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Abstract

Aim: Experimental studies provided numerous evidence that caloric/dietary restriction may 

improve health and increase the lifespan of laboratory animals, and that the interplay among 

molecules that sense cellular stress signals and those regulating cell survival can play a crucial 

role in cell response to nutritional stressors. However, it is unclear whether the interplay among 

corresponding genes also plays a role in human health and lifespan.

Methods: Literature about roles of cellular stressors have been reviewed, such as amino 

acid deprivation, and the integrated stress response (ISR) pathway in health and aging. Single 

nucleotide polymorphisms (SNPs) in two candidate genes (GCN2/EIF2AK4 and CHOP/DDIT3) 

that are closely involved in the cellular stress response to amino acid starvation, have been selected 

using information from experimental studies. Associations of these SNPs and their interactions 

with human survival in the Health and Retirement Study data have been estimated. The impact of 

collective associations of multiple interacting SNP pairs on survival has been evaluated, using a 

recently developed composite index: the SNP-specific Interaction Polygenic Risk Score (SIPRS).

Results: Significant interactions have been found between SNPs from GCN2/EIF2AK4 and 

CHOP/DDI3T genes that were associated with survival 85+ compared to survival between ages 75 

and 85 in the total sample (males and females combined) and in females only. This may reflect sex 
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differences in genetic regulation of the human lifespan. Highly statistically significant associations 

of SIPRS [constructed for the rs16970024 (GCN2/EIF2AK4) and rs697221 (CHOP/DDIT3)] with 

survival in both sexes also been found in this study.

Conclusion: Identifying associations of the genetic interactions with human survival is an 

important step in translating the knowledge from experimental to human aging research. 

Significant associations of multiple SNPxSNP interactions in ISR genes with survival to the 

oldest old age that have been found in this study, can help uncover mechanisms of multifactorial 

regulation of human lifespan and its heterogeneity.

Keywords

Integrated stress response; amino acids starvation; health and lifespan; GCN2/EIF2AK4 and 
CHOP/DDI3T genes; GxG interactions

INTRODUCTION

The multifactorial nature of aging, health, and lifespan-related traits is broadly recognized 
but understudied

It is generally acknowledged that human lifespan, aging, and age-associated health disorders 

are multifactorial traits resulting from the complex interplay among numerous genetic and 

non-genetic factors. Observed correlations between biomarkers of biological aging and 

age-associated diseases indicate a possibility of improving health and increasing lifespan 

through deceleration of the aging-related processes in the body. A better understanding of 

the mechanisms of multifactorial regulation of respective traits could substantially facilitate 

the realization of this idea.

Numerous experiments using animal models were performed to improve such 

understanding. Surprisingly, a number of studies revealed that mutations in just one gene 

in C. elegans could substantially increase the lifespan of laboratory animals (reviewed 

in[1]). E.g., Johnson et al.[2,3] identified the long-lived mutant of C. elegans called age-1. 

Later, other mutants with substantially longer survival compared to wild animals were 

detected[1,4,5]. Note that the effects of such mutations on lifespan in other species are much 

less pronounced.

Many other experimental studies discovered that better health and longevity could be 

achieved in animals from different species exposed to caloric/dietary restriction (CR/DR) 

(reviewed in[6–9]). Further research showed that separate components of the diet, including 

carbohydrates[10,11], lipids[12], proteins[13–16], vitamins[17], minerals[18], fiber[19], and water, 

can influence aging and lifespan through different albeit often interacting genetic regulatory 

mechanisms. Experiments with different mutants of C. elegans[20] and different strains of 

mice[21] overall suggested that the effects of CR/DR on lifespan can have a strong genetic 

component. The genetic mechanisms involved in lifespan regulation in response to amino 

acid deprivation were linked to genes from the mTOR signaling pathway[22,23]. It has also 

been shown that amino acid deprivation may influence lifespan by activating interplay 

among genes from the integrated stress response (ISR) pathway with the GCN2/EIF2AK4 
gene serving as a sensor of such stress signals and the CHOP/DDIT3 gene serving as a 
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regulator of cell’s fate deciding between autophagy, cell cycle arrest, or apoptosis[24–26]. 

Apoptosis is a cellular choice when stress response cannot restore the normal cell’s 

functioning.

The genetic epidemiological genome-wide and candidate genes single locus studies of 

human aging, health, and longevity traits made substantial progress in identifying genetic 

variants associated with these traits. Surprisingly, genes from many signaling and metabolic 

pathways whose roles in such traits were well established in experimental studies did not 

show statistically significant associations with these traits. This lack of consistency between 

results of genetic association studies of human data and information from experimental 

studies might be explained by the fact that biological mechanisms of complex traits 

regulation result from a complicated interplay between many genetic and non-genetic factors 

that may differ in humans and laboratory animals. Studying such interplay requires more 

sophisticated approaches than used in traditional genetic association studies that test the 

association of one SNP at a time with a given trait. It means that genetic association studies 

of multifactorial traits should include analysis of genetic interactions and collective actions 

of interactions of many genetic and non-genetic factors. To address this problem, many 

statistical approaches that aimed to detect associations of gene-gene (GxG) interactions have 

been proposed during the last decades.

Critical reviews of the methods, related software packages used to detect the interactions 

between genetic loci that contribute to human genetic diseases and the difficulties 

in determining the biological relevance of statistical interactions are provided in 

the papers[27–30]. Most recent reviews describe various extensions of the Multifactor 

Dimensionality Reduction (MDR) approach[31–34], using entropy in genetic interaction 

analyses[35,36], implementation of machine learning techniques to study epistasis[28,37,38], as 

well as many other approaches that differ in definitions of genetic interaction, the accuracy 

of calculations, and in computation time[39–45].

This paper used the INTERSNP software package[46] that implements a logistic regression 

framework. This approach allows for evaluating associations of genetic interactions with 

complex traits in the presence of observed covariates. It has been successfully used in our 

earlier genetic analyses of genetic interactions[47]. Useful information about other methods 

can also be found in the review paper[48].

Information about genes involved in multifactorial regulation of aging, health, and lifespan

related traits in laboratory animals serves as a source of useful insights concerning genetic 

mechanisms that might regulate these traits in humans. This information is used for selecting 

candidate medications appropriate for testing in clinical trials. The failure of many expensive 

clinical trials to identify a proper medication [e.g., in case of Alzheimer’s disease (AD)] 

indicates the need to find more reliable and less expensive ways of testing whether genetic 

connections detected in experimental studies exist in humans. It is proposed that such 

testing can be done by applying genetic epidemiological methods to available human data 

on genotyped individuals collected in human longitudinal and cross-sectional studies. The 

efficient analysis of such data requires a convenient conceptual framework that would allow 
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the researchers to perform comprehensive analyses of biological mechanisms and effciently 

integrate research findings.

Stress-related conceptual framework allows for linking together stressors, sensors of stress 

signals, and genes from stress response pathways as key players in mechanisms of 

multifactorial regulation of complex traits.

The use of a stress-related conceptual framework might be beneficial for studying 

multifactorial regulation of complex traits because it allows for selecting and linking 

together non-genetic factors (e.g., associated with cellular stressors) and genes involved 

in cellular stress response (e.g., such as ISR). It has been recently shown that interplay 

between the GCN2/EIF2AK4 gene that serves as one of the sensors of cellular stress signals 

in the ISR pathway and the gene CHOP/DDIT3 involved in the regulation of autophagy and 

apoptosis may play a crucial role in the regulation of aging, health, and life span/survival 

traits in laboratory animals[25,49]. This observation allows us to hypothesize that interplay 

between these genes may influence these traits in humans. Testing this hypothesis using 

human data would be an important step forward in the translation of knowledge from 

experimental studies to humans. This is because the interplay between the GCN2/EIF2AK4 
and CHOP/DDIT3 genes influences aging, health, and lifespan/survival traits in laboratory 

animals[25,50,51] does not mean that these genes play the same roles in humans.

Does the interplay between the GCN2/EIF2AK4 and CHOP/DDIT3 genes influence human 
lifespan?

This paper reviewed experimental evidence about genetic mechanisms that regulate the 

effects of cellular stress on aging, health, and lifespan/survival traits. These effects are 

manifested at the cellular level and involve genes from the ISR pathway. To illustrate our 

approach to the analysis of the effects of genetic interplay on these traits, two genes have 

been selected from the ISR pathway. One, the GCN2/EIF2AK4 gene, becomes activated 

by several cellular stressors, including amino acid starvation (deprivation). The transformed 

signal sent from this gene (but not the initial stress signal) activates other genes in the ISR 

pathway, including the CHOP/DDIT3 gene, which is the second gene selected for analysis. 

The product of this gene, among other things, influences the cells’ fate: when stress is 

mild, and the duration of the stress response is relatively short, the cell has high chances 

to survive; alternatively, under strong or persistent stress, the CHOP/DDIT3 gene is more 

likely to activate the process of apoptosis for this cell. The strength and the duration of 

cellular stress response to a large extent might be determined by the GCN2/EIF2AK4 gene 

polymorphisms. The cells’ fate has important consequences for the organism’s health and 

survival outcomes. Because of the importance of stress-related conceptual framework used 

in our analysis, a brief description of ISR is given below.

Rationale for selecting the GCN2/EIF2AK4 and CHOP/DDIT3 genes involved in the ISR 
pathway

In response to various stressors disturbing normal cellular functioning, eukaryotic cells 

activate an evolutionary conserved adaptive machinery - the ISR[49]. Depending on the 

strength and duration of the stress response, ISR determines the fate of the cell[52]. Cellular 
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stressors may be intrinsic (e.g., misfolded proteins, genetic polymorphisms[53]) or external 

(e.g., nutrient deprivation, viral infection, hypoxia, UV-irradiation, and others[54–56]). 

Experimental and clinical studies provide evidence about involvement of ISR in lifespan 

regulation[57,58], as well as in the development of aging-related diseases including 

cognitive and neurodegenerative disorders[49,55], cancer[59–61], pulmonary disease[62], 

atherosclerosis[63,64], diabetes[65] and other metabolic disorders[66].

ISR responds to cellular stressors by changing the process of protein synthesis[49,52]. This 

process starts with the phosphorylation of eukaryotic translation initiation factor 2 alpha 

(EIF2A) by one of the four members of the EIF2A kinase family, which sense cellular stress 

signals. These include a heme-regulated inhibitor kinase (HRI/EIF2AK1), an interferon

induced, double-stranded RNA (dsRNA)-activated protein kinase (PKR/EIF2AK2), a 

protein kinase R (PKR)-like endoplasmic reticulum (ER) kinase (PERK/EIF2AK3), and a 

general control nonderepressible 2 kinase (GCN2/EIF2AK4). Additional details about these 

kinases are described below.

Heme regulating inhibitor kinase (HRI/EIF2AK1) is an enzyme that in humans is encoded 

by the EIF2AK1 gene. Heme is an iron-containing compound that forms the non-protein 

part of hemoglobin, the substance inside red blood cells that binds to oxygen in the 

lungs and carries it to the tissues. HRI/EIF2AK1 is an intracellular heme sensor that 

coordinates heme and globin synthesis in erythropoiesis by inhibiting protein synthesis of 

globin and heme biosynthetic enzymes during heme deficiency. HRI is also activated by 

arsenite-induced oxidative stress, heat shock, nitric oxide, 26S proteasome inhibition, and 

osmotic stress. These types of stressors activate HRI independently of heme but require the 

presence of heat shock proteins HSP90 and HSP70. Denatured proteins and oxidative stress 

also activate HRI[56,67,68].

Protein kinase R (PKR/EIF2AK2) is an enzyme that in humans is encoded by the EIF2AK2 
gene. In addition to dsRNA that can be introduced to the cell by a viral infection, PKR 

is also activated by oxidative and ER stress, growth factor deprivation, cytokines, bacterial 

infections, ribotoxic stress[69], caspase activity in the early stages of apoptosis[70]. It can also 

be activated by the protein PACT (that in humans is encoded by the PRKRA gene) or by 

heparin and other cellular stress signals[71–73].

Protein kinase R-like endoplasmic reticulum kinase (PERK/EF2AK3) is an enzyme that 

in humans is encoded by the EIF2AK3 gene. PERK is activated by accumulation of 

misfolded (unfolded) proteins in the ER, perturbations in calcium homeostasis, cellular 

energy, mitochondrial stress (including uncoupling), or redox status[74,75]. It has also 

been reported to respond to ATP depletion and subsequent sarcoplasmic/ER Ca2+-ATPase 

pump inhibition in the context of glucose deprivation in neuronal cells and pancreatic β 
cells[76–78]. It initiates the unfolded protein response[79,80]. PERK plays an important role in 

Alzheimer’s and other neurodegenerative diseases[81–83].

GCN2/EIF2AK4 is an enzyme that in humans is encoded by the EIF2AK4 gene. GCN2 is 

evolutionarily conserved from yeasts to humans and plays a key role in modulating amino 

acid metabolism. It is activated in response to amino acid deprivation when it binds to 
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deacylated transfer RNAs (tRNAs) via histidyl-tRNA synthetase-related domain[25,84–87]. 

GCN2 can also be activated by other stressors, including ultraviolet irradiation, viral 

infection, serum starvation, glucose deprivation, and oxidative stress. Recent work shows 

that GCN2 strongly activates by binding to ribosomal protein, suggesting that GCN2 

actively monitors mRNA translation[25,84–87]. Recently, a pivotal role for GCN2 in response 

to membrane damage has been uncovered[88,89]. Finally, GCN2, a crucial regulator of amino 

acid metabolism, is necessary for the metabolic homeostasis of tumor cells. Tumors lacking 

GCN2 or ATF4 grow more slowly[61]. Thus, in cancers where amino acids are scarce, 

targeting the GCN2 branch of the ISR may be beneficial. Indeed, combination treatment 

with L-asparaginase and GCN2 inhibitors causes apoptosis in several cancer cell types[49]. 

GCN2 upregulates a coordinately expressed set of genes involved in amino acid biosynthesis 

and metabolism[90].

The EIF2A phosphorylation by one of four kinases results in a decrease in global protein 

synthesis and the enhancing translation of the activating transcription factor ATF4 and 

several other genes acting together to restore cellular homeostasis[91,92]. ATF4 mediates 

the induction of ATF3 and GADD34/PPP1R15A, which dephosphorylates EIF2A-P and 

leads to the termination of ISR[93,94]. Chronic ISR activates CHOP/DDIT3 leading to 

apoptosis[60,95]. EIF2A phosphorylation also blocks the action of EIF2B, resulting in a 

general reduction in protein synthesis and the upregulation of selected genes. One of such 

genes is the transcription factor ATF4. The product of this gene plays a critical role in the 

regulation of obesity, glucose homeostasis, energy expenditure, and neural plasticity[96,97].

Under stress conditions, increased ATF4 expression can activate several transcriptional 

programs that will ultimately determine the cell fate-from re-establishment of homeostasis 

to cell death[98]. The ability of ATF4 to interact with multiple other transcription factors 

makes its target genes highly dependent on stress intensity and cellular context[61,87,99–101]. 

For example, when acting in combination with ATF3, ATF4 contributes to re-establishing 

cellular homeostasis and survival promotion[102]. Conversely, when interacting with CHOP, 

ATF4 promotes cell death[93]. In addition to the interacting partners that cooperate with 

ATF4 to promote transcription of target genes, another set of interacting partners prevent 

ATF4 transcriptional activity, as is the case for PHD3 during hypoxia[96,97] and TRIB3 

during amino acid starvation[103].

METHODS

Data

This paper aims to show how information from experimental data can be used for testing the 

connection between genetic factors and survival traits in humans. For this, a set of data is 

needed on genotyped individuals with large sample size. The Health and Retirement Study 

(HRS) data on white individuals satisfies this requirement. The information on white HRS 

study subjects is shown in Table 1.

The genetic data - 2.5 million single nucleotide polymorphisms (SNPs) - were produced 

on the Illumina platform using Illumina’s Human Omni2.5-Quad (Omni2.5) BeadChip 

methodology on 15,620 individuals (6472 males and 9148 females).
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Quality control (QC) was performed before running the analysis using two procedures. The 

first, based on the protocol proposed in[104], resulted in: 129 individuals dropped because 

of failure in the check of duplicates, missingness rate (5%), heterozygosity outlier (± 3 

SD), sex mismatch, and divergent ancestry outlier (± 8 SD); 538,451 variants were removed 

due to minor allele frequency < 1%, 69,947 variants were removed due to genotyping 

missing rate higher than 5%; and 411,945 variants were removed based on Hardy-Weinberg 

test (HWE, P-value < 1.0E-7). The second procedure used the protocol proposed in[105]. 

Individuals and SNP which passed either the first QC step or the second step remained in 

the final dataset. This procedure allowed us to increase the number of study subjects used in 

genetic analysis. It led to 15,492 individuals and 1,267,439 variants cleaned and mapped to 

the human reference genome GRCh38 for further analysis.

The following dichotomous survival trait (ST) was used in genetic interaction analysis: case: 

LS ≥ 85; control: 75 ≤ LS < 85 (or age at last follow-up) because we were especially 

interested in the effects of genetic factors on survival at ages 85+ compared with that around 

age 80 (± 5 years). Our earlier studies[106,107] suggested that the age around 80 might be 

a “switching point” in the course of aging, characterized by declining or leveling-off (after 

a prior increase) risks of some major diseases (e.g., cancers, asthma, CVD, diabetes). Such 

behavior of risk trajectories could be due to selection, under-diagnosis, or the aging itself, 

so that some aging-related changes in the body would negatively affect health and survival 

chances before age 80 but become protective afterward[107]. To estimate the association of 

interacting SNP pairs with ST, the logistic regression model as implemented in INTERSNP 

software was used (with the interaction term being the quantity of interest)[46]. Education, 

smoking status, sex, and first five principal components (PC1-PC5) were included as 

observed covariates.

Evaluating collective association of interactive SNP pairs with the survival trait

Because of the multifactorial nature of age-related health and lifespan-related traits, the 

interactions of SNPs from the GCN2/EIF2AK4 or CHOP/DDIT3 genes with SNPs from 

many other genes may also contribute to these traits. The interacting SNP pairs associated 

with these traits can be detected in the genome-wide-like association studies of interacting 

SNP pairs in which one SNP from the GCN2/EIF2AK4 or CHOP/DDIT3 genes is fixed, and 

others are all SNPs available for a given dataset that passed the quality control procedure. 

The results of this analysis can be used for constructing a SNP-specific composite index that 

can measure the association of many interacting SNP pairs with health and lifespan-related 

traits. This measure extends the notion of polygenic risk score (PRS), widely used in the 

genetic epidemiological studies of age-related diseases and longevity[108–116]. A simple 

measure of such capacity for a given SNP* might be the number of detected associations of 

interacting SNP pairs (with a fixed SNP*) whose P-values did not exceed a given P-value 

threshold (similar to the genetic dose index described in ref[113]). This paper introduced a 

measure of interactive capacity of a given SNP* involved in the lifespan regulation called 

“SNP-specific Interaction Polygenic Risk Score” (SIPRS). The construction of such indices 

and some of their properties related to multifactorial regulation of AD are described in 

Yashin et al.[47].
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RESULTS

The number of pairs of interacting SNPs in the two genes

To evaluate the significance of associations of the SNPxSNP interactions with the survival 

trait, the number of tested SNP pairs is needed to know when deciding about the presence or 

absence of the association of the interacting SNP pair with the trait. This number depends on 

the population under study and the genotyping platform. In the HRS data, after the quality 

control procedure, the GCN2/EIF2AK4 and the CHOP/DDIT3 genes have 63 and 8 SNPs, 

respectively. The analysis of associations of these SNPs with the survival trait (ST) (defined 

in the Data and methods section) showed that the associations of each of the 71 SNPs with 

survival trait did not reach the nominal level (P ≤ 0.05) of statistical significance. This 

allows for the hypothesis that the contribution of these genes to survival might be realized 

through their interaction effects.

To evaluate associations of interaction between the GCN2/EIF2AK4 and CHOP/DDIT3 
genes with survival traits, a set of 504 potentially interacting SNP pairs has been used to 

estimate the set of probabilities of the type I error, which would happen if the decision 

about the presence of association of each SNP pair with survival trait would be made. Note 

that this procedure did not involve the “decision making” about the presence or absence 

of association of the SNPxSNP interaction with the trait. Probabilities of type I error have 

been calculated for each SNP pair and, hence, no correction for multiple testing is needed 

at this stage. Note that the Bonferroni correction for multiple testing, in this case, would be 

9.92E-05.

Significant associations of interacting SNP pairs between the GCN2/EIF2AK4 and CHOP/
DDIT3 genes with human survival trait

The presence of linkage disequilibrium (LD) between SNPs related to each of two genes 

allows for reducing the number of potentially interacting SNP pairs tested for their 

associations with lifespan and for increasing the Bonferroni correction threshold. For this, 

the LD regions in each gene and selected one SNP pair as a representative for each 

such region have been identified. In the analysis, the SNP pair representatives are those 

who have the smallest value of the type I error among SNP pairs in this region. This 

clumping procedure used R2 = 0.1 LD threshold and resulted in 8 independent SNP pairs: 

8 independent SNPs from the GCN2/EIF2AK4 gene and 1 independent SNP from the 

CHOP/DDIT3 gene. It gives us a set of 8 SNP pairs that can now be used for testing the 

null hypothesis about the absence of association of the interacting SNP pairs with survival 

traits. The smallest P-value resulted from the analysis of the association of SNPxSNP 

interaction with survival trait is 3.80E-03 for SNP rs16970024 from the GCN2/EIF2AK4 
gene interacting with SNP rs697221 related to the CHOP/DDIT3 gene [Table 2]. All other 

interactions have P-values exceeding 1.00E-03. With eight SNP pairs tested in this analysis, 

the Bonferroni correction provides us with the P-value threshold 6.25E-03 for testing the 

null hypothesis, which is larger than 3.80E-03. These results are summarized in Table 2.

Separate analysis of males and females revealed a significant association of interactions 

between the SNPs rs16970024 and rs697221 with female survival, with a P-value of 
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3.80E-03. No significant associations of the interacting SNPs from these two genes with 

survival traits were detected in males.

These results support our hypothesis induced by the results of experimental studies that 

interactions between GCN2/EIF2AK4 and CHOP/DDIT3 genes may contribute to survival 

in humans.

SNP-specific interaction polygenic risk scores for the rs16970024 and rs697221 SNPs

It is important to note that regulation of aging, health, and lifespan-related (survival) traits in 

humans may include genes and connections which are not detected in experimental studies 

with laboratory animals. Therefore testing associations of interactions between each of two 

detected SNPs and all other SNPs using available human data might result in the detection 

of new features of genetic human mechanism of lifespan regulation. It is because each of the 

detected SNPs may influence lifespan through its interactions with many other SNPs.

The number of significant associations with other SNPs and the strength of such associations 

may differ for each SNP. Measuring the “interacting ability” of a SNP might help better 

understand the contribution of a given SNP (and corresponding gene) to multifactorial 

regulation of lifespan. The convenient measure of such ability could be SNP-specific 

interaction polygenic risk score (SIPRS)[47]

Such measures have been calculated for each of the two detected SNPs. For this, genome

wide association study (GWAS)-like analysis of associations of the rs16970024 and then 

rs697221 SNPs with all other SNPs available in the HRS data were performed. The HRS 

data on white males and females combined was used in the analysis. The logistic regression 

model with the interaction term has been used for evaluating associations of interacting 

pairs of SNPs with survival traits. Education, smoking, sex, first five principal components 

PC1-PC5, and rs16970024 (rs697221) were used as observed covariates in the regression 

model. Then by using summary statistics resulted from these analyses, the rs16970024 (the 

rs697221) composite SIPRSs indices have been constructed using the procedure described 

in[47].

The construction of rs16970024 (rs697221) related indices included a set of 67,741 (66,863) 

interacting pairs of SNPs ranked with respect to P-values of their associations with survival 

trait (from smallest to the largest). Both positive and negative associations with survival 

traits were used in the construction of SIPRS indices. Then the properties of constructed 

SIPRS indices were investigated. The results of these analyses are shown in Figure 1.

The diagram on the left of Figure 1 shows that the rs16970024 SIPRS index corresponding 

to the threshold 5E-04 (horizontal axis under the pillar) has the smallest P-value of its 

association with survival trait P = 5.2E-50. This index contains 220 SNP pairs and explains 

13.5% of phenotypic variance of the survival trait. The second most significant rs16970024 

related index shown in this diagram corresponds to the threshold 0.001 with the P-value 

1.7E-46 of its association with survival trait. This index contains 415 SNP pairs and explains 

15.7% of phenotypic variance of the survival trait.

Yashin et al. Page 9

J Transl Genet Genom. Author manuscript; available in PMC 2021 November 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The diagram on the right of this figure shows that the rs697221 SIPRS index corresponding 

to the threshold 0.005 (horizontal axis under the pillar) has the smallest P-value of its 

association with survival trait P = 3.8E-92. This index contains 1619 SNP pairs and explains 

33.4% of phenotypic variance of survival traits. The second most significant rs697221 

SIPRS index corresponds to the threshold 0.001 (at horizontal axis under the pillar) with the 

P-value 2.7E-86 of its association with survival trait. This index contains 412 SNP pairs and 

explains 25.6% of phenotypic variance of the survival trait.

The R package pROC was used to calculate the areas under the receiver operating 

characteristics curves (AUC) for selected rs16970024 (rs697221) SIPRS indices with a 

corresponding threshold of 0.001. The AUC characterizes the fit of the logistic regression 

model describing the association of the rs16970024 (rs697221) specific SIPRS constructed 

from 415 (412) SNP pairs (the threshold value 0.001). The area under the curve (AUC) is 

0.64 with 95% of confidence interval (0.63-0.66) for rs16970024 SIPRS, and 0.71 with 95% 

of confidence interval (0.70-0.72) for rs697221 SIPRS, respectively.

The properties of interacting SNP pairs most significantly associated with survival trait in 

which the rs16970024 SNP interacts with other SNPs are presented in Supplementary Table 

1. The properties of interacting SNP pairs most significantly associated with survival trait in 

which the rs697221 SNP interacts with other SNPs are presented in Supplementary Table 2.

DISCUSSION

The hypothesis-free GWAS of SNPxSNP interactions, including SNPs from all selected 

candidate genes, is possible but involves testing many SNPxSNP interactions. The too

conservative Bonferroni correction for multiple testing often results in unjustified decisions 

like “we consider all associations having P-value smaller than 5.0E-03, (5.0E-04, 5.0E-05) 

as promising” may make the interpretation of the results of such analysis difficult. At 

the same time, useful insights about the potential role of interplay between specific pairs 

of genes in the trait of interest might be obtained from experimental studies. Testing the 

presence of such connection in humans can be done by estimating the association of 

SNPxSNP interactions with the trait using SNPs taken only from given two genes. It is 

important to note that, even in this case, the number of testing SNP pairs can be large 

enough to create problems with deciding on true-positive association. It turns out that the 

number of testing SNP pairs can be further reduced using the fact that many SNPs from 

these two genes are in LD. Making such steps increases the chances of finding true-positive 

associations without making assumptions which compromise statistical evidence. This paper 

showed how such analysis could be done. Two candidate genes have been selected, which 

play important roles in the ISR pathway. One, the GCN2/EIF2AK4 gene, is a sensor 

of amino acid starvation. Other, the CHOP/DDIT3 gene is involved in the regulation of 

apoptosis and autophagy. The hypothesis has been tested that the interplay between these 

genes may contribute to variability in human lifespan. Using data on HRS study participants, 

it has been found that interaction between SNP rs16970024 from the GCN2/EIF2AK4 gene 

and SNP rs697221 from the CHOP/DDIT3 gene is significantly associated with human 

survival traits for females and for males and females combined.
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Geroscience and the ISR pathway

The geroscience hypothesis is that slowing down the aging process will postpone the 

occurrence of many age-associated health disorders, which results in increased healthspan 

and improved survival[117]. The idea to understand and control the individual aging process 

motivated many researchers to study biological mechanisms of aging and search for possible 

interventions that could slow down this process. One class of the interventions affecting 

aging has been discovered in the first half of the last century by McCay et al.[118] in 

experiments studying the effects of dietary restriction on lifespan in rodents. Subsequent 

experiments showed that a CR/DR diet is able to improve health and increase lifespan in 

different animal models[119,120].

More recent studies identified genetic pathways that sense disturbances in nutrients supply, 

regulate metabolic functions in CR/DR conditions, and influence aging, health, and 

lifespan[121]. A part of such regulation in laboratory animals is realized through the ISR 

pathway, in which interplay between the GCN2/EIF2AK4 and CHOP/DDIT3 genes dealing 

with the response to nutritional stress may play an essential role. Nutritional stress was an 

important part of life in human ancestors. This explains a major role of the sensor of the 

amino acid starvation (the GCN2/EIF2AK4 gene) in the ISR regulation of the processes 

affecting aging, health, and lifespan-related traits in response to changes in nutritional status. 

Experimental studies demonstrated a high potential of genes from the ISR pathway as 

targets for pharmacological intervention[122–128]. These studies indicated that evaluating 

the role of ISR pathway in human aging and lifespan may substantially improve our 

understanding of the factors and mechanisms initiating the development of major human 

age-associated health disorders.

Amino acid starvation

It was found that several mechanisms involved in sensing and regulation of response to 

amino acid (AA) deprivation can improve health and increase lifespan[129]. The GCN2/
EIF2AK4 and mTORC1 genes are both involved in such regulation. The key role of 

mTOR complex 1 (mTORC1) signaling pathway regulation of aging and lifespan has been 

established and widely discussed in the literature[23,26,130–133]. Decreased activation of 

mTORC1 leads to lifespan extension in yeast, worms, flies, and mice[134].

It turns out that the mechanism is driven by the AA deficiency sensor GCN2/EIF2AK4 also 

influences aging, health, and lifespan/survival traits [25,135–137]. The activation of the ISR 

in response to nutrient starvation engages adaptive changes mediated by the induction of 

genes necessary to produce all the amino acids[138]. Amino acids are needed to maintain 

various cellular functions, including the Krebs cycle activity for ATP generation. They also 

provide necessary components for maintaining redox homeostasis[138]. These properties of 

AA regulation can be used to deal with the consequences of metabolic stress.

Insights from experimental studies should be tested using human data

The majority of information about how the interplay of genes from the ISR pathway may 

influence aging, health, and lifespan/survival traits is obtained in experimental studies of 

these traits. Even though many genetic stress response pathways are evolutionary conserved, 
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the biological processes that involve groups of such genes in humans may differ from those 

developing in laboratory animals or cellular cultures. This is because, in different species, 

such pathways may experience species-specific modifications, acquire some, and lose other 

functions when adjusting to a specific biological background, nutritional differences, and 

external conditions. Therefore, the fact that an interplay between the GCN2/EIF2AK4 
and CHOP/DDI3T genes (the members of the ISR pathway) influences lifespan/survival 

of laboratory animals does not mean that the same connection holds in humans. Genetic 

epidemiological analysis of available data on genotyped human individuals has been 

performed to test whether interplay between these genes is associated with human lifespan/

survival. It has been found that one interacting SNP pairs taken from the GCN2/EIF2AK4 
and CHOP/DDI3T genes showed a statistically significant association with human survival 

trait in the analyses of the HRS population of males and females combined. Sex-specific 

analysis revealed that a statistically significant association of interacting SNPs with survival 

is confirmed only in females. This result may indicate that survival in males and females 

are regulated using different biological mechanisms. It can also result from the fact that 

the population of males used in the analysis was smaller than females. This finding is an 

important step in the process of translation of the results of experimental studies to human 

applications.

Detected association of the interaction between two genes with the human survival 
motivates search for biological mediators of such connection

The association of the interaction between GCN2/EIF2AK4 and CHOP/DDIT3 with the 

human survival trait detected in statistical analysis of data does not necessarily mean that 

this trait is affected by the result of biochemical interaction between corresponding genetic 

products. Statistical analysis may capture genetic connections between two genes that could 

be mediated by a chain of biochemical reactions that involve products of many other genes 

from ISR and other signaling and metabolic pathways involved in regulating a given survival 

trait in humans. Identifying such mediators and evaluating their roles in the regulation of 

human aging, health, and survival traits could shed light on the mechanism of multifactorial 

regulation of these traits in humans.

The ISR pathway that activates the GCN2/EIF2AK4 and CHOP/DDIT3 along with 

other genes may influence the development of age-associated diseases, including 

cancer[59,139,140], neurodegeneration[47], diabetes[141], other[25], and through them, lifespan 

and survival traits. Experimental data also show that the GCN2/EIF2AK4 and CHOP/DDIT3 
genes can be involved in the regulation of autophagy and apoptosis[142–146], which play a 

fundamental role in cancer[147,148], bacterial infections[149], other health disorders[150–156], 

aging[157–159]. The trade-off regulation between autophagy and apoptosis at the cellular level 

might be responsible for variability in lifespan[143,160]. Genes involved in such regulation 

are potential mediators of statistically detected association of interaction between the GCN2/
EIF2AK4 and CHOP/DDIT3 genes and the survival trait.

ISR initiation may improve or deteriorate health and survival outcomes

Experimental studies provide evidence about both the positive and negative influence of 

the ISR initiation on health and survival traits[57,58,62]. The improvement in survival 
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is likely to be related to the reduction of the metabolic rate in the cells at the time of 

cellular stress response, which is in concert with the Max Rubner’s “rate of living theory 

of aging”[161]. Experiments confirming the positive effects of CR/DR on aging, health, and 

lifespan illustrate this property[162–169]. The mechanism responsible for the positive effect 

on survival might be related to the fact that both genes analyzed in this paper are involved 

in the regulation of autophagy[142,152]. The negative correlation between basal (resting) 

metabolic rate and human lifespan was also detected[170,171]. All these effects were likely to 

be manifested, because in most of cells exposed to stress the ISR ended up by restoration of 

normal cellular functioning. The deleterious effects of the cellular stress response on these 

traits are likely to be manifested when ISR contributes to the survival of malignant cells or 

produces destruction of post-mitotic cells by apoptosis.

Earlier studies of the association of genetic interaction with human survival and longevity

The association of GxG interaction with human longevity has been investigated in several 

earlier studies. Tan et al.[172] suggested a centenarian-only approach for assessing such 

connections. Using data from Italian centenarians, the authors detected an association of 

interaction between the REN gene and the mitochondrial H haplotype with longevity. The 

case-control study of Han Chinese centenarians found that the interactions of SNPs from the 

FOXO1A and FOXO3A genes are associated with survival. This study also found that the 

interaction of FOXO1A and regular exercise is associated with survival traits[173]. The role 

of interaction between SNPs from the FOXO1A and FOXO3A genes with longevity has also 

been studied by implementing a novel permutation test to the data from the Danish 1905 

birth cohort[174]. The analysis confirmed the association of interaction of SNPs from these 

genes with longevity; however, interacting SNPs detected in this study differed from those 

found in the study of Chinese centenarians[173]. Dato et al.[175] analyzed associations of 

interacting SNPs from candidate genes on longevity using data from the Danish 1905 cohort. 

Curk et al.[176] used an information-theoretic approach implemented in the SNPsyn software 

and the MDR method to select synergistic pairs of SNPs. The best combinations detected in 

both approaches included SNPs from IGFR and PTPN1, TP53, and ERCC2, TXNRD1 and 

TP53. The authors also found interacting partners: PAPPA, PTPN1, MRE11A, and PARK7 
for the GHSR gene previously identified in a single-SNP association study. Ukraintseva 

et al. (forthcoming) investigated associations of interactions of SNPs from the group 

of candidate genes from aging-related pathways (IGF/FOXO growth signaling, P53/P16 

apoptosis/senescence, and MTOR/SK6 mediated autophagy) with survival traits. For this, 

the INTERSNIP software for epistasis analysis was used in the analysis of data from the 

Atherosclerosis Risk in Communities study. The results of this analysis suggest that the 

interactions between SNPs from the IGF1R and TGFBR2 genes, as well as SNPs from the 

BLC2 gene, may influence human lifespan. These results were validated using data from 

the Cardiovascular Health Study. The results of these analyses showed that interactions 

between SNPs in genes from aging pathways have higher associations with survival traits 

than individual SNPs for the same genes[177].
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Why our analysis has higher chances of rejecting the null hypothesis about the absence of 
true-positive associations of SNPxSNP interaction with survival trait

The hypothesis-free genome-wide association study (GWAS) of SNPxSNP interactions, 

including SNPs from all selected candidate genes from the ISR pathway, is possible 

but involves testing of many SNPxSNP interactions. The too-small P-value threshold 

for making the decision about the presence of true-positive association resulting from 

the Bonferroni correction for multiple testing often becomes responsible for statistically 

unjustified decisions like “we consider all associations having P-value smaller than 5.0E-03, 

(5.0E-04, or 5.0E-05) as promising” may make the interpretation of the results of such 

analysis doubtful. At the same time, useful insights about the potential role of interplay 

between specific pairs of genes in the trait of interest might be obtained from the results 

of experimental studies. Testing the presence of such connection in humans can be done by 

estimating the association of SNPxSNP interactions with the trait using SNPs taken only 

from selected two genes. It is important to note that even in this case, the number of testing 

SNP pairs can be large enough to create problems with deciding on true-positive association. 

It turns out that the number of testing SNP pairs can be further reduced using the fact that 

many SNPs from these two genes are in LD. Making such steps increases the chances of 

rejecting the null hypothesis about the absence of associations without making assumptions 

that compromise statistical evidence.

The use of LD for the reduction of the number of comparing SNP pairs

This paper showed how such analysis could be done. Two candidate genes have been 

selected, which play important roles in the ISR pathway. One, the GCN2/EIF2AK4 gene, 

is a sensor of amino acid starvation. Other, the CHOP/DDIT3 gene is involved in the 

regulation of apoptosis and autophagy. All SNPs in each gene have been divided into subsets 

of SNPs that are in LD with each other and whose LD measure R2 was larger or equal to 

a given threshold (in our case, R2 ≥ 0.1). This procedure divided all available SNP pairs 

into corresponding subsets. Note that the smaller is the LD threshold, the larger number 

of correlated SNPs that could be included in the subsets, and the smaller number of such 

subsets will be constructed. One representative SNP pair was selected for each subset of 

SNPs in LD to reduce the number of comparing SNP pairs. In our analysis, the SNP pair 

representatives were those who have the smallest value of the type I error among SNP 

pairs in this subset. This procedure resulted in 8 independent SNP pairs constructed from 8 

independent SNPs from the GCN2/EIF2AK4 gene and 1 independent SNP from the CHOP/
DDIT3 gene. Then this set of 8 SNP pairs was used for testing the null-hypothesis about 

the absence of association of the interacting SNP pairs with survival trait. Using data on 

HRS study participants on males and females combined, and then separately for males and 

females, it has been found that the null-hypothesis about the absence of association of the 

interaction between SNP rs16970024 from the GCN2/EIF2AK4 gene and SNP rs697221 

from the CHOP/DDIT3 gene with survival trait can be rejected for females and for males 

and females combined, which means that the interaction of these SNPs is significantly 

associated with human survival trait.
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The SNP specific interaction polygenic risk scores

The mechanism of multifactorial regulation of human lifespan is largely unknown. 

Therefore, each SNP from detected SNP pair may interact with SNPs from many other 

genes outside ISR pathway, and these interactions may also contribute to lifespan and 

survival traits. GWAS-like procedure has been used in which one of the detected SNPs 

is fixed, and others include all available SNPs that passed the quality control procedure. 

The results of this analysis were used for constructing a SNP-specific measure of collective 

association of many interacting SNP pairs, called the SIPRS, with survival trait. Using such 

an index, one gets an opportunity to evaluate collective associations with the trait of interest 

of different numbers of interacting SNP pairs in which a given SNP interacts with other 

SNPs. The approach allows for the construction of many ordered indices for a given SNP 

that consist of different numbers of interacting SNP pairs [Figure 1].

The properties of these indices can be compared, and the most appropriate can be selected 

for further analysis. It has been found that the rs16970024 SIPRS index constructed from 

220 most significant interacting SNP pairs has the most significant association with survival 

trait with P = 5.2E-50. Index constructed from 57 most significant interacting SNP pairs is 

less significant with P = 2.7E-20 but contains a smaller number of SNP pairs and, hence, 

might be more convenient for starting a further analysis.

It has also been found that the rs697221 SIPRS constructed from 1619 most significant 

SNP pairs has the most significant association with survival trait with P = 3.8E-92. Index 

constructed from 55 SNP pairs is less significant with P = 2.E-26 [Figure 1] but contains a 

smaller number of SNP pairs and, hence, might be more convenient for further analysis.

Supplementary Table 1 describes properties of interacting SNP pairs in which interactions 

of the rs16970024 SNP with other SNPs were associated with survival trait with P-value 

not exceeding 9.69E-05. These interactions were used in the construction of the SIPRS for 

the rs16970024 SNP. Supplementary Table 2 describes properties of interacting SNP pairs in 

which interactions of the rs697221 SNP with other SNPs were associated with survival trait 

with P-value not exceeding 9.97E-05. These interactions were used in the construction of the 

SIPRS for the rs697221 SNP.

LIMITATIONS

Multifactorial regulation of complex traits involves interplay among many genes

Results of this study suggest that the interplay between the two key genes from the ISR 

pathway involved in aging, health, and lifespan traits in laboratory animals can also be 

involved in the regulation of human survival. This observation does not explain the entire 

mechanism of the multifactorial regulation of human lifespan, which can involve many other 

interacting genes. However, the use of only two genes of the many, allowed us to reduce the 

number of statistical tests and provide a proof of concept that the connection between genes 

and lifespan discovered in laboratory animals can also take place in humans, in the form 

of genetic interactions. Experimental aging studies found many other genes whose interplay 

may also contribute to aging, health, and survival traits. However, detecting the effects of 

multiple interacting genes on lifespan remains a challenging problem. Its solution requires 
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very large sample sizes of study participants and/or advanced methods of analysis. The latter 

can be partly addressed by constructing and investigating the SIPRSs[47].

Dynamic regulation of aging, health, and survival traits

Individual lifespan and health status are outcomes of dynamic processes in which the 

interacting genetic and non-genetic factors, the strength of their interactions, and other 

influential variables can change with age, time, and other conditions. Genetic interaction 

analyses that have been performed so far, including in this study, are initial steps in 

addressing the multifactorial nature of complex traits and do not yet include the dynamic 

properties of these traits in the analysis. More efficient methods of a comprehensive 

statistical analysis of the dynamic polygenic regulation of the aging, health, and survival 

traits are urgently needed to improve our understanding of these traits substantially. Merging 

biodemographic methods of statistical modeling with genetic epidemiology and systems 

biology of aging may be a promising way to address this problem. These methods can be 

developed within the stress-related conceptual framework linking components of individual 

resistance to stresses, including robustness (vulnerability) and resilience (ability to recover)
[178–182], allostatic adaptation and allostatic load[183,184] with health and survival outcomes.

From association to causality

The associations of interacting SNP pairs with survival traits evaluated in this paper do not 

necessarily describe causal connections. This limitation is common for statistical methods 

used in genetic analyses of observational data. Information about causal connections 

is needed for developing intervention therapies, testing candidate medications. Testing 

causality of connections detected in the analysis of observational data can be performed 

using methods of mediation analysis[185] and Mendelian randomization[186]. These methods 

have their own limitations[187].

Lack of information about cellular stressors in human data

The use of the stress-related conceptual framework in studies of multifactorial mechanisms 

of lifespan regulation would benefit from information about biomarkers characterizing 

cellular stressors, as well as about factors and conditions capable of affecting variability 

(e.g., strength, duration) of the cellular stress response. Since many human data on aging, 

health, and lifespan related traits have limited information about such stressors, factors, 

and conditions, some useful insights and ideas about possible stressors can be obtained 

indirectly from the estimates of the roles of specific genetic sensors of cellular stress signals 

in lifespan regulation obtained in data analyses. This is because each such sensor recognizes 

and responds to specific (sometimes overlapping) groups of stress signals.

Genetic interactions: statistical vs. biological epistasis

Genetic interactions may produce paradoxical results in the genetic association analyses 

of complex traits[107,188–191]. One should, however, distinguish between biological and 

statistical epistasis. In biological experiments, epistasis may be detected as a result of 

proteins’ interactions, in which the effect of one protein can mask the effect of another 

protein on the phenotype of interest[107]. In genetic epidemiology, the effects of genetic 
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interactions on the trait of interest are evaluated using regression models with the interaction 

terms[46]. Since these genetic epidemiology methods differ from those used in detecting 

the effects of epistasis in biological experiments, the results of such analyses may also 

have different interpretations[107,192]. Associations of genetic interactions with survival traits 

detected in epidemiological studies may reflect synergistic or antagonistic effects of genes 

whose products do not directly influence each other and, therefore, will not necessarily 

be detected in studies of biological epistasis. In contrast to biological epistasis, statistical 

interactions can capture connections between genes mediated by the chain of intermediate 

genetic products. Identification of such intermediate genes and evaluation of their roles in 

aging, health, and lifespan may require new experimental studies. The detected statistical 

association does not exclude the presence of the effect of biological epistasis between 

two genetic products on human lifespan. However, the association of statistical genetic 

interaction with survival may be detected even in the absence of direct biological interaction 

between genetic products. This might be the case when such interaction and connection with 

the trait are mediated by other genes.

Long road to understanding multifactorial mechanism regulating human lifespan

The results of this paper do not provide us with all the details about mechanisms of 

multifactorial regulation of human lifespan. They, rather, describe a way to become more 

informative about it. An important question that was not addressed in this study is how the 

confirmed (or newly detected) information about multifactorial regulation of aging, health, 

and survival in humans should be integrated to explain health and survival outcomes? To 

be seful in practice, mechanisms of such integration should have quantitative description, 

e.g., in the form of a computer model capable of describing the response of the body (cells, 

organs, systems) to specific challenges. A promising tool for addressing this problem could 

be further development of dynamic stochastic modeling of human mortality and aging, 

which successfully used in the analysis of longitudinal data[182].

Conclusion

Experimental studies pointed to a fundamental role of the interplay between the GCN2/
EIF2AK4 (involved in sensing cellular stress signals) and CHOP/DDIT3 (involved in 

apoptosis and autophagy), as well as other genes from the ISR pathway, in aging, health, and 

lifespan of laboratory animals[25,193], which encourages clarifying the role of interactions 

among these genes in respective human traits.

Results of this study support our hypothesis that the interplay between GCN2/EIF2AK4 
and CHOP/DDIT3 genes involved in the ISR pathway may influence lifespan in humans. 

This is a “proof of concept” research and a step forward to translating the evidence about 

mechanisms of lifespan regulation found in laboratory animals to humans.

Individual differences in the exposure to stressful conditions, in the access to health care, 

the polymorphisms in genes that sense cellular stress signals, and in other genes involved 

in cellular stress response, together with aging-related changes in robustness and resilience, 

are likely to be important sources of disparity and heterogeneity in health, lifespan and 

survival outcomes. Being evaluated, these characteristics can be used in predicting the future 
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burden of aging-related diseases under different scenarios/strategies of reducing disparities, 

improving access to health care facilities and medical advances for the groups of individuals 

having different genetic backgrounds and exposed to distinct environmental and living 

conditions.
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Figure 1. 
The diagrams illustrating properties of composite indices SIPRS constructed for the 

rs16970024 SNP (on the left) and SIPRS for rs697221 SNP on the right. The vertical axis 

represents proportions of phenotypic variances (R2) explained by the composite indices. 

Each pillar characterizes a version of the SIPRS index corresponding to the P-value 

threshold (shown under the pillar at the horizontal axis). Nine pillars at each diagram 

correspond to nine SIPRSs indices that summarize associations of different numbers of 

SNP pairs with survival traits. The numbers on the top of each pillar describe properties 

of the corresponding index: (1) the first line on the top shows the number of SNP pairs 

corresponding to the P-value threshold (shown below this pillar at the horizontal axis); (2) 

the second line from the top shows the value of R2; (3) the third line from the top represents 

the P-value of association of this SIPRS index with survival trait.
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Table 1.

Summary statistics for white HRS respondents with genetic data

Males Females Total

Case Control Case Control Case Control

N 1056 1592 1508 1986 2564 3578

Dichotomous variables: N (Percentage)

Education, Highschool+ 440 (91.06) 536 (94.07) 803 (94.29) 818 (96.91) 1243 (92.95) 1354 (95.63)

Ever smoked 703 (67.60) 845 (70.53) 615 (41.84) 759 (52.13) 1318(52.51) 1604 (60.44)
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Table 2.

Associations of interactions between SNPs in GCN2/EIF2AK4 and CHOP/DDIT3 genes with *survival trait 

after clumping with threshold R2 = 0.1

rsid1 1EA/NEA 1MA p1 1MAF rsid2 2EA/NEA 2MA p2 2MAF b12 p12

rs16970024 A/G G 0.81 0.06 rs697221 G/A A 0.98 0.14 0.60 3.88E-03

rs72731410 G/A A 0.97 0.03 rs697221 G/A A 0.98 0.14 0.75 2.81E-02

rs3736290 A/C C 0.08 0.47 rs697221 G/A A 0.98 0.14 0.19 5.20E-02

rs7169266 A/G G 0,60 0.03 rs697221 G/A A 0.98 0.14 −0.40 1.13E-01

rs76182620 A/G G 0.54 0.05 rs697221 G/A A 0.98 0.14 −0.34 1.35E-01

rs12442731 A/G G 0.17 0.44 rs697221 G/A A 0.98 0.14 −0.14 1.87E-01

rs117584784 G/A A 0.44 0.02 rs697221 G/A A 0.98 0.14 −0.21 4.82E-01

rs566792 G/A A 069 0.13 rs697221 G/A A 0.98 0.14 −0.05 0.731

Notations for the columns: rsid1 and rsid2 denote the SNP names from the GCN2/EIF2A4 and CHOP/DDIT3 genes, respectively; 1EA/NEA, 
2EA/NEA; 1MA, 2MA; p1, p2 denote the effect/non-effect alleles; minor alleles for SNPs; and P-values for individual associations of SNPs from 
columns rsid1 and rsid2, respectively. Terms b12 and p12 denote the regression coefficients and P-values of associations between interacting SNP 
pairs and survival traits, respectively.

*
Survival trait: LS ≥ 85 (“case”); and 75 ≤ LS or age at the last follow-up < 85 (“control”).

Covariates: education, smoking status, sex, first five principal components. MAF: minor allele frequency.
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