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The maintenance of energy balance is regulated by complex homeostatic mechanisms,
including those emanating from adipose tissue. The main function of the adipose tissue
is to store the excess of metabolic energy in the form of fat. The energy stored as fat can
be mobilized during periods of energy deprivation (hunger, fasting, diseases). The adipose
tissue has also a homeostatic role regulating energy balance and functioning as endocrine
organ that secretes substances that control body homeostasis. Two adipose tissues have
been identified: white and brown adipose tissues (WAT and BAT) with different phenotype,
function and regulation. WAT stores energy, while BAT dissipates energy as heat. Brown
and white adipocytes have different ontogenetic origin and lineage and specific markers of
WAT and BAT have been identified. “Brite” or beige adipose tissue has been identified in
WAT with some properties of BAT. Thyroid hormones exert pleiotropic actions, regulating
the differentiation process in many tissues including the adipose tissue. Adipogenesis
gives raise to mature adipocytes and is regulated by several transcription factors (c/EBPs,
PPARs) that coordinately activate specific genes, resulting in the adipocyte phenotype. T3
regulates several genes involved in lipid mobilization and storage and in thermogenesis.
Both WAT and BAT are targets of thyroid hormones, which regulate genes crucial
for their proper function: lipogenesis, lipolysis, thermogenesis, mitochondrial function,
transcription factors, the availability of nutrients. T3 acts directly through specific TREs
in the gene promoters, regulating transcription factors. The deiodinases D3, D2, and D1
regulate the availability of T3. D3 is activated during proliferation, while D2 is linked to the
adipocyte differentiation program, providing T3 needed for lipogenesis and thermogenesis.
We examine the differences between BAT, WAT and brite/beige adipocytes and the
process that lead to activation of UCP1 in WAT and the presence of BAT in humans and
its relevance.
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Abbreviations: ACC, acetyl-CoA carboxylase; AKT or PKB, protein kinase B;
aP2, fatty-acid binding protein; BAT, brown adipose tissue; BMP7, BMP4, Bone
morphogenetic protein 7 or 4; cAMP, cyclic AMP; c/EBPα, β, δ, CAAT/enhancer
binding protein α, β, δ; CD137, Tumor necrosis factor receptor superfamily 9;
ChREBP, carbohydrate responsive element binding protein; Cidea, Cell death acti-
vator CIDE-A; D1, dio1, deiodinase 1; D2, dio2, type 2 deiodinase; D3, dio3,
deiodinase 3; ERK, Extracellular-signal related kinase; FAS, fatty acid synthase; FFA,
Free fatty acid; aFGF and bFGF, acidic and basic fibroblast growth factor; FGF10,
Fibroblast growth factor 10; Glut4, Glucose transporter 4; GPD, glycerophos-
phate dehydrogenase; IBMX, 3-Isobutyl-1-methylxantina; IGFI, Insulin growth
factor I; IGFBP, Insulin growth factor binding proteins; LDH, lactic dehydrogenase;
LPL, Lipoprotein lipase; MCSF, Macrophage colony-stimulating factor; ME, malic
enzyme; Myf5, myogenic factor 5; NE, norepinephrine; PEPCK, phosphoenolpyru-
vate carboxykinase; PET, positron emission tomography; PGC1α, PPARγ coactiva-
tor 1α; PI3K, phosphoinositol-3-kinase; PKA, protein kinase A; PPARγ, Peroxidase
proliferator-activated receptor gamma; PPARE, Peroxidase proliferator-activated
response element; PRDM16, PR domain containing 16; Pref1, preadipocyte fac-
tor 1; Pten, phosphatase and tensin homolog; RARE, retinoic response element;
RIP140, receptor-interacting protein 140; SC, subcutaneous white adipose tissue;
SCD, stearoyl-CoA desaturase; SLC, Solute carrier transporter; SNS, sympathetic
nervous system; Spot14, spot14 or Trsp, Thyroid responsive protein; SVF, stromal
vascular fraction; T3, triiodothyronine; T4, thyroxine; TBX1, T-box transcrip-
tion factor 1; Tcf21, transcription factor 21; Tmem26, Transmembrane protein
26; TNFα, Tumor necrosis factor α; TRα, TRβ, Thyroid hormone receptor α, β;
TRE, Thyroid Response Element; Triac, triiodothyroacetic acid; TSH, Thyrotropin;
TSHr, TSH receptor; UCP1, uncoupling protein 1; V, visceral white adipose tissue;
WAT, white adipose tissue.

INTRODUCTION
Thyroid hormones regulate multiple physiological systems in
many tissues and are of maximal importance during develop-
mental processes. T3 regulates the development of many tissues
(Bernal, 2002; Morreale De Escobar et al., 2004) by acting in spe-
cific cells, for example in the cochlea or the retina (Forrest et al.,
1996; Roberts et al., 2006). The supply of thyroid hormones is
finely tuned and regulated in a time- and dose-specific way in spe-
cific areas of the brain, through sequential increases or decreases
in D2 and D3 deiodinases, as studied in human fetal brain (Kester
et al., 2004), in the cochlea (Ng et al., 2004) or during the meta-
morphosis of amphibians and fishes (Brown et al., 1996; Isorna
et al., 2009). Thyroid hormones act by regulating genes involved
in the differentiation program of many tissues. During adult life
thyroid hormones regulate the function of many tissues, as brain,
muscle, heart, liver, adipose tissue or skin by controlling the
metabolism of carbohydrates, lipids, the transcription of many
proteins (Mullur et al., 2014) and the basal metabolic rate. T3
acts through their nuclear receptors, which are encoded by two
genes TRα and TRβ, with different isoforms: TRα-1, TRα-2, and
TRβ-1. They bind to thyroid response elements (TREs) present
in the promoters of the target genes, forming heterodimers with
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RXR. T3 actions are modulated by corepressors and coactivators.
Thyroid hormone concentrations are modulated in tissues by the
action of the deiodinases D1, D2, and D3 that control the amount
required in each tissue.

The adipose tissue is one important target of thyroid hor-
mones. The adipose tissue is the main place for lipid storage,
besides its function in lipid transport, synthesis and mobiliza-
tion. The adipose tissue stores energy in the form of fat, so that
this metabolic energy can be used in times of hunger or illness. In
addition, adipose tissue works as a homeostatic mechanism reg-
ulating energy reserves and releasing many substances that keep
the homeostasis of the organism, some of them, like leptin, act as
adipostats regulating the amount of fat stored.

Mammals have two types of adipose tissue: white and brown
adipose tissue (WAT and BAT), with different phenotype, func-
tion and regulation. The white adipose tissue (WAT) was consid-
ered for many years a site for lipid storage. White adipocytes have
a characteristic large lipid droplet that fills the cellular space, while
the cellular structures (nuclei, mitochondria) are placed near the
cellular membrane. WAT is distributed in different anatomical
locations that have been grossly divided into subcutaneous and
visceral fat o intra-abdominal fat. Both locations have different
lipolytic sensitivity in response to hormones and its abundance
is associated to a different health risk, because an increase in vis-
ceral fat is associated to insulin resistance, metabolic syndrome
and cardiovascular diseases (Wajchenberg, 2000). Other organs
as the kidney, heart and the gonads (perirenal or perigonadal
depots) are also cover by fat. Those adipose locations are not pure
WAT and some of them are located in the primitive BAT loca-
tions as found in hibernating animals. In humans WAT is one of
the largest tissues and is found in many depots all along the body,
it accounts for about 10–15% of the total body weight in con-
trol subjects, and this percentage increases up to 50% in obese
subjects.

The brown adipose tissue (BAT) is responsible for the adap-
tive or facultative thermogenesis. BAT is activated in response to
cold exposure or fat diets providing extra heat in demanding sit-
uations to maintain energy balance. BAT is abundant in small
rodents, hibernating animals and specially in newborns (Cannon
and Nedergaard, 2004); it is found in small pads in the inter-
scapular and cervical region, protecting organs as the heart, aorta,
kidneys and other organs that should be heated up during the
arousal from hibernation. The main function of BAT is to produce
heat. This is possible by the activation of the uncoupling protein
1 (UCP1), a mitochondrial protein that acts as proton channel,
uncoupling the oxidative phosphorylation and producing heat,
instead of ATP. This activation is switch on by the adrenergic
stimulation that increases after cold exposure. BAT is a highly
innervated and irrigated tissue. BAT morphology is character-
ized by multilocular lipid droplets that can be easily mobilized
and multiple and active mitochondria which number and activity
increases under cold exposure (mitochondriogenesis). Today, the
activation of BAT is considered as a possible therapeutic tool to
fight obesity.

The analysis of the lineage of white and brown adipocytes
reveals that both cells have a distinct embryological origin.
Brown adipocytes have a myogenic origin, different from white

adipocytes, defined by the expression of the myogenic marker,
myogenic factor 5, Myf5+ that is also found in myoblasts (Gesta
et al., 2007; Timmons et al., 2007). Several genes have been
identified to trace the presence of white and brown adipocytes
(see below and Figure 1), as well as markers of its terminal
differentiation: UCP1 and D2.

In addition another type of adipose tissue has been identified
recently identified, called “beige” or “brite” adipose tissue. Under
certain circumstances WAT contains small clusters of brown-like
adipocytes that express UCP-1, which have been called “brite”
(brown-white) or beige adipocytes. They are multilocular and
express UCP-1, Cidea (Cell death activator CIDE-A) and other
markers of brown adipocytes as PGC1α (PPARγ Coactivator 1α).
They are more frequently in certain anatomical locations, e.g.,
the inguinal fat. “Brite” adipocytes seem to come from differ-
ent embryonic precursors than brown adipocytes and express
distinct gene signatures (Petrovic et al., 2010). Its presence, abun-
dance and increase in activity are regulated different than brown
adipocytes (Macotela et al., 2012; Walden et al., 2012).

PROLIFERATION AND DIFFERENTIATION OF ADIPOCYTES. T3 ACTIONS
The adipose tissue was often considered a place for lipid stor-
age. Recently it has been a renewed interest on the study of
adipose tissue, the adipocyte-specific genes and its regulation,
the secretion of adipocytes and the signaling pathways altered in
pathological situations as obesity or diabetes. This has lead to
a better knowledge of the adipose tissue. The adipocyte is the
functional unit of the adipose tissue and is specialized in the stor-
age of lipids. It acquires its full capacity during adipogenesis that
involves the proliferation of mesenchymal-type cells and its dif-
ferentiation that allows the adipocyte to accomplish its specific
functions.

The study of adipose tissue was hampered by the lack of
good cell culture systems and by the high lipid content of the
adipose tissue. The differentiation of the adipocytes was stud-
ied in the eighties using preadipose cells lines derived from
NIH 3T3 fibroblasts (3T3-L1 and 3T3-F442) (Spiegelman et al.,
1983; Lin and Lane, 1994). Several enzymes were identified
that increase exponentially during the process of differentiation.
Many of them were lipogenic and glycolytic enzymes: the glyc-
erophosphate dehydrogenase (GPD), the lactic dehydrogenase
(LDH), the acetyl-CoA carboxylase (ACC), the fatty-acid bind-
ing protein aP2, the stearoyl-CoA desaturase (SCD), the fatty
acid synthase (FAS) (Mackall et al., 1976; Spiegelman et al., 1983;
Bernlohr et al., 1984; Ntambi et al., 1988), the lipoprotein lipase
(LPL), malic enzyme (ME), phosphoenolpyruvate carboxykinase
(PEPCK) and some new genes as adipsin (Cook et al., 1987;
Flier et al., 1989) and adipoQ, nowadays called adiponectin (Hu
et al., 1996). There was a progression in the appearance of these
proteins, some are expressed as early markers of differentiation
and others appear later on (Ailhaud et al., 1992). The tran-
scription factors C/EBPs were identified as one of the earlier
molecules necessary for the adipocyte phenotype (Christy et al.,
1989, 1991).

The nuclear receptors peroxisome proliferator-activated recep-
tors (PPARs) were identified later on as critical for the adipocyte
phenotype, as will be review later on.
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FIGURE 1 | Lineage of white, brown and “brite/beige” adipocytes from stem cells and molecular markers involved in the developmental program.

BMP, bone morphogenetic protein; UCP1 uncoupling protein 1; PGC1, Peroxisome proliferator-activated receptor gamma coactivator 1.
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Proliferation of preadipocytes. Role of T3 and D3
Pluripotential stem cells give rise to preadipocytes, a mesenchy-
mal cell predetermined to be adipocyte. It is not clear which
are the specific factors that trigger the transition from pluripo-
tential stem cells into predetermined preadipocytes. A com-
mon mesenchymal stem cell produces adipocytes, myoblasts and
osteoblasts (Cornelius et al., 1994; Falconi et al., 2007). PPARγ2
activation itself induces the differentiation of mesenchymal cells
into adipocytes (Chen et al., 2007), and several HOX genes have
been identified as transcription factors that trigger the transition,
several HOX genes display specific expression in WAT and 4 HOX
genes (HOXA4, HOXB4, HOXC4, HOXD4) discriminate between
WAT and BAT (Cantile et al., 2003). Leukemia inhibitory factor
(LIF) could be a marker of these initial steps inducing, together
with PPARγ2, the adipocyte phenotype (Falconi et al., 2007). The
preadipocyte factor 1, Pref-1, also called Dlk1, is an imprinted
gene found in preadipocytes and a potent inhibitor of adipogene-
sis (Swick and Lane, 1992). Pref-1 activates ERK phosphorylation
(Smas and Sul, 1993; Kim et al., 2007) and is a marker of pro-
liferation (Figure 1). Using microarrays, Pref-1 was identified as
marker of proliferation of brown preadipocytes, while C/EBP
and Necdin were expressed during the proliferation of brown as
well as white preadipocytes (Timmons et al., 2007). Necdin is an
imprinted gene expressed in the paternal allele, that inhibits the
activation of PPARγ1 promoter (Macdougald and Burant, 2005).

The preadipocytes are mesenchymal-type cells found in the
stroma-vascular fraction (SVF) of the adipose tissue. These pre-
cursor cells allowed to set primary cultures of preadipocytes,
which proliferate and differentiated in culture (Nechad et al.,
1983). Several growth factors present in serum, mainly fibrob-
last growth factors are mitogenic for brown preadipocytes (Garcia
and Obregon, 1997). Cold exposure induces the proliferation
of brown preadipocytes as studied in vivo using 3H-thymidine,
and this proliferation is beta-adrenergic (Bukowiecki et al., 1986;
Geloen et al., 1988; Rehnmark and Nedergaard, 1989), while
insulin was proposed as a mitotic factor for white adipocytes
(Geloen et al., 1989). The increases in DNA synthesis were con-
firmed in primary cultures of brown preadipocytes using β1
adrenergic agonists (Bronnikov et al., 1992). In our hands nore-
pinephrine (NE) is a poor mitogen itself, but increases the mito-
genic action of serum, growth factors and vasopressin (Garcia and
Obregon, 1997) producing true brown adipocytes that express
UCP1 (Garcia and Obregon, 2002). Therefore, NE is important
for brown adipocyte proliferation, besides its role in thermogen-
esis increasing UCP1 expression. The fatty acid arachidonic is a
good mitogen for brown adipocytes (Garcia et al., 2012). Recent
studies have reported the role of activin in the proliferation of
white adipocytes (Zaragosi et al., 2010).

Thyroid hormones seem to be anti-mitogenic, as T3 inhibits
bFGF and aFGF mitogenic effect in brown preadipocytes (Garcia
and Obregon, 2002). Moreover, type III deiodinase (D3) activ-
ity and mRNA are strongly induced by growth factors in brown
adipocytes (Hernandez and Obregon, 1995; Hernandez et al.,
1998) as in other proliferating cells, suggesting the physiologi-
cal importance of low T3 levels during proliferation. D3 activity
and mRNA increases abruptly when serum is added to cultures of
brown adipocytes (Hernandez et al., 2007). So, we propose that

D3 is a mitogenic marker in brown preadipocytes. On the con-
trary, D2 activity is low during proliferation, having a role during
differentiation, therefore establishing that both deiodinases have
an opposite role in BAT.

Few proliferation studies have been done in white
preadipocytes, but serum stimulates DNA synthesis and
proliferation in white preadipocytes in primary cultures
(unpublished results). The specific growth factors governing pro-
liferation of white preadipocytes require further research. White
preadipocytes require only T3, insulin and transferrin to prolif-
erate in serum-free medium (Deslex et al., 1987a,b). Moreover,
preadipocytes from obese people produce mitogenic factors that
induce a higher proliferation rate than those produced by control
subjects (Lau et al., 1987). Proteins secreted by macrophages have
been proposed to be mitogens in human preadipocytes (Lacasa
et al., 2007), but the specific growth factors or adipokines have
not been defined although fatty acids have been proposed to be
mitogens for adipocytes. FGF10 was proposed as a mitogen for
WAT, because in FGF10−/− mouse embryos the development of
WAT is greatly impaired, due to a decreased proliferative activity
of WAT, indicating that FGF10 and not C/EBPα is required for
the proliferation of white preadipocytes (Asaki et al., 2004).
Adipose tissue is a source of several growth factors as IGF-I, IGF
binding proteins, TNF alpha, angiotensin II, and MCSF that
could stimulate proliferation (Hausman et al., 2001, 2008).

Differentiation of adipocytes. The role of transcription factors and
T3 regulation
The differentiation of adipocyte was first studied in preadipose
cells lines (3T3-L1 and 3T3-F442). Differentiation was induced
using dexamethasone and IBMX, an agent that increase cAMP
levels. T3 was also included in the “differentiation cocktail.” So,
we do not know if the effects observed are due to the action of the
T3 added or the process of differentiation itself. During adipocyte
differentiation the transcription of specific genes and the synthe-
sis of numerous proteins increase, specially the lipogenic enzymes
GPD, FAS and ME, and many others as described above (Mackall
et al., 1976; Spiegelman et al., 1983). The activation of these
proteins and enzymes follows a temporal pattern with different
timings for each transcriptional increase. LPL or IGF-1 are early
markers, after the transcription factors C/EBPs and PPARγ; those
are followed by the lipogenic proteins: FAS, GPD, ME, Glut4, aP2,
ACC, the beta-adrenergic receptors and many others. Later mark-
ers are PEPCK, the alfa-2 adrenergic receptors, leptin, or adipsin
(Ailhaud et al., 1992). Recently, studies using microarrays (Soukas
et al., 2001) show that the adipocyte differentiation is different
in vivo and in vitro and is more complex than previously though.
Some genes were expressed only in cell lines and others only in
cells derived from tissues “in vivo” suggesting that some genes
were activated only “in vivo” to generate the adipocytes.

So, the differentiation of adipocytes is achieved by the coor-
dinate activation of several adipose-specific genes (Rosen and
Spiegelman, 2000), regulated by the C/EBPs and PPARs families
of transcription factors that are keys for the activation of the genes
required for adipogenesis.

The CCAAT/enhancer-binding proteins (C/EBP) belong to the
basic leucine zipper family. The C/EBP family (C/EBPα, C/EBPβ,
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C/EBPδ) recognizes a common DNA-binding element and has
tissue-specific expression patterns. C/EBPα is expressed in brown
and white adipose tissues, placenta and liver and is a master
regulator of adipose tissue development. C/EBPα overexpression
induces the differentiation of 3T3-L1 preadipocytes. It works as
antimitotic inducing growth arrest (proteins GADD45 and p21)
(Mandrup and Lane, 1997). C/EBPα in preadipocytes increases
several adipocyte-specific genes (aP2, Glut4) and triglycerides
accumulation (Lin and Lane, 1992; Mandrup and Lane, 1997).

C/EBPβ and C/EBPδ are expressed before than C/EBPα and
activate C/EBPα, while PPARγ and C/EBPα induce the differen-
tiation into adipocytes. Many genes (SCD1, aP2, S14, PEPCK,
Glut4, UCP1, D2) have C/EBP binding domains in their pro-
moters and are activated together during adipogenesis (Christy
et al., 1989). During the development of brown adipose tissue
during fetal life, C/EBPβ and C/EBPδ increases precede C/EBPα

expression (Manchado et al., 1994).
Mice with a deletion in C/EBPα (C/EBPα KO mice) die shortly

after birth due to hypoglycemia, defective hepatic glycogen stor-
age and gluconeogenesis (Linhart et al., 2001). C/EBPα KO mice
had no WAT and little BAT; UCP1 mRNA was very low, showing
that C/EBPα is essential for the liver and adipose tissue devel-
opmental program. Our studies using these mice showed that
UCP-1 expression was very low, adipogenesis was impaired and
the mitochondria number and function reduced (Carmona et al.,
2002). The expression of PGC-1 and thyroid hormone receptors
were delayed. BAT D2 activity and BAT T3 were very low indi-
cating that C/EBPα is critical for a correct BAT thyroidal status.
It seems that BAT D2 is crucial for the differentiation and activ-
ity of fetal BAT and possibly T3 is absolutely necessary for BAT
function.

Neonatal hypothyroidism decreases C/EBPα and C/EBPβ

expression in liver, but not in BAT (Menendez-Hurtado et al.,
1997). In the PEPCK gene C/EBPs and TREs are related, as the
activation of C/EBPs is required for a functional TRE (Park et al.,
1997).

Besides the C/EBPs, the differentiation of adipocytes is reg-
ulated by the PPARs, especially by the PPARγ isoform. PPARs
are nuclear receptors acting as transcription factors that regu-
late gene expression through nutritional stimuli and that control
lipid metabolism. Fatty acids, especially arachidonic acid and its
metabolites, are natural ligands that activate PPARs. PPARs family
has several members: PPARα (activated by fibrate, regulates lipid
catabolism), PPARδ and PPARγ, quite specific of adipose tissue.
PPARs activate the PPAR response elements (PPRE) present in the
promoter of specific target genes, and form heterodimers with the
X receptor of retinoic acid (RXR). FAS, aP2, PEPCK, LPL, SCD
have PPREs in their promoters. The PPRE sequence of a given
gene can bind different isoforms in different tissues, e.g., PPARα

in the liver and PPARγ in adipose tissue. PPARs play impor-
tant roles in adipogenesis, inflammation, atherogenesis, glucose
homeostasis and cancer.

During adipogenesis PPARγ is activated (Tontonoz et al.,
1995). The ectopic expression of PPARγ induces differentiation
into adipocytes upon the stimuli of PPARγ agonists (thiazolidine-
diones, glitazones) (Tontonoz et al., 1995). PPARγ knockout mice
presented several alterations with opposite results: some studies

showed a reduced fat formation, and protection against obesity
and insulin resistance with lipodystrophy (Jones et al., 2005).
The mice with targeted deletion of PPARγ2 have insulin resis-
tance indicating that PPARγ2 is necessary for the maintenance of
insulin sensitivity (Medina-Gomez et al., 2005).

The specific coactivator of PPARγ, PGC-1, was identified
in 1998 (Puigserver et al., 1998). Under cold exposure PGC-
1 increases in BAT. PGC-1 increases the transcriptional activity
of PPARγ on the UCP1 promoter and the overexpression of
PGC-1 in white adipocytes results in UCP-1 increases as well
as mitochondrial enzymes; so PGC-1 is considered a marker
of brown adipocytes and activator of BAT (Puigserver et al.,
1998). It is also fundamental for hepatic gluconeogenesis, heart
function and inflammation (Puigserver and Spiegelman, 2003;
Handschin and Spiegelman, 2006; Uldry et al., 2006). Hepatic
steatosis, increase in body fat, lower amount of mitochondria,
lower respiratory capacity and abnormal cardiac function are
found in mice with targeted deletion of PGC1α (Leone et al.,
2005).

T3 REGULATES GENE EXPRESSION IN ADIPOCYTES
T3 regulates adipogenesis and the related processes, lipogen-
esis and lipolysis in vivo as well as in cultures of adipocytes
(Oppenheimer et al., 1991; Ailhaud et al., 1992). All the iso-
forms of thyroid hormone receptors TRα-1, TRα-2, and TRβ-1
are present in WAT and BAT and in white and brown adipocytes,
and TRα-1 is more abundant (Bianco and Silva, 1988; Teboul
and Torresani, 1993; Tuca et al., 1993; Hernandez and Obregon,
1996a). T3 and other hormones regulate the different isoforms.
Certain mutations in the TRα gene (P398H mutation) induce
increased body fat, visceral adiposity, elevated basal glucose,
impaired lipolysis, hyperleptinemia and a reduced adaptive ther-
mogenesis (Liu et al., 2003). This mutation in TRα reduces the
binding of PPARα to PPRE elements, interfering with PPARα

signaling (Liu et al., 2007).
Many genes expressed during the differentiation program are

regulated by T3 and have been extensively studied. The list of
genes includes GPD, ME, PEPCK, S14 (Kinlaw et al., 1995), FAS
(Moustaid and Sul, 1991), GLUT4, and LPL among many oth-
ers (Mariash et al., 1980; Blennemann et al., 1995; Bianco et al.,
1998). T3 may bind the TREs present in the gene promoters (Petty
et al., 1990; Giralt et al., 1991) of those genes. In fact, functional
TREs have been identified in several genes as well as its inter-
actions with other nuclear receptors, as PPARs or retinoic acid
receptors (Silva and Rabelo, 1997), and also with insulin (IRE)
and cAMP response elements (CREs). There is a cross-talk among
the regulatory elements (TREs, RAREs, PPARs) of the nuclear
receptors as many of them share RXR as pattern of dimerizacion
and coactivators, as described in several genes: UCP-1, ME, ACC
and others (Mullur et al., 2014). We studied the regulation by T3
of ME and Spot14 (S14) in cultured brown adipocytes (Garcia-
Jimenez et al., 1993; Hernandez et al., 1993; Perez-Castillo et al.,
1993). ME is a lipogenic enzyme important during differentiation
and S14, a T3-target gene, is present in many lipogenic tissues.
Both genes increase during differentiation of adipocytes, and are
activated by T3. T3 acts at the transcriptional level but also stabi-
lizes the mRNAs produced and T3 effects synergize with insulin.
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The effect of norepinephrine and retinoic acid was also examined
(Hernandez et al., 1993).

The effect of T3 on lipid metabolism also affects other
genes as adiponutrin (Adpn, Pnpla3, also called acylglycerol-
O-acyltransferase or calcium-independent phospholipase A2
epsilon, iPLA2-epsilon), is a triacylglycerol lipase strongly upreg-
ulated by T3 in rat and human white and brown adipocytes
(Calvo and Obregon, 2009). Adiponutrin is a lipase with
double action as lipase involved the hydrolysis of triacylglyc-
erol and in acyl-CoA transacylation of acyl-glycerols, thereby
involved in lipid homeostasis. Other lipases with high impact
in BAT are ATGL/desnutrin/Pnpla2 (Ahmadian et al., 2010,
2011) and LPL, that is down regulated by T3 but upreg-
ulated when T3+NE is added (Medina-Gomez et al., 2003,
2008).

The fatty acids oxidation is also regulated by T3 in BAT as
clearly shown in the D2KO mice (Christoffolete et al., 2004;
Castillo et al., 2011) and the FAT-D2KO (Fonseca et al., 2014),
with specific deletion of D2 in adipose tissue. D2KO mice
show that T3 generated in BAT via D2 is important to accel-
erate fatty acid oxidation and lipogenesis, as measured by the
lipogenic enzymes ACC and ME blunted in BAT. The lack of T3

in D2KO mice impairs thermogenesis and mice survive thanks
to compensatory mechanisms in the sympathetic system and
increased lipolysis.

Besides its actions on lipid metabolism T3 exert multiple
actions on glucose and carbohydrate metabolism, e.g., Glut4
has a TRE in its promoter and the carbohydrate responsive ele-
ment binding protein (Chrebp) important for Glut4 expression,
both are up regulated by T3 in brown adipocytes; other T3
actions include the regulations of gluconeogenesis and glycol-
ysis (Figure 2). T3 also increases ion transport, by increasing
several transporters (SLCs) as tramdorin in the plasma mem-
brane as well as mitochondrial transporters, increasing structural
genes as keratins (Martinez-De-Mena and Obregon, 2014) and
enzymes involved in degradation of metabolites and decreasing
TSH receptors.

T3 ACTIONS ON THERMOGENESIS
In white adipocytes or 3T3-L1 adipocytes the differentiation pro-
cess is tested by the increase in lipids, measuring the increase
in lipid droplets or increases in lipogenic enzymes. The differ-
entiation in BAT includes an increased thermogenic capacity,
measured as UCP-1 increases.

FIGURE 2 | T3 actions on gene expression in brown adipocytes

are represented. The genes upregulated by T3 are shown in
black with white background (UCP1, UCP3, Glut4, Me1, Spot14,

Pnpla3, Chrebp). The genes down regulated in the presence of
T3 (TSHr, Pck1, Cpt1) are represented in white with a dark
background.
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BAT function is the production of heat under cold exposure
(facultative thermogenesis). This function is accomplished by the
mitochondrial uncoupling protein (UCP-1), which uncouples the
oxidative phosphorylation. After activation of the sympathetic
nervous system (SNS), NE is released (Ricquier et al., 1986). NE
binds to the adrenergic receptors and the adenylyl cyclase is acti-
vated increasing cAMP levels; this activates lipolysis, producing
FFA which activate UCP1 (Cannon and Nedergaard, 2004). The
amount of UCP-1 is the index of the thermogenic capacity of
BAT. UCP-1 transcription is activated by NE or cold exposure
(Bouillaud et al., 1984; Bianco et al., 1988). T3 increases the
adrenergic stimulation of UCP1 (Obregon et al., 1987; Bianco
et al., 1988, 1992; Giralt et al., 1990). In thermoneutral conditions
and during the intrauterine life, T3 is required for the expression
of UCP1 mRNA and euthyroidism is required during the first
postnatal days for the increases in UCP1 mRNA (Obregon et al.,
1987). In cultured brown adipocytes T3 is required for UCP-1
adrenergic increases, and the stabilization of mRNA transcripts
(Hernandez and Obregon, 2000). UCP1 is induced by T3 in fetal
rat brown adipocytes in primary culture (Guerra et al., 1996).
The effect of T3 on UCP1 is mediated through the TRβ1 isoform
(Ribeiro et al., 2001; Martinez De Mena et al., 2010).

The UCP-1 promoter have CRE sequences (Kozak et al.,
1994; Yubero et al., 1998; Rim and Kozak, 2002) in the prox-
imal promoter and an enhancer element containing TRE ele-
ments (Cassard-Doulcier et al., 1994; Rabelo et al., 1995), RAREs
(Alvarez et al., 1995; Rabelo et al., 1996) and a PPRE in the distal
promoter (Teruel et al., 1999). These sequences are promiscu-
ous for its binding to the UCP-1 promoter. Negative regulators
of UCP-1 expression are serum and mitogens that activate c-jun
(Yubero et al., 1998). Other hormones as glucocorticoids and
sexual hormones regulate UCP-1 mRNA.

We studied the effect of Triac, triiodothyroacetic acid, a nat-
ural metabolite of T3 produced in the liver, in cultured brown
adipocytes (Medina-Gomez et al., 2003). Triac, is a better agonist
than T3 for the TRβ isoform; Triac is 10–50 more potent than
T3 in stimulating the adrenergic increases of UCP1 and D2, and
also down-regulates LPL mRNA in the same fashion. So, Triac is
a potent thermogenic agent. The role of Triac was also studied
in rats (Medina-Gomez et al., 2008). Triac, in equimolar dosages,
was more potent than T3 in rats in the stimulation of UCP-1, LPL,
in reducing leptin and low doses of Triac induced ectopic expres-
sion of UCP-1 in inguinal WAT (Medina-Gomez et al., 2008), that
today are called “beige/brite” adipocytes.

The adrenergic input also increases D2 deiodinase in BAT
(Silva and Larsen, 1983), leading to increases in BAT T3. This sug-
gests that T3 has an important role in thermogenesis. Moreover
the conversion of T4 to T3 was required for the thermogenic func-
tion of BAT (Bianco and Silva, 1987). This is also true for the
stimulation of D2 (Hernandez and Obregon, 1996b; Martinez-
Demena et al., 2002) that does not occur but in the presence
of T3. D2 participates in the formation of BAT, as described
above in C/EBPα knockout mice (Carmona et al., 2002), with
low UCP1 mRNA, D2 activity, and low mitochondriogenesis. D2
is also implicated in the process of lipogenesis under adrener-
gic stimuli (Bianco et al., 1998). In D2 knockout mice there is
a hyper-adrenergic stimulation compensatory for the lack of T3

production in BAT. Lipogenesis is not providing the FFA levels
required during cold exposure, resulting in an impaired adaptive
thermogenesis (Christoffolete et al., 2004). Indeed, D2 is a marker
of BAT activation (thermogenesis).

Little is known about the role of the deiodinases in white
adipocytes. It is evident that they have a role in lipogenesis and
in the expression of genes involved in the differentiation pro-
gram. D1 was found in WAT (Leonard et al., 1983) and human
WAT (Ortega et al., 2012) and both, D1 and D2 are found in rat
WAT as measured by activity and mRNA (Calvo and Obregon,
2011) and in human preadipocytes (Nomura et al., 2011), but
its role has not been established. It remains to be seen if D2
and D1 have different roles from those described in brown
adipocytes.

WHITE, BROWN ADIPOCYTES AND “BRITE” ADIPOCYTES. A ROLE FOR
BAT IN HUMANS
Studies comparing brown and white adipocytes in primary cul-
ture (Nechad et al., 1983) established that precursor cells from
WAT (epididymal fat) and from BAT differentiate into white and
brown adipocytes, respectively, with different phenotypes and
regulation. The work done during 30 years using primary cultures
of precursor cells confirms that precursor cells in each of these tis-
sues are already committed to become brown or white adipocytes.
Nowadays it is clear that BAT and WAT derive from different pre-
cursor cells. Using microarrays to study both preadipocytes in
culture (Timmons et al., 2007), a myogenic signature was found
in brown preadipocytes, Myf5, not found in white adipocytes, in
which Tcf21 is present, a transcription factor that inhibits myo-
genesis. Some genes are specific of brown adipocytes or are only
found only in white adipocytes.

The lineage of both adipocytes shows that they have a different
embryological origin. Brown adipocytes have a myogenic origin
defined by the expression of Myf5+, myogenic marker also found
in myoblasts (Gesta et al., 2007; Timmons et al., 2007). PRDM16
controls the switch from skeletal muscle to BAT (Seale et al., 2008)
activating BAT phenotype (Seale et al., 2007) as well as several
markers of BAT as UCP1, D2 and PGC1α. Several genes have been
identified that indicate the presence of brown adipocytes such as
Myf5, PRDM16, BMP7, BMP4, and Zic1, while others, as Tcf21
is a marker of white adipocytes (Figure 1).

The “beige/brite” adipocytes are found in certain locations
of WAT. They are multilocular and express UCP-1. They are
found in small amounts and more frequently in certain anatom-
ical locations, e.g., the inguinal fat in rodents. “Brite” adipocytes
seem to come from different embryonic precursors than brown
adipocytes and express distinct gene signatures (Petrovic et al.,
2010), mainly CD137, TBX1, TMEM26 (Walden et al., 2012; Wu
et al., 2012) while PRDM16 and PGC1α are markers of “brown-
ing.” Its presence, abundance and increase in activity are regulated
different than brown adipocytes (Macotela et al., 2012; Walden
et al., 2012).

A recent review (Harms and Seale, 2013) lists several experi-
mental models, including knockout mice, in which leaner mice
have more active BAT or “brite” adipocytes induced, while a low
BAT function is associated to increases in body fat or insulin resis-
tance. When BAT activity increases mice are resistant to weight
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gain meaning that by increasing BAT activity a reduction in
metabolic diseases can be achieved.

Many groups have tried to identify the processes that induce
the transition from WAT to “brite” adipocytes and weather BAT
and “brite” adipocytes are the same or different cells and the
mechanisms of reactivation or induction of BAT activity (Giralt
and Villarroya, 2013). The conversion into “brite” adipocytes can
be followed using CD137 as a marker of “browning” in human
adipocytes (Elsen et al., 2014).

Nowadays the activation of BAT or the “Browning” of WAT is
considered a possible strategy to fight obesity. Under extreme cold
exposure conditions, a reactivation of BAT adipocytes in inguinal
WAT was observed and this was called “convertible” adipose tis-
sue (Loncar, 1991). In this sense, many attempts have been done
and there is a number of models in which “browning” of WAT
is found (Harms and Seale, 2013), indicating that many signals
are able to activate brown fat or to induce “browning” of WAT.
Other possible explanation is that a common pathway is activated
in all these situations or models, e.g., activation of the adrenergic
pathway or also the possible extra-cold experienced by the mice
by changes in the fur or skin that augments the cold experienced.

The increases in UCP1 is the golden rule to assess the “brown-
ing, as observed using some drugs and also in mice with targeted
deletion of a certain genes. Beta 3 adrenergic agonists induce
UCP1 in muscle and this provides a mechanism against weight
gain (Almind et al., 2007). Brown adipocytes were also found
in WAT (Guerra et al., 1998; Xue et al., 2005, 2007). The same
effect is observed using models of hyperleptinemia (Commins
et al., 1999; Orci et al., 2004) or tungstate (Claret et al., 2005)
and we observed that low doses of Triac induce UCP-1 expres-
sion in rat inguinal WAT (Medina-Gomez et al., 2008). In mice
with targeted deletion of the co-repressor RIP140 (Leonardsson
et al., 2004), increases in UCP1 were observed: the mice were
lean and resistant to diet-induced obesity. An increasing num-
ber of reports find leaner phenotypes associated to increased BAT
activity or the presence and activation of “brite” adipocytes, e.g.,
overexpression of UCP1 in WAT (Kopecky et al., 1995, 1996).
More recently the overexpression of Pten results in a phenotype
with high UCP1, uncovering the role of Pten promoting energy
expenditure (Ortega-Molina et al., 2012). Therefore, when leaner
phenotypes are observed in mice, BAT activation or “browning”
of WAT should be searched.

Human BAT
Due to the implication of BAT in the maintenance of energy bal-
ance it has been a growing interest in its possible role in humans,
as the reactivation of BAT activity in humans will provide thera-
peutic tools to fight obesity. BAT was always considered to have
minimal importance in humans, though the presence of human
BAT was fully accepted under certain conditions: in newborns
(Houstek et al., 1993; Krief et al., 1993), patients with pheochro-
mocytoma or outdoors workers or even at all ages (Tanuma
et al., 1975, 1976; Huttunen et al., 1981; Zingaretti et al., 2009).
There was a growing evidence for the presence of active BAT
in humans, as identified using [18F]-fluorodeoxy-glucose-based
positron emission tomography (PET) for diagnostic purposes
(Nedergaard et al., 2007). In 2009, three papers were published

in the NEJM (Cypess et al., 2009; Van Marken Lichtenbelt et al.,
2009; Virtanen et al., 2009) where BAT was unequivocally identi-
fied and analyzed in humans, including analysis of genes markers
of BAT. During the last 5 years it has been a surge of studies on the
possible function of BAT in humans and its regulation by cold,
diet, obesity and drugs (Zingaretti et al., 2009; Vijgen et al., 2012,
2013; Jespersen et al., 2013; Van Der Lans et al., 2013; Borga et al.,
2014; Broeders et al., 2014; Chechi et al., 2014). Several possibil-
ities have been explored as the induction of brite adipocytes in
human adipocytes using BMP7 (Pisani et al., 2011). Besides cold,
thyroid hormones also regulate human BAT as hyperthyroidism
increases BAT metabolism in humans with higher glucose uptake
and higher lipid oxidation rate (Lahesmaa et al., 2014).

CONCLUSIONS
In summary, adipogenesis is a complex process that involves
a sequential activation of many genes and enzymes, in a cas-
cade of events regulated by transcription factors (C/EBPs, PPARs,
PGC1a) that govern the differentiation of adipocytes. T3 regu-
lates many of the enzymes involved in the process of adipogenesis,
either directly through the interaction of its nuclear receptors
(TRs) with TREs or through the interaction with other nuclear
receptors as PPARs or coactivators. The deiodinases, especially
D2, play a crucial role producing the T3 required or limiting its
levels. D3 increases during proliferation, while D2 plays a cru-
cial role in adipogenesis, thermogenesis and lipid metabolism.
The number of genes regulated by T3 in adipocytes continues
to grow, not only for lipid metabolism and carbohydrates but
also regulating other process unknown to be important for the
biology of the adipocyte. Several genes have been identified as
markers of brown, white and “beige/brite” adipocytes, establish-
ing that they are distinct cells. “Browning” occurs in some WAT
depots under specific conditions or drugs and specific mark-
ers of “beige/brite” adipocytes have been identified. Additionally,
BAT has been identified in humans and its presence and regu-
lation is being actively studied. The reactivation of BAT and the
induction of beige/“brite” adipocytes in humans could represent
a therapeutic option to fight obesity.
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