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Abstract: The prevalence of non-alcoholic fatty liver disease (NAFLD) is increasing and approx-
imately 25% of the global population may have NAFLD. NAFLD is associated with obesity and
metabolic syndrome, but its pathophysiology is complex and only partly understood. The transsulfu-
ration pathway (TSP) is a metabolic pathway regulating homocysteine and cysteine metabolism and
is vital in controlling sulfur balance in the organism. Precise control of this pathway is critical for
maintenance of optimal cellular function. The TSP is closely linked to other pathways such as the
folate and methionine cycles, hydrogen sulfide (H2S) and glutathione (GSH) production. Impaired
activity of the TSP will cause an increase in homocysteine and a decrease in cysteine levels. Homocys-
teine will also be increased due to impairment of the folate and methionine cycles. The key enzymes
of the TSP, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), are highly expressed in
the liver and deficient CBS and CSE expression causes hepatic steatosis, inflammation, and fibrosis in
animal models. A causative link between the TSP and NAFLD has not been established. However,
dysfunctions in the TSP and related pathways, in terms of enzyme expression and the plasma levels
of the metabolites (e.g., homocysteine, cystathionine, and cysteine), have been reported in NAFLD
and liver cirrhosis in both animal models and humans. Further investigation of the TSP in relation to
NAFLD may reveal mechanisms involved in the development and progression of NAFLD.

Keywords: cystathionine β-synthase/cystathionine γ-lyase (CBS/CSE) system; glutathione; H2S pro-
duction; liver fibrosis; non-alcoholic steatohepatitis; sulfur metabolism

1. Introduction

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease
and is present in 25% of the population worldwide [1]. The rapid increase in prevalence
during recent years parallels the increasing occurrence of obesity and the metabolic syn-
drome. NAFLD is a disease continuum that ranges from simple steatosis to non-alcoholic
steatohepatitis (NASH), which is characterized by inflammation and hepatocyte damage.
NASH can lead to fibrosis and eventually to cirrhosis, liver failure, and hepatocellular
carcinoma. The primary characteristic of NAFLD is the hepatic accumulation of lipids,
mainly triacylglycerols (TAGs), due to the increased influx of free fatty acids (FFA) [2]. Di-
etary overload is believed to be the main underlying driver, but the molecular mechanisms
behind the lipotoxicity remain unclear [3–5].
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The transsulfuration pathway (TSP) is coupled to the production of the antioxidant
glutathione (GSH) and the signal molecule hydrogen sulfide (H2S), and both have been
linked to the pathogenesis of NAFLD [6–9]. The large number of patients with NASH-
related end-stage liver disease, and the emerging pharmacological treatment options,
means that there is an urgent need for valid and reproducible biomarkers of disease
development and progression.

Several scores have been developed to diagnose hepatic steatosis [10–12]. The scores
combine different standard blood tests, such as liver enzymes and bilirubin, with markers of
insulin resistance and body weight. The scores have been assessed in different populations
using diagnostic imaging or histology as the gold standard and there are no studies
showing the validity in larger unselected groups. There are no biomarkers which may be
used to diagnose NASH but several which can indicate the degree of fibrosis, including
the Fibrosis-4 Index and the NAFLD Fibrosis Score [12–14]. These scores include standard
blood tests such as alanine amino transferase and aspartate amino transferase and are
accurate in the exclusion of fibrosis and the identification of patients with cirrhosis but
not in the grading of mild to moderate fibrosis. Other fibrosis biomarkers, including the
Enhanced Liver Fibrosis test and procollagen III and IV, also accurately identify patients
without fibrosis and patients with cirrhosis [12,15,16]. However, at present, a liver biopsy
is required to diagnose NASH. Repeated biopsies in a large group of patients are resource-
demanding and the invasive procedure carries a risk of complications. Inexpensive, valid,
and reproducible non-invasive biomarkers are necessary for prognostication, monitoring,
and evaluating the response in patients undergoing treatment.

Metabolites in the TSP have been shown to predict steatosis and fibrosis in alcoholic
liver disease [17], and the TSP has been suggested as a potential drug target in NAFLD
and portal hypertension [18,19]. Thus, TSP metabolites may have potential as NAFLD
biomarkers, and as our understanding of its relation to NAFLD deepens, support for
trials investigating pharmaceutical interventions targeting the TSP may gather strength.
This review will focus on the TSP, its regulation and relation to other pathways, and what
is known about its implications for NAFLD.

2. Description of the Transsulfuration Pathway

The TSP involves the conversion of homocysteine to cysteine via the intermediate
cystathionine and plays a key role in sulfur metabolism and the redox environment of
cells. The pathway is the only route for biosynthesis of cysteine. The first step is catalyzed
by the vitamin B6-dependent enzyme cystathionine β-synthase (CBS), using homocys-
teine and serine as substrates to form cystathionine in a condensation reaction (Figure 1).
The second step is a hydrolyzation reaction catalyzed by the vitamin B6-dependent cys-
tathionine γ-Lyase (CSE), using cystathionine as substrate and producing cysteine and
α-ketobuyrate (aKB).

The figure shows the TSP (highlighted in red) and related pathways, including the
methionine and folate cycles, glutathione production, cysteine oxidation, and choline
oxidation pathway.

For enzyme abbreviations (in red text colour), please see Table 1.
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Table 1. An overview of the enzymes in the transsulfuration and related pathways.

Enzyme Name Gene Name Cofactor Structure Tissue Expression Cellular Location

Adenosylhomocysteinase (SAHH) AHCY NAD+
Homotetramer

432 amino acids
47.7 kDa

Low tissue specificity.
Highly expressed in liver, pancreas and

kidney, endocrine tissue, female and
male tissue.

Cytoplasma

Betaine-homocysteine S
methyltransferase

(BHMT)—Two genes

BHMT
BHMT2 Zink

Homotetramer
406/363 amino acids

45.0/40.4 kDa

High tissue specificity.
Highly expressed in liver, kidney,

and urinary tract.
Cytoplasma

Cystathionine beta-synthase (CBS) CBS
Pyridoxal

5′-phosphat
(B6)

Homotetramer
551 amino acids

61 kDA

High tissue specificity.
Highly expressed in liver and pancreas.

Some expression in heart and brain.
Nucleus/cytoplasma

Cystathionine gamma-lyase (CSE) CTH
Pyridoxal

5′-phosphat
(B6)

Homotetramer
405 amino acids

44.5 kDa

High tissue specificity.
Highly expressed in liver, female tissue

and endocrine tissue. Some in the
pancreas, brain, and kidneys.

Cytoplasma

Cysteine dioxygenase
(CDO) CDO1 Iron

Monomer
200 amino acids

30.0 kDA

High tissue specificity.
Highly expressed in liver and placenta.

Some expression in heart, sdipose tissue,
brain, and pancreas.

Cytoplasma

Cysteine sulfinic acid
decarboxylase

(CSD)
CSAD

Pyridoxal
5′-phosphat

(B6)

Homodimer
493 amino acids

55.0 kDA

Low tissue specificity.
Expressed in liver, gastrointestinal (GI)

tract, brain female and male tissue, muscle
tissue, and adipose tissue.

Cytoplasma

Glutathione peroxidase
(GPO)—several genes GPX 1–8

GPX2—Homotetramer
190 amino acids

22.0 kDa

GPO has low tissue specificity. GPX 2 is
highly expressed in the liver, gallbladder

and GI tract.
Cytoplasma/mitochondrion

Glutathione reductase
(GR) GSR FAD

Homodimer
552 amino acids

56.3 kDa

Low tissue specificity.
Highly expressed in liver, pancreas,

GI tract, endocrine tissue, kidney, female
and male tissue.

Cytoplasma/mitochondrion

Glutathione synthetase
(GS) GSS Magnesium

Homodimer
474 amino acids

52.4 kDa

Low tissue specificity.
Highly expressed in brain, endocrine

tissue, GI tract, kidney and liver.
Cytoplasma

Glutamate-cysteine ligase
(GCL)

GCLM
GCLC

Heterodimer
274 + 252 amino acids

33.7 + 28.1 kDa

Methionine synthase
Highly expressed in the liver. Cytoplasma
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Table 1. Cont.

Enzyme Name Gene Name Cofactor Structure Tissue Expression Cellular Location

Glycine N-methyltransferase
(GNMT) GNMT

Homotetramer
295 amino acids

32.7 kDa

High tissue specificity.
Highly expressed in liver and pancreas.

Some expression in brain, GI tract,
and kidney.

Cytoplasma

Methionine adenosyltransferase
(MAT) MAT1A Potasium

Magnesium
Homodi- and tertramer

395 amino acids
43.6 kDA

High tissue specificity.
Highly expressed in liver, pancreas.

Some expression lungs and female and
male tissue.

Cytoplasma

Methionine synthase
(MS) MTR

Cobalamin
(B12)
Zink

Monomer- and Dimer
1265 amino acids

140.5 kDa

Low tissue specificity.
Highly expressed in pancreas, heart, brain,
skeletal muscle and placenta. Expressed at

lower levels in lung, liver, and kidney.

Cytoplasma

Methylenetetrahydrofolate
reductase
(MTHFR)

MTHFR FAD
Homodimer

656 amino acids
74.6 kDA

Low tissue specificity.
Highly expressed in female and male

tissue, GI tract and kidney.
Some expression in liver.

Cytoplasma

Serine hydroxymethyltransferase
(SHMT)—two genes SHMT1 SHMT2

Pyridoxal
5′-phosphat

(B6)

Homotetramer
486/504 amino acids

53.1/60.0 kDa

High tissue specificity.
Highly expressed in liver and kidney.

Some expression in lungs, brain, pancreas,
and GI tract.

Cytoplasma/mitochondrion

Data were retrieved from: www.proteinatlas.org; https://bgee.org/; https://www.ebi.ac.uk (accessed on 16 November 2020).

www.proteinatlas.org
https://bgee.org/
https://www.ebi.ac.uk
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Figure 1. The transsulfuration pathway (TSP) and related pathways. Metabolites: 5-MTHF, 5-methyltetrahydrofolate; 5,10-
CH2-THF. 5-10-methylenehydrofolate; aKG, α-ketoglutarate; aKB, α-ketobutyrate; ATP; adenosine triphosphate; B2, ribo-
flavin; B6, pyridoxal 5′-phosphate; B12, cobalamin; H2S, hydrogen sulfide; NH4+, ammonia; Pi, inorganic phosphate; PPi, 
pyrophosphate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SO32−, sulfite; THF, tetrahydrofolate. 

The figure shows the TSP (highlighted in red) and related pathways, including the 
methionine and folate cycles, glutathione production, cysteine oxidation, and choline ox-
idation pathway. 

For enzyme abbreviations (in red text colour), please see Table 1.

Figure 1. The transsulfuration pathway (TSP) and related pathways. Metabolites: 5-MTHF, 5-methyltetrahydrofolate;
5,10-CH2-THF. 5-10-methylenehydrofolate; aKG, α-ketoglutarate; aKB, α-ketobutyrate; ATP; adenosine triphosphate; B2,
riboflavin; B6, pyridoxal 5′-phosphate; B12, cobalamin; H2S, hydrogen sulfide; NH4

+, ammonia; Pi, inorganic phosphate;
PPi, pyrophosphate; SAH, S-adenosylhomocysteine; SAM, S-adenosylmethionine; SO3

2−, sulfite; THF, tetrahydrofolate.

2.1. One-Carbon Metabolism

The TSP is part of the one-carbon metabolism (OCM), which is a universal metabolic
process that serves to activate and transfer one-carbon (1C) units for the biosynthesis
of multiple molecules including purine and thymidine and remethylation of homocys-
teine [20]. The methionine cycle, folate cycle, and choline oxidation pathway, which are all
upstream of the TSP, are also part of OCM. Folate metabolism is central in OCM as many
of the different molecules in the folate complex function as carriers of 1C units. The liver is
a crucial organ for OCM, with a high capacity for the different processes in OCM [20].

The TSP is closely linked to methionine metabolism, which involves the conversion of
methionine to homocysteine. The process is reversible as homocysteine can be converted
back to methionine catalyzed by vitamin B12-dependent enzyme methionine synthase (MS)
using 5-methyltetrahydrofolate as methyl-donor or by the enzyme betaine-homocysteine
S-methyltransferase (BHMT) with betaine as methyl-donor. The latter process is folate-
independent and the expression of BHMT is restricted to the kidneys and liver [21].

The remethylation of homocysteine is important because methionine is a substrate
for methionine adenosyltransferase (MAT) that synthesizes S-adenosyl-methionine (SAM).
SAM, a methyl carrier, is a common enzymatic cofactor and is involved in epigenetics and
biosynthesis of phosphatidylcholine, creatinine, and polyamine [22–24].

2.2. Downstream of the Transsulfuration Pathway

The conversion of homocysteine to cysteine is irreversible. Due to the one-way direction
of the TSP, all downstream pathways of the TSP are inherently part of cysteine metabolism.
Cysteine, which is a non-essential amino acid, is central to sulfur metabolism and a precursor
of important metabolites including GSH, H2S (Figure 2), sulfate, and taurine.
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CSE uses homocysteine and cysteine as substrates. The production of H2S via cysteine transami-
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the first step via CAT, followed by the synthesis of H2S from 3-mercaptopyruvate via MPST. 
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tween the intake of sulfur from methionine (Figure 1) and the metabolism of sulfur from 

Figure 2. Hydrogen sulfide production pathways. The biosynthesis of hydrogen sulfide (H2S)
involves the three enzymes, cystathionine β-synthetase (CBS), cystathionine γ-lyase (CSE), and 3-
mercaptopyruvate sulfurtransferase (MPST). The process involving H2S production via CBS and
CSE uses homocysteine and cysteine as substrates. The production of H2S via cysteine transaminase
(CAT) and MPST uses cysteine and a keto-acid as substrates to form 3-mercaptopyruvate in the first
step via CAT, followed by the synthesis of H2S from 3-mercaptopyruvate via MPST.

In healthy individuals, the steady-state metabolic condition involves a balance be-
tween the intake of sulfur from methionine (Figure 1) and the metabolism of sulfur from
homocysteine through the TSP. Nearly all sulfur from methionine is transferred to cys-
teine [25]. Disruption of the TSP has been linked to several diseases including homocystin-
uria, Huntington’s chorea, and vascular dysfunction, as well as ageing-related changes [26].

2.3. Allosteric and Posttranslational Regulation of the Transsulfuration Pathway Flux

The pyridoxal 5-phosphate (PLP—the active form of vitamin B6)-dependent enzymes,
CBS and CSE, regulate the metabolic flux through the TSP. Both are highly expressed in
the liver and, to a lesser extent, in various other tissues (Table 1). In the liver, CBS and
CSE are mainly expressed in the hepatocytes but can also be found in the hepatic vascular
system [27–29]. CSE is also found in hepatic stellate cells and the terminal branches of
the blood vessels in the intrahepatic portal triads [29,30]. The high expression of these
enzymes affords the liver a high capacity for transsulfuration.

CBS is tightly regulated by S-adenosylmethionine (SAM), a methyl donor in most
transmethylation reactions, through allosteric activation. SAM binds non-covalently to a
heme group in CBS, controlling the redox sensitivity of CBS, and stabilizes the enzyme [31].
Decreasing concentration of SAM therefore leads to low CBS activity. The activity of CBS
is also stimulated by S-glutathionylation under oxidative stress, thus creating a positive
feedback loop [32]. Conversely, SAM inhibits the vitamin B2 (FAD)-dependent methylenete-
trahydrofolate reductase (MTHFR) and BHMT, with the net effect being decreased remethy-
lation of homocysteine to methionine and an increase in homocysteine metabolism through
the TSP [33]. Thus, the TSP is important in controlling sulfur levels and the degradation of
methionine, homocysteine, and cysteine. Other regulators of CBS activity include carbon
monoxide (CO) and nitrogen oxide (NO), both by binding to the heme group in CBS,
inhibiting its activity [34].

Unlike CBS, the activity of CSE is mainly regulated at the transcriptional level. How-
ever, posttranslational modifications such as phosphorylation and sulfhydration can also
regulate CSE activity [35,36]. The enzymes in the TSP and related pathways are listed in
Table 1.
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2.4. Importance of Folate and Vitamin B6 and B12 Status in One-Carbon Metabolism and the
Transsulfuration Pathway

As cofactor for CBS and CSE, adequate vitamin B6 status is important for the function-
ing of the TSP. Vitamin B6 deficiency causes reduced activity of CBS and CSE [37], with CSE
activity being most affected [38–40]. In human studies evaluating moderate B6 insufficiency,
no changes in the TSP flux were found [39]. However, increased cystathionine plasma
concentration is observed, but with no changes in cysteine or GSH concentrations [41].
The TSP flux is largely maintained due to the increased cystathionine levels [39].

Extensive research has also demonstrated the importance of folate, vitamin 6, and vita-
min B12 status in regulating OCM [20,42–46]. The classical symptom of folate and vitamin
B12 deficiency is megaloblastic anemia caused by inhibition of DNA synthesis in erythro-
poietic cells in the bone marrow [46].

2.5. Transcriptional Regulation of Enzymes in the Transsulfuration Pathway

The expression of CSE is affected by stimuli such as oxidative stress, endoplasmic
reticulum (ER) stress, Golgi stress, inflammation, and nutrient deprivation, whereas CBS
is expressed at a less variable rate [26,47]. In the liver, the CSE expression is regulated
through the farnesoid X receptor (FXR) and the G-protein-coupled bile acid receptor 1
(GPBAR-1) [35,48]. Upon activation, the FXR binds to an FXR-responsive element in the
5′ flanking region of the CSE promoter, while GPBAR-1 recruits CREB, a cyclic AMP
responsive element (CRE) binding protein that binds to sites on the CSE promoter. [35,48].

The transcription factor specificity protein 1 (SP1) is also involved in the regulation
of CSE expression. SP1 acts by binding to the CSE promoter, increasing CSE expression.
The increased expression enhances H2S production by CSE, which causes sulfhydration
of the p65 subunit of the transcription factor NF-κβ, which facilitates its recruitment to
anti-apoptotic genes [49].

The protein nuclear factor erythroid 2-related factor 2 (NRF2), which regulates the
expression of antioxidant proteins, increases the expression of CBS as well as CSE by
binding to the promoters [50,51]. NRF2 activators also regulate GSH levels through de
novo synthesis and recycling [52,53].

In cardiomyocytes, H2S and homocysteine affect CBS and CSE expression through
feedback regulation [54]. A similar mechanism may exist in hepatocytes. The transcrip-
tional regulation of the TSP appears to be a comprehensive multileveled network. The reg-
ulators (FXR, GPBAR-1, SP1, and NRF2) are also involved in lipid, glucose, and bile acid
metabolism, inflammation, and oxidative stress [53,55–57], which in turn suggests that the
expression of TSP enzymes is regulated in response to the same cellular and metabolic
challenges.

2.6. Hydrogen Sulfide Production Is Inherently Coupled to the Transsulfuration Pathway

H2S is a colorless gas that has emerged as an important signaling molecule alongside
NO and CO. It is an important mediator of cell functions and is involved in physiological
processes such as inflammation, apoptosis, vasorelaxation, and neuromodulation [58]. It is
also thought to increase the production of GSH [59]. One possible mechanism of H2S action
is by posttranslational modification of the cysteine residues on target proteins, yielding
a hydropersulfide moiety (-SSH) or polysulfide in a process known as S-sulfhydration or
S-persulfidation [60]. An animal study found that a substantial number of proteins in the
liver are S-sulfhydrated and that S-sulfhydration alters protein function [36]. In humans,
H2S is mainly produced via CBS and CSE (Figure 2), but also by 3-mercaptopyruvate
sulfurtransferase (MPST) as part of the cysteine catabolic pathway [61].

The extent to which CBS and CSE are active in the production of cysteine or H2S
depends on several factors. Substrates binding to the heme group of CBS can direct the
activity towards H2S production [62]. High CO levels inhibit CBS activity, causing an
increase in homocysteine and subsequently H2S production [63]. Availability of substrates
is also important since CBS has a higher affinity for serine, and CSE a higher affinity
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for cystathionine compared to cysteine. If serine levels are elevated, the production of
cystathionine will increase, and if cystathionine is elevated, the production of cysteine will
increase. A study using a NAFLD model and liver cells surprisingly found that the H2S-
producing enzyme MPTS suppressed H2S production primarily through downregulation
of CSE [64]. Partial knockout of MPST, either via adenovirus-mediated short hairpin
RNA (shRNA) delivery or heterozygous deletion, significantly upregulated hepatic CSE
expression and increased hepatic H2S levels in high-fat-diet (HFD)-fed mice and in FFA-
treated L02 cells. This emphasizes the complexity of the metabolic processes involved in
TSP regulation and H2S levels.

2.7. Pathways Involving the Conversion of Cysteine to Glutathione, Taurine, and Sulfate

Cysteine has several potential fates beyond protein synthesis and H2S production.
The TSP is linked to the production of the major antioxidant GSH (Figure 1). Accordingly,
TSP metabolic flux is important for the redox environment. GSH imbalance is linked to
several diseases, including type 2 diabetes, cancer, and pulmonary fibrosis [65]. Nearly
half of the intracellular GSH pool in human liver cells is derived from homocysteine via
the TSP [66]. Oxidative stress increases the flux through the TSP, which subsequently leads
to increased GSH production [67].

In addition to GSH, cysteine is converted to the sulfur-containing molecule taurine.
The first reaction involves oxidation of the thiol in the cysteine molecule by cysteine
dioxygenase (CDO) to form cysteinesulfinate, which is further degraded to taurine, sulfate,
and pyruvate. Taurine is important for several biological functions, including muscle
functioning, calcium homeostasis, and neuro- and immunomodulation [68]. Taurine also
reduces the secretion of apolipoprotein B100 and lipids from liver cells, probably by
inhibition of TAG and cholesterol ester synthesis [69]. CDO uses cysteine as substrate
and can therefore modulate H2S and GSH production, and CDO levels are increased in
response to high-intracellular cysteine through a block of ubiquitination (the bonding of
ubiquitin to a substrate protein, marking the protein for degradation) [70]. CDO is highly
expressed in the liver. Mice lacking CDO have elevated cysteine, GSH, and H2S levels,
but the liver phenotype has not been described [71–73]. The expression of CDO in murine
liver increases by up to 45-fold and the activity by up to 10-fold depending on cysteine
availability [25].

3. Alterations in the Transsulfuration Pathway Linked to NAFLD in Experimental and
Animal Models

NAFLD is a complex disease, with multiple molecular events and altered metabolic
pathways being part of the pathogenesis. The TSP plays a role in many of these events and
has been linked to steatosis, insulin resistance, oxidative stress, ER stress, inflammation,
and portal hypertension [6,19,66,74–78]. The link between the TSP and oxidative stress
is believed to be mediated through its regulation of GSH production. In CBS-deficient
mice, plasma homocysteine levels are increased and steatosis, oxidative stress, and fibrosis
develop in the liver [74,75,79]. The lack of CBS appears to upregulate the expression of
genes involved in ER stress, hepatic lipid homeostasis, and genes associated with hepatic
steatosis [79,80], while knockout of CSE causes reduced hepatic lipolysis [76].

In high-fat-diet models of NAFLD, the hepatic expression of CBS and CSE has pro-
vided conflicting results [81–84]. This could reflect the differing dietary compositions but
also the timing of the assessment. It is likely that there is an early adaptive upregulation in
the expression of CBS and CSE in response to the increased influx of FFA, and subsequently,
the TSP is downregulated or dysfunctioning. Speculatively, enzyme expression could
be upregulated with increased hepatic insulin signaling in the initial phase, followed by
downregulation with the onset of insulin resistance; however, there are currently no data to
support this. The increase in homocysteine caused by the disruption of the TSP also appears
to have intrinsic pathophysiological effects. A study evaluating homocysteine-induced
ER stress in human hepatocytes found activation of the unfolded protein response (UPR)
and the sterol regulatory element-binding proteins sterol regulatory element-binding pro-
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teins (SREBPs) [85]. Mice with diet induced-homocysteinemia developed hepatic steatosis,
suggesting that homocysteine plays a role in NAFLD development.

3.1. Reduced Production of H2S May Be Involved in NAFLD

The liver is a major organ for endogenous H2S production and clearance. H2S is
involved in mitochondrial functioning, insulin sensitivity, lipoprotein synthesis, and glu-
cose metabolism in the liver [6]. H2S also protects against ischemic liver injury [30,86,87].
An animal model of NAFLD showed that H2S production was reduced in a high-fat and
methionine- and choline-deficient diet [88]. The reduced production could be explained be
decreased expression of CSE and CBS, but also by the unavailability of methionine and
choline [88]. It has been speculated that exogenous H2S prevents NASH development in
mice by decreasing inflammation and oxidative stress [89]. The reason that H2S synthesis is
impaired in NAFLD remains unclear but is probably due alterations in the TSP, since CBS
and CSE are responsible for most H2S production.

H2S modulates hepatic steatosis through downregulation of the expression of SREBP-
1c, the major transcriptional regulator of the enzymes involved in de novo lipogenesis [5],
and the downstream lipogenic enzymes, fatty acid synthase (FAS), and acetyl-CoA car-
boxylase (ACC). The H2S mediated protection against oxidative stress and hepatocyte
injury may be related to the suppression of the C-Jun N-terminal kinase (JNK) signaling
pathway [64,90]. The FXR is involved in lipogenesis and is an activator of CSE expression
and H2S production. The hepatic expression of SREBP-1c, FAS, and liver X receptor (LXR)
was increased in patients with NAFLD, while the expression of FXR was decreased [91].
A phase 3 randomized trial investigating the FXR agonist obeticholic acid for the treatment
of non-alcoholic steatohepatitis showed promising results [92]. FXR activation suppresses
lipogenesis and decreases SREBP-1c expression [91]. SREBP-1c and its upstream regula-
tors (H2S, CSE, and MPST) may therefore represent candidate targets in the treatment
of NAFLD.

Dysregulation of TSP and H2S production may also play a role in the development
of portal hypertension in NASH cirrhosis. Downregulation of the TSP leads to decreased
levels of H2S, which is a potent vasodilator, and an impaired TSP contributes to increased
intrahepatic vascular resistance in rodent models of liver cirrhosis [19]. In agreement with
these findings, H2S administration leads to relaxation of the portal vein [93].

3.2. Taurine May Have Beneficial Effects in NAFLD Models

Taurine, the major end-product of cysteine oxidation, affects lipid metabolism and
ameliorates the accumulation of lipids in the liver [94,95]. The capacity for de novo taurine
biosynthesis is limited and hepatic taurine deficiency is primarily caused by an insufficient
nutritional uptake rather than dysfunction of the endogenous biosynthesis [94]. Most stud-
ies performed on taurine and NAFLD have investigated the effect of taurine administration
on cell cultures or animals. The anti-oxidative effect of taurine may reduce mitochondrial
dysfunction and ER stress [95–97]. Furthermore, taurine administration leads to improved
GSH production [95]. Knockout of the taurine transporter in mice is associated with hepa-
tocyte apoptosis, inflammation, and liver fibrosis [98]. Administration of taurine in animal
models of NAFLD results in decreased steatosis, inflammation, and oxidative stress [95,97].

3.3. Long-Term Lipotoxicity Leads to Glutathione Depletion and May Be Involved in
NAFLD Development

In silico and in vitro analyses indicate that the initial cellular response to increased
hepatic FFAs and hepatic steatosis is an increase in cellular GSH concentration [99,100].
Studies evaluating diet-induced NAFLD animal models have found increased as well
as decreased GSH levels in plasma and the liver [7,77,101,102]. The ratio between GSH
and glutathione disulfide (GSSG) (GSH/GSSG—an early marker of oxidative stress) was
decreased in NAFLD models [7,102]. In addition, an increased influx of FFA for a pro-
longed period causes depletion of GSH in the livers of rats [77]. Thus, it appears that the
biosynthesis of GSH and conversion of GSSG back to GSH is unable to keep pace with
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the demand to maintain redox homeostasis in the liver, whereby oxidative stress ensues,
eventually leading to the development of NASH [7].

4. The Transsulfuration Pathway in Human NALFD

Studies investigating alterations in the TSP in humans with NAFLD are limited, but
changes in the sulfur metabolism, especially methionine metabolism, in alcoholic liver
disease and cirrhosis are well documented [103–107]. Recently, there has been a focus on the
TSP. A study evaluating the relation between metabolites in the TSP and histopathology in
alcoholic liver disease (ALD) found that cystathionine levels were positively associated with
steatosis and fibrosis [17]. In fact, the levels of several of the metabolites in the TSP and OCM
pathways differed between individuals with ALD, active drinkers without liver disease,
and healthy controls. Most of the metabolites, including cysteine, were increased in ALD,
but the downstream metabolite α-aminobutyrate (aABA) and the aABA/cystathionine
ratio were decreased, suggesting an impairment of the TSP [17]. These findings concur
with an earlier study measuring TSP metabolites in cirrhotic patients with mixed etiology
compared to healthy controls [108]. Cysteine is also increased in NAFLD; the highest levels
are seen in patients with NASH and/or fibrosis [8,109,110].

4.1. Increased Blood Levels of Homocysteine in Human NAFLD

Homocysteine is used in clinical practice in the assessment of folate (vitamin B9) and
cobalamin (vitamin B12) deficiency. Some studies have found that circulating homocysteine
is increased in NAFLD compared to controls [8,111–118], whereas other studies observe
the opposite [119–121]. A meta-analysis combining the results of several studies concluded
that homocysteine is increased in NAFLD [122]. However, the homocysteine levels are not
higher in patients with simple steatosis compared to NASH [111,114,116]. When comparing
homocysteine levels and hepatic histopathological findings, no consistent trends have been
observed (Table 2).

Table 2. Correlation between histological scores for non-alcoholic fatty liver disease (NAFLD) and
homocysteine concentrations.

Histology

Study Steatosis Fibrosis Inflammation Ballooning NAS

Brochado 2013 [111] No No No NA NA

Gulsen 2005 [114] NA Positive NA NA Positive

Hirsch 2005 [119] NA No No NA No

Lai 2020 [116] Positive No No NA Positive

Pylozos 2012 [120] No Negative Negative (portal) No NA

Xu 2020 [123] No Negative No Negative NA
NA: not assessed. NAS: NAFLD activity score.

The variation in the results could reflect multiple factors. For instance, systemic
homocysteine levels are regulated by hepatic efflux, renal clearance rates, and increase with
age. Other possible confounders include nutritional factors (such as the intake of proteins,
minerals, and B-vitamins) and body composition [124–126]. Given these considerations,
and the association between elevated homocysteine and various inflammatory conditions
and markers [127], homocysteine does not appear to be an adequate biomarker for NAFLD.

4.2. Genetic Association of the Transsulfuration Pathway with NAFLD

A study including 268 patients who underwent a liver biopsy during surgery found
that single-nucleotide polymorphisms (SNPs) in the Glycine N-methyltransferase (GNMT)
gene were associated with hepatic levels of the GNMT protein, while this was not the
case for SNPs in the MAT1A gene and the MAT protein [128]. The T-allele of 677C>T
polymorphism in the MTFHR gene (rs1801133) is associated with elevated tHcy levels [129].
A large cohort study from Sweden found that the T-allele was associated with elevated tHcy
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levels and cardiovascular multimorbidity [130]. A meta-analysis of the C677T-SNP and the
variant A1298C (rs1801131) found that the homozygous TT genotype was associated with
an increased susceptibility to NAFLD [131]. An SNP (variant c.1364G>T) in the CTH gene
(CSE) has been associated with elevated homocysteine levels, but polymorphisms in the
genes for CBS and CSE have not been linked to NAFLD in humans [132].

Only a few studies have reported on the genetic expression of the TSP and related
pathways in human liver disease. In contrast, several NAFLD animal studies have reported
reduced expression of the enzymes in the TSP and related pathways [39,60,114–117]. The ex-
pression of CBS and CSE is reduced [60,114], while CDO is found to be increased [115].

Reduced mRNA abundance was found for GNMT, MS, BHMT, MAT1A, and CBS in
human cirrhotic livers compared to controls [133,134]. The hepatic expression of MPST
correlated to the grade of steatosis in patients with NAFLD and was increased compared
to healthy controls [64].

In liver biopsies of patients with NAFLD, advanced disease was associated with gen-
eral DNA hypomethylation, suggesting less transcriptional control [135]. Some genes in the
OCM, namely AHCY, MAT1A, and methylenetetrahydrofolate dehydrogenase (MTHFD2),
involved in generating methyl groups for methylation, were hypermethylated, which cor-
related with low expression of the respective genes [135]. Theoretically, the decreased
expression of the enzymes involved in homocysteine remethylation to methionine (MS,
BHMT) may cause low hepatic concentration of the methyl donor SAM and subsequently
hypomethylation of genes in the liver.

4.3. Reduced H2S Levels May Be Associated with Liver Disease

To date, there are limited studies investigating the association between H2S and liver
disease. One study found decreased levels of H2S in cirrhotic patients of mixed etiologies
compared to healthy controls [136], in line with the reduced expression of CBS observed
in cirrhosis [133,134]. Likewise, the reduced H2S levels correlate with increased portal
vein diameter and Child–Pugh Score [136]. Obesity and diabetes are also associated with
reduced H2S levels [9,137,138], probably related to poor glycemic control [9].

4.4. Transsulfuration Pathway Metabolite Concentrations and Cofactor Status in Human NAFLD

The circulating and tissue concentrations of several metabolites related to TSP and
OCM may be changed due to altered TSP flux. These metabolites include the amino
acids serine, glutamate, and glycine, in addition to α-ketobutyrate, pyruvate, and sulfur-
containing taurine, gamma-glutamylcysteine, and GSH (Figure 1). In analyses of amino
acids, plasma glutamate levels were found to be increased while circulating concentrations
of glycine and serine were decreased in patients with NAFLD [8,139]. Plasma glutamate
and glycine were independent predictors of fibrosis, irrespective of insulin resistance [139].
In the setting of the dysregulated metabolism observed in hepatic steatosis, glycine appears
to be the limiting factor in de novo GSH production [99]. Plasma GSH is low and the
rate of hepatic glutathione turnover is high in patients with NAFLD compared to healthy
controls [8,117]. The hepatic expression of several enzymes involved in the synthesis of
GSH was reduced in individuals with obesity compared to healthy subjects [99]. Thus,
the high GSH turnover is not accompanied by a corresponding increase in GSH production.
Another study found a decrease in human liver GSH in steatotic compared to non-steatotic
subjects [140]. The GSH/GSSG ratio in the steatotic group was also decreased, indicating
impaired regeneration of GSH and/or increased oxidative stress [140]. The decreased
levels of circulating GSH in NAFLD correspond to the findings in patients with type 2
diabetes, suggesting a potential link between GSH and metabolic disease [141]. A small,
open-label, single-arm pilot study suggested that oral administration of GSH may improve
liver enzymes in some individuals with NAFLD [142]. However, caution is needed when
interpreting results from studies evaluating GSH and GSSH levels, because GSH and
related thiols are notoriously unstable and sensitive to oxidation and or degradation during
sample handling and analysis [143].
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Circulating taurine levels are elevated in NAFLD compared to healthy controls [144].
However, when comparing NAFLD patients with and without advanced fibrosis, taurine
levels were decreased in the former patient group [13]. Thus, systemic taurine may be a
predictor of steatosis and inflammation rather than fibrosis. Hepatic taurine levels have
also been found to be increased in human NASH liver tissue relative to samples from
patients with simple steatosis or normal liver tissue, suggesting a hepatic origin for the
changes seen in circulating taurine levels [145,146]. Elevated taurine levels could be due to
increased biosynthesis in NASH patients, consistent with increased expression of CDO in
an NAFLD animal model [147].

The role of vitamin B6 in human NAFLD has not been well examined. A study found
that high vitamin B6 intake was associated with the occurrence of NAFLD as evaluated by
controlled attenuation parameter (CAP) [148]. However, the circulating levels of vitamin B6
were not measured. In contrast, some animal models have shown that B6 deficiency causes
hepatic lipid accumulation and is prevented by supplementation [149–151]. One study
has reported reduced levels of circulating vitamin B6 in patients with NAFLD compared
to controls [149]. Describing the mechanisms linking alteration in vitamin B6 status to
NALFD is challenging as vitamin B6 is a cofactor for around 150 enzymatic activities, but
vitamin B6 status has been coupled to type 2 DM and lipid metabolism [152].

The levels of circulating folate and vitamin B12 in human NAFLD have been studied
more extensively. A meta-analysis found a tendency towards decreased levels of folate and
increased levels of vitamin B12 in NAFLD compared to controls, but the results were not
statistically different [122].

5. Summary

The TSP is involved in the synthesis and processing of several metabolites that are
important for cellular function. These metabolites include homocysteine, cysteine, H2S,
GSH, and taurine, among many others. Importantly, the TSP plays a central role in redox
homeostasis and the modulation of cellular oxidative stress. The liver is a major organ in
TSP and related OCM processes.

The TSP enzymes (CBS and CSE) along with the other enzymes involved in OCM are
all highly expressed in the liver. Thus, changes in these processes may be involved in liver
disease and metabolic alterations. A link between TSP and NAFLD may exist; see Figure 3.

Known factors and comorbidities in the development of NAFLD, such as insulin
resistance, type 2 DM, obesity, changed glucose and lipid metabolism, and inflammation,
can be coupled to changes in the functioning of the TSP and related OCM processes.
Knockout of CBS and CSE in animal models leads to liver steatosis, further strengthening
the potential link between the TSP and NAFLD. Results from animal models and human
liver disease suggest decreased expression of CBS and CSE. The decreased expression and
potential changes in activity of the TSP and OCM enzymes will expectedly cause changes
in several metabolites. Studies have found changed levels of methionine, SAM, SAH,
homocysteine, cystathionine, cysteine, H2S, and GSH in human liver disease.

One of the most important challenges in NAFLD is to find new biomarkers of disease
severity and development. The available evidence is not yet clear and additional studies
are still needed to evaluate whether TSP or OCM metabolites may be used as biomarkers
in NAFLD. Cystathionine could be a potential candidate as it has been shown to predict
steatosis and fibrosis in ALD, and it is central in the TSP flux and will increase by reduced
activity and low expression of CSE.

Because TSP and OCM are central in many metabolic processes, such as methylation,
GSH production, amino acid metabolism, and H2S production, the enzymes and metabo-
lites may represent potential candidates for therapeutic targets. Currently, it is difficult to
nominate the most evident candidates. Modulation of CBS and CSE activity can potentially
affect many processes by changing GSH and H2S production.
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6. Conclusions

With the high expression of the CBS and CSE enzymes in the liver, it is not unexpected
to find perturbation of the TSP in human liver diseases. To investigate the potential rela-
tionship of the TSP with NAFLD, experiments involving gene knockout and/or gain of
function along with histological evaluation could provide more evidence. Despite increas-
ing insights, it remains a challenge to fully comprehend the complex molecular mechanisms
of the TSP and related OCM pathways and its relation to NAFLD pathophysiology. Ad-
ditional knowledge may point to potential drug targets or biomarkers of disease severity
and progression. However, it is important to remember that the TSP is only a small part of
a large network of interconnected molecular pathways. Pharmacological modulation of
the activity of the TSP enzymes could potentially lead to adverse effects that are difficult to
predict due the complexity of the metabolic network involved.

TSP and OCM metabolites may emerge as predictors of disease development and
progression in NAFLD. With the development of more complex multifactorial models
using applying machine learning and deep learning algorithms, TSP and OCM metabolites
can potentially be included in such models. Severity scores will likely require several
factors/components, including multiple circulating biomarkers, as well as information
concerning age, renal function, body composition, and nutritional status (e.g., measures of
B-vitamin status).

Finally, we need additional studies in both cell lines, animals and humans, to further
investigate the complex TSP and related pathways to unveil their potential as pharmaco-
logical targets and biomarkers.
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