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Abstract To eliminate the potential for infection,

many tissue banks routinely process and terminally

sterilize allografts prior to transplantation. A number

of techniques, including the use of scanning electron

microscopy, bone graft models, and mechanical

property tests, are used to evaluate the properties of

allograft bone. However, as these methods are time

consuming and often destroy the bone sample, the

quality assessment of allograft bones are not routinely

performed after processing and sterilization proce-

dures. Raman spectroscopy is a non-destructive, rapid

analysis technique that requires only small sample

volumes and has recently been used to evaluate the

mineral content, mineral crystallinity, acid phosphate

and carbonate contents, and collagen maturity in

human and animal bones. Here, to establish a quality

assessment method of allograft bones using Raman

spectroscopy, the effect of several common steriliza-

tion and preservation procedures on rat femoral bones

were investigated. We found that freeze–thawing had

no detectable effects on the composition of bone

minerals or matrix, although heat treatment and

gamma irradiation resulted in altered Raman spectra.

Our findings suggest Raman spectroscopy may facil-

itate the quality control of allograft bone after

processing and sterilization procedures.
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Introduction

Bone grafts represent one of the earliest devised

reconstructive approaches for the musculoskeletal

system and remain among the most common ortho-

paedic procedures, being used for the repair of

fractures, arthrodeses, and cystic defects, and skeletal

deficits after traumatic loss or tumor resection.

To eliminate potential infection during allograft-

ing, many tissue banks routinely process and termi-

nally sterilize allografts prior to transplantation. A

number of techniques have evaluated the various
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properties of preserved and sterilized allograft bone,

such as the use of scanning electron microscopy

(SEM) for collagen structure (Voggenreiter et al.

1994), bone graft models for osteoinduction and bone

absorption (Kühne et al. 1992), and compression or

bending tests for mechanical properties (Anderson

et al. 1992; Currey et al. 1997; Hamer et al. 1996;

Nguyen et al. 2007). Although, these methods

provide important information about the condition

of allograft bone, they require lengthy assay periods

or destruction of the bone; thus, bone tissues after

processing and sterilization procedures are not eval-

uated prior to grafting. To permit the assessment of

bone graft tissue, the development of more rapid and

non-destructive evaluation methods has been needed.

Raman spectroscopy is a non-destructive, rapid

analysis technique that requires only small sample

volumes and is nearly resistant to interference from

water. The spectroscopy technique has found wide

application in biomedical fields and has recently been

used to evaluate the mineral content, mineral crys-

tallinity, acid phosphate and carbonate contents, and

collagen maturity in human and animal bones (Akkus

et al. 2004; Carden and Morris 2000; Freeman et al.

2001). As the frequency assignments for all major

Raman spectral peaks of bone minera have been

established, we speculated that Raman spectroscopy

would be useful for the quality control of allograft

bones after processing and sterilization procedures.

Here, to establish a quality assessment method of

allograft bones using Raman spectroscopy, the effects

of several common processing and sterilization

procedures on rat femoral bones were investigated.

Materials and methods

Bone samples

The experimental protocol was approved by the

animal care committee of Kitasato University School

of Medicine. Femora were harvested from 8-week-

old male Wistar rats (Charles River Japan, Inc.,

Yokohama, Japan), which were maintained at the

animal facility of Kitasato University and fed rodent

Diet CE-2 (CLEA Japan, Inc.), containing 1.18 g

calcium and 1.03 g phosphorus/100 g of feed. Bones

collected from 36 rats were divided equally into the

following 6 treatment groups: (1) Fresh, in which

bones were untreated; (2) FT1, in which bones were

frozen using an ultra-low temperature freezer at

-80�C (MDFU581; Sanyo Electric Co., Ltd., Osaka,

Japan) for 6 weeks and then thawed at 37�C for 1 h;

(3) FT3, in which bones were subjected to three

cycles of freezing for 2 weeks at -80�C and then

thawing at 37�C for 1 h; (4) 60�C, in which bones

were heated at 60�C for 10 h; (5) 80�C, in which

bones were heated at 80�C for 10 min; and (6) Radi,

in which bones were subjected to 25 kGy cobalt-60

gamma-irradiation. The excised and treated femoral

bones were fixed for 48 h in 4% paraformaldehyde,

which was then replaced with phosphate buffered

saline (PBS), and the bones were then refrigerated at

4�C until Raman spectroscopy analyses.

Confocal laser Raman spectroscopic

measurements

Confocal laser Raman microspectroscopy was used to

determine the composition and relative intensities of

bone minerals and matrix in the mid-shaft anterior

cortex of the left femora 15 mm from the proximal end.

Using a custom-made fixture, the proximal half of

femora was placed on the microscope stage such that

the transverse cross section at mid-shaft was oriented

perpendicularly to the laser beam incident from a 809

microscope objective. Locations of interest were

positioned with an accuracy of 0.1 lm using a

motorized XY stage and an optical camera. The

intracortical compartment was subjected to measure-

ments using a Nicolet Almega XR Dispersive Raman

microscope system equipped with the OMNIC Atlus

imaging software program (ThermoFisher Scientific,

Inc., MA, USA). An area of less than 1 lm2 can be

mapped using Atlus software for samples visualized on

the confocal video microscope. A high-brightness,

low-intensity laser operating at 780 nm was used as the

excitation source with a laser power of 35 mW. Each

spectrum shown is the sum of 10 s measurements. The

peak areas or heights were calculated with the follow-

ing Raman shift wavenumbers (Table 1): PO3�
4 v1,

981.9–925.7 cm-1; CH2 wag, 1,446–1,455 cm-1;

PO3�
4 v4, 631.0–545.8 cm-1; CO2�

3 v1, 1,087.9–

1,052.1 cm-1; amide I, 1,716.3–1,541.2 cm-1; amide

III, 1,298.1–1,214.4 cm-1; hydroxyproline, 855 and

878 cm-1; and proline, 919 cm-1; as described in

Akkus et al. (2004). Crystallinity, a parameter of

mineral maturation, was determined as the inverse of
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the width of the phosphate symmetric-stretch band

(PO3�
4 v1 at 959 cm-1) at half the maximum intensity

value, as previously described (Yerramshetty and

Akkus 2008).

Statistical analysis

Data were summarized to allow comparisons between

the Fresh and other five treatment groups. All data

values are expressed as the mean ± standard deviation

(SD). The group means were compared by one-way

analysis of variance (ANOVA) followed by Tukey’s

HSD post-hoc multiple comparison tests using a

commercially available statistical package (SPSS

11.0 J for Windows; SPSS, Inc., Tokyo, Japan).

Results

Raman spectral analysis of the anterior cortex of rat

femora in the treatment group revealed the resolvable

mineral factor to be carbonated apatite. The peak

wave numbers of the main mineral and matrix

components were nearly identical to those originally

reported by Tarnowski et al. (2002), as shown in

Fig. 1 and Table 1.

We next compared the mineral-to-matrix ratios in

the bone samples for all six experimental groups

based on the Raman spectral analysis results. All

three mineral–matrix ratios, v1/amide I, v1/amide III,

and v1/CH2, were significantly decreased in the 60

and 80�C treatment groups (P \ 0.05) (Fig. 2a–c,

respectively). The v1/CO3 ratio also tended to be

lower in the 60 and 80�C treatment groups (Fig. 2e).

No differences in the hydroxyproline/proline ratio

were observed between the Fresh and other five

treatment groups (Fig. 2d). The crystallinity of bones

in the Radi group was significantly higher than that of

bones in the Fresh group (Fig. 2f).

Discussion

Using confocal laser Raman spectroscopy, we evalu-

ated rat femoral bones after being subjected to

procedures routinely used for the preservation and

sterilization of allografts. We found that although heat

treatment and irradiation resulted in altered Raman

spectra, freeze–thawing had no detectable effects on

the composition of bone minerals or matrix. This

finding suggests that Raman spectroscopy would be

useful for quality assessment of allograft bones after

processing and sterilization procedures.

The freezing of tissues at -80�C is generally used

for long-term preservation in tissue banks and is also

considered to reduce the immunogenicity of allo-

grafts (Gitelis and Cole 2002; Heyligers and Klein-

Nulend 2005; Weyts et al. 2003). However, repeated

freeze–thawing may affect the properties of tissue;

compared to a single freeze–thaw treatment, the

repeated freeze–thawing of tissues, including the

palate, liver, and skin, produces more extensive and

thorough tissue destruction (Gage and Baust 1998). In

present study, no notable changes in any Raman

spectra were observed in the FT1 and FT3 treatment

groups, and even repeated freeze–thawing did not

affect the Raman spectra of femur samples. This

finding suggests that the freeze–thaw procedure for

bone preservation may not affect collagen structure.

Our results are consistent with those of Voggenreiter

et al. (1994), who examined the effects of preserva-

tion and sterilization on cortical bone grafts using

SEM and found that compared to fresh bone,

cryopreservation and irradiation had no deleterious

effects on the bone surface structure compared to

fresh, untreated bone. In addition, in a previous study,

we did not observe significant differences in the fibril

occupation ratio or cycle length of intr aperiodic

bands of collagen fibrils between the control and

freeze–thawed tendons (Park et al. 2009). Taken

together with the results of our present study, these

findings suggest that the freeze-thaw cycle does not

affect collagen structure.

To avoid the transmission of bacteria, human

immunodeficiency virus, and hepatitis C virus during

Table 1 Raman spectroscopy results for rat cortical bone

between 350 and 1,750 cm-1

Raman shift (cm-1) Assignment

1,716–1,541 Amide I

1,446–1,455 CH2 wag

1,298.1–1,214.4 Amide III

1,087.9–1,052.1 CO2�
3 v1, type B carbonate

substitution

981.9–925.7 PO3�
4 v1

631.0–545.8 PO3�
4 v4
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grafting, two protocols involving heating at 80�C for

10 min and 60�C for 10 h are regulated as standard

treatments for allograft bone by the Japanese

Orthopaedics Association (1999). Knaepler et al.

(1991) reported that osteoinduction properties and

mechanical strength of bone were preserved at
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Table 1 are indicated.
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linity for femur bone samples of the different treatment groups.

a v1/Amide I, b v1/Amide III, c v1/CH2, d hydroxyproline

(Hypro)/proline (Pro), e m1/CO3, and f crystallinity. All data

are presented as the mean ± SD. One-way analysis of variance

(ANOVA) was followed by Tukey’s HSD post-hoc multiple

comparison test. #P \ 0.05 versus the fresh group
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temperatures lower than 80�C. Similarly, Izawa et al.

(2001) demonstrated that bone morphogenetic pro-

teins and osteoinduction potential are preserved after

heat treatment at 60�C for 10 h, indicating that the

quality of heat-treated bone is adequately retained.

However, Kühne et al. (1992) reported that deep-

frozen allografts more rapidly integrated than allo-

grafts subjected to moderate heat-treated treatment.

In our present study, Raman spectroscopic analysis

revealed that the mineral-to-matrix ratios, namely

v1/Amide I, v1/Amide III, and v1/CH2, were signif-

icantly decreased in bone of the 60 and 80�C

treatment groups. Otomo et al. (2004) also reported

a decrease of mineral–matrix ratios in the bone of

ovariectomized rats (Otomo et al. 2004). Our finding

of lowered mineral-to-matrix ratios following heat

treatment indicates that the decreased quality of

heated bones may also explain the slower integration

period often observed for heat-treated allografts

(Kühne et al. 1992).

Gamma irradiation from cobalt-60 sources, which

has been widely used to terminally sterilize bone

allografts, is well known to adversely affect the

mechanical and biological properties of bone allo-

grafts in a dose-dependent manner (Nguyen et al.

2007). The mechanical properties of allograft bone

markedly decrease when the gamma dose is increased

above 25 or 60 kGy for cortical and cancellous bone,

respectively (Nguyen et al. 2007). Tissue banks

operating in countries that were using the ionizing

radiation technique for the sterilization of tissues,

particularly in Asia and the Pacific and in the Latin

American regions, used a target dose of 25 kGy

(Pedraza et al. 2011). They tried to follow ISO 11137

(IAEA 2007) and ISO/TR 13409 ISO/TR 13409(1996)

to validate the process (Pedraza 2006). Therefore, this

dose is most frequently used for sterilization treatment

by tissue banks, although opinions are divided as to the

optimal dose. In our present study, the use of 25 kGy

gamma irradiation did not change the resulting Raman

spectrum of treated femurs, but did increase the

crystallinity. A previous study reported that the

crystallinity of human bone increases with aging

(Hanschin and Stern 1995). Yerramshetty and Akkus

(2008) also demonstrated that tissue strength and

stiffness increased with increasing crystallinity,

whereas the ductility reduced. Thus, increased crys-

tallinity in irradiated allograft bone may represent an

adverse effect of irradiation sterilization methods.

However, Jinno et al. (2000) reported that the irradi-

ation process did not consistently or significantly

affect the incorporation of syngeneic or allogeneic

grafts. Therefore, changes in the crystallinity of bone

may have little effect on the incorporation of synge-

neic or allogeneic grafts.

Several studies have reported that Raman spec-

troscopy is useful for the evaluation of bone quality,

which is the combined function of various patients

characteristics, including age, and disease status, such

as osteoporosis or osteoarthritis (Ager et al. 2005;

Akkus et al. 2004; Krafft et al. 2009; Otomo et al.

2004). However, the bone quality of allograft bones

after processing and sterilization procedures are not

routinely evaluated because standard techniques,

including mechanical testing and bone graft models,

are time consuming and often lead to the destruction

of the sample. We found that the freeze-thaw process

did not affect the resulting Raman spectrum. As

Raman spectroscopy allows the rapid evaluation of

allograft bone quality without complicated tissue

preparation, this approach may allow the quality

control of allograft bones after sterilization proce-

dures. Notably, we found that sterilization processes,

particularly heating and gamma irradiation altered the

Raman spectrum of femoral bones, suggesting that

these treatment processes change the quality of bone

allografts. Our analyses also suggest that Raman

spectroscopy may be useful for the evaluation of bone

sterilization techniques.
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