order
here is important, because in effect we are always optimizing
the length of the branches that subtend increasingly inclusive
clades, whose descendant branch lengths have already been
optimized in previous generations. Once we have optimized
all branches in the tree, this does not guarantee that each
branch is at their optimal length. So, we repeat this cycle until
either nine additional cycles have been conducted, or there is

a <1% difference in the log-likelihoods between successive
cycles.

The second stage of our algorithm optimizes the UCE-
specific parameters Nesmax, �x, and r that set the shape of
the continuous sensitivity to selection function, and the third
stage optimizes the mutation rate parameters, lij, shared by
all UCEs in the set. In each of these stages, parameter opti-
mization is carried out using a bounded subplex routine
implemented in the NLopt library, and made available for R
through the package nloptr (Johnson 2019). The fourth stage
optimizes the optimal nucleotide sequence, n

! �, for each site
in each UCE in the set. Our four-stage cycle is repeated until
either 11 additional cycles have been conducted, or there is a
<1% difference in the overall log-likelihoods between succes-
sive cycles. This process is slow, and it is likely that others
could develop faster optimizations if they incorporate this
model into other software.

Simulations
We evaluated the performance of SelON by simulating UCEs
using two different nine- and ten-taxon topologies under
SelON (fig. 3 and supplementary fig. S4, Supplementary
Material online), and estimating the bias of the inferred
model parameters and branch lengths from these data.
First, the ten-taxon topologies are the nine-taxon topology
with a single outgroup taxon added to test the impact of
whether adding an outgroup improves branch lengths esti-
mates for the nine-taxon ingroup (see Results in the main
text). Second, the different topologies reflect ways in which
long branches (0.10 expected substitutions/site) and short
branches (0.025 expected substitutions/site) are distributed
within a tree. The purpose was to determine not just the
behavior of our SelON model, but also the behavior of the
branch length estimates from standard models of nucleotide
evolution (i.e., GTRþC) when the true underlying model as-
sumed varying degrees of stabilizing selection. The generating
model was based on the parameter estimates and site lengths
from 22 randomly selected UCEs from our full analysis of the
turtle data set (see Placement of Turtles) fit under SelON,
which, cumulatively, produced data sets with 10,000 sites. We
conducted 50 replicates of each simulation set, pulling ances-
tral states from the equilibrium base frequencies for each site.
To ensure robustness of the parameter estimates, we opti-
mized using the generating model parameters as starting
points, as well as repeated the model optimization three
times with different naive starting points with respect to
the UCE-specific parameters. When fitting the
GTRþCmodel of nucleotide evolution the C-distribution
was approximated using the generalized Laguerre quadrature
method with four categories (Felsenstein 2001).

Placement of Turtles
We fit our SelON model to a published data set of 1,145 UCEs
and their variable flanking DNA (Crawford et al. 2012). These
loci were used to determine whether the phylogenetic posi-
tion of turtles is sister to archosaurs (birdsþ crocodiles), or
sister to the lepidosaurs (lizardsþ tuatara; “Ankylopoda
hypothesis,” see Lyson et al. 2012), which we reevaluated
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here. However, due to computational limitations, rather than
using all 1145 UCEs we randomly selected 400 from this
broader set. To ensure robustness of the parameter estimates,
we repeated the model optimization three times, each with
different naive starting points with respect to the UCE-
specific parameters. In addition to our SelON model, we
also fit two GTRþC models partitioned by UCE (as was
done in the original study) where the C distribution was
approximated by the generalized Laguerre quadrature
(Felsenstein 1981). Two separate analyses were conducted,
one where the number of rate categories was set to four
categories, and another where the number of rate categories
was set to eight (in no case did adding extra categories im-
prove the fit from the standard four category C-distribution).
For all model comparisons between SelON and GTRþC fits
we rely on sample size corrected AICc, where the sample size,
n, is equal to the number of taxa multiplied by the number of
sites (see Beaulieu et al. 2019).

In addition to examining improvement in model fit, we
also evaluated and compared the model adequacy of SelON
and GTRþ C. This involved simulating 400 UCEs with the
same sequence lengths as the empirical ones, under both
SelON and GTRþC models, using their respective MLE
parameters, topologies, and branch lengths. We conducted
100 replicates of each simulation set, pulling the starting
states from the equilibrium base frequencies for each site.
For GTRþC, the equilibrium base frequencies and C-rate
multiplier for a given site were based on a model-average of
the site likelihood across each discrete C-rate category.
Similarity was calculated as the number of matches at any
given site for any given taxa divided by the total number sites.

To determine whether our randomly selected sampling
from the broader UCE set impacted the support for one
topology over another, we also conducted a complementary
set of analyses using 50 randomly selected UCEs. We also used
this set of UCEs to test the robustness of the support for each
topology when trimming a portion of the sites from their
variable flanking regions. To do this, we first determined
the final size of the trimmed UCE if we removed 50% of
the sites, and then determined the stretch of sites of this
same size that cumulatively resulted in the lowest overall
parsimony score. This procedure ensured that for any given
individual UCE, the most conserved portion was retained and
that the trimmed sites came from the most variable regions.
In other words, a given end may have more or fewer sites
removed than another. It all depends on the location of the
utltraconserved region. We then refit GTRþCand SelON to
the trimmed data set and compared the resulting overall
support for the two competing topologies. We also examined
the pattern of site-wise support based on each site’s distance
from their respective inferred Nesmax (based on the
untrimmed UCE analysis) as well as the model-average C rate.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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