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As COVID-19 is rapidly spreading across the globe, short-term modeling forecasts provide time-critical
information for decisions on containment and mitigation strategies. A major challenge for short-term
forecasts is the assessment of key epidemiological parameters and how they change when first
interventions show an effect. By combining an established epidemiological model with Bayesian inference,
we analyze the time dependence of the effective growth rate of new infections. Focusing on COVID-19
spread in Germany, we detect change points in the effective growth rate that correlate well with the times
of publicly announced interventions. Thereby, we can quantify the effect of interventions, and we can
incorporate the corresponding change points into forecasts of future scenarios and case numbers. Our
code is freely available and can be readily adapted to any country or region.

During the initial outbreak of an epidemic, reliable short-
term forecasts are key to estimate medical requirements and
capacities, and to inform and advise the public and decision
makers (I). During this initial phase, three tasks are im-
portant to provide time-critical information for crisis mitiga-
tion: (i) establishing central epidemiological parameters,
such as the basic reproduction number, that can be used for
short-term forecasting; (ii) simulating the effects of different
possible interventions aimed at the mitigation of the out-
break; (iii) estimating the actual effects of the measures taken
not only to make rapid adjustments but also to adapt short-
term forecasts. Tackling these tasks is challenging due to the
large statistical and systematic errors that occur during the
initial stages of an epidemic when case numbers are low. This
is further complicated by the fact that mitigation measures
are taken rapidly while the outbreak unfolds, but they take
effect only after an unknown delay. To obtain reasonable pa-
rameter estimates for short-term forecasting and policy eval-
uation despite these complications, any prior knowledge
available needs to be integrated into modeling efforts to re-
duce uncertainties. This includes knowledge about basic
mechanisms of disease transmission, recovery, as well as pre-
liminary estimates of epidemiological parameters from other
countries, or from closely related pathogens. The integration of
prior knowledge, the quantitative assessment of the remaining
uncertainties about epidemiological parameters, and the princi-
pled propagation of these uncertainties into forecasts is the do-
main of Bayesian modeling and inference (2, 3).
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Here, we draw on an established class of models for epi-
demic outbreaks: The Susceptible-Infected-Recovered (SIR)
model (4-7) specifies the rates that population compartments
change over time, i.e., when susceptible people become infec-
tious, and when infectious people recover. This simple model
can be formulated in terms of coupled ordinary differential
equations (in mean field), which enable analytical treatment
(8, 9) or fast evaluation (ideally suited for Bayesian infer-
ence). Accordingly, SIR-like models have been used to model
epidemic spreads, from Bayesian Markov Chain Monte Carlo
(MCMC) parameter estimation (10-12) to detailed scenario
discussions (13-16). This family of models has played a dom-
inant role in the analyses of the coronavirus (SARS-CoV-2)
pandemic, from inference (17-19) through scenario forecast-
ing (20-27) to control strategies (28, 29).

We combine the SIR model (and generalizations thereof)
with Bayesian parameter inference and augment the model
by a time-dependent spreading rate. The time dependence is
implemented via potential change points that reflect changes
in the spreading rate driven by governmental interventions.
Based on three distinct measures taken in Germany, we de-
tect three corresponding change points in the reported
COVID-19 case numbers. by April 1, 2020 we reported evi-
dence for the first two change points, and predicted the third
(30). Now, with data until April 21, we have evidence for all
three change points. First, the spreading rate decreased from

0.43 (with 95% credible interval, CI [0.35,0.51]) to 0.25 (CI
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[0.20,0.30] ), with this decrease initiated around March 7 (CI

[3, 10]). This matches the cancellation of large public events,
such as trade fairs and soccer matches. Second, the spreading

rate decreased further to 0.15 (CI [0.12,0.20]) initiated

around March 16 (CI [14, 18]). This matches closure of
schools, childcare facilities, and non-essential stores. Third,

the spreading rate decreased further to 0.09 (CI [0.06,0.13])

initiated around March 24 (CI [21, 26]). This corresponds to
the strict contact ban, which was announced on March 22.
While the first two change points were not sufficient to trig-
ger a shift from the growth of novel cases to a decline, the
third change point brought this crucial reversal.

Our framework is designed to infer the effectiveness of
past measures and to explore potential future scenarios along
with propagating the respective uncertainties. In the follow-
ing, we demonstrate the potential impact of timing and mag-
nitude of change points, and report our inference about the
three past governmental interventions in Germany. Our
framework can be readily adapted to any other country or
region. The code (already including data sources from many
other countries), as well as the figures are all available on
Github (31).

Basic inference of central epidemiological parameters
during the initial phase of the outbreak in Germany
To assess the general effect of different possible interventions
on the spread of COVID-19 in Germany, we first focus on the
initial phase of the outbreak when no serious mitigation
measures were implemented. In the absence of interventions,
an epidemic outbreak can be described by SIR models with
constant spreading rate (Methods). In Germany, the first se-
rious interventions occurred around March 9, 2020 and af-
fected the case reports after an observation delay (a
combination of incubation period with a median 5-6 days
(32)) and a test delay (time until doctor is visited plus test-
evaluation time that we assumed to be both about 2-3 days).
Hence, to infer central epidemiological parameters, we con-
sidered the initial phase to be March 2 to March 15. The cen-
tral epidemiological parameters estimated here will also be
estimated under the full model with change points on the
data records up to April 21, allowing for a consistency check.
We perform Bayesian inference for the central epidemio-
logical parameters of an SIR model using Markov-Chain
Monte Carlo IMCMC) sampling (Fig. 1). The central parame-
ters are the spreading rate A , the recovery rate u , the report-
ing delay D and the number of initially infected people 1, .
We chose informative priors based on available knowledge
for », 1 and D , and we chose uninformative priors for the

remaining parameters (Methods). Also, we intentionally kept
the informative priors as broad as possible, such that the data
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would constrain the parameters (Fig. 1).

As median estimates, we obtain for the spreading rate
A=041,p=0.12,D=86,and 1, =19 (see Fig. 1, Cto H, for
the posterior distributions and the 95% credible intervals).
Converted to the basic reproduction number R, =1/p, We
find a median R, =3.4 (CI[2.4, 4.7 ]), which is consistent
with previous reports that find median values between 2.3
and 3.3 (18, 33, 34). Overall, the model shows good agreement
with both new cases (Fig. 1 A) and cumulative cases (Fig. 1 B),
which show the expected exponential growth (linear in log-
lin plot). The observed data are clearly informative about  ,
I, and o (indicated by the difference between the priors

0
(gray line) and posteriors (histograms) in Fig. 1, D to F). How-
ever, u and D are largely determined by our prior choice of
parameters (histograms match gray line in Fig. 1, C and H).
This is to be expected for the initial phase of an epidemic out-
break, which is dominated by exponential growth.

To quantify the impact of possible interventions, we con-
centrate on the effective growth of active infections before
and after the intervention. As long as the number of infec-
tions and recoveries are small compared to the population
size, the number of active infections per day can be approxi-
mated by an exponential growth (Fig. 1, A and B) with effec-
tive growth rate 2" = » - n (see Methods). As a consequence,
» and p cannot be estimated independently. This is further
supported by a systematic scan of the model’s log-likelihood
in the (1 - )-space that shows an equipotential line for the
maximum likelihood (Fig. 1I). This strongly suggests that the
growth rate 2" is the relevant free parameter with a median
A =28% (Fig. 1G). The control parameter of the dynamics in
the exponential phase is thus the (effective) growth rate: If
the growth rate is larger than zero (. > p ), case numbers
grow exponentially; if the growth rate is smaller than zero (
A < p ), recovery dominates and new cases decrease. The two
different dynamics (supercritical and subcritical, respec-
tively) are separated by a critical pointat 2" =0 (1 = p ) (35).

Magnitude and timing of interventions matter for the
mitigation of the outbreak

To simulate the effect of different possible interventions, we
model the effects of interventions as change points in the
spreading rate (Methods). We consider different, hypothet-
ical interventions following the initial phase to show that
both, the amount of change in behavior (leading to a change
in spreading rate » ; Fig. 2A) and the exact timing of the
change (Fig. 2B) determine future development. Hypothetical
interventions build on the inferred parameters from the ini-
tial phase (in particular median 1, =0.41 and median
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u = 0.12 ; Fig. 1) and were implemented as change points in
the spreading rate from the inferred A, to a new value 2.

With such a change point, we model three potential scenarios
of public behavior:

(i) No social distancing: Public behavior is unaltered and
spread continues with the inferred rate (1, = », with median
A, =0.41>p).

(ii) Mild social distancing: The spreading rate decreases
to 50% , (&, =2, /2 with median 2, =0.21> p ). Although

people effectively reduce the number of contacts by a factor
of two in this second scenario, the total number of reported
cases continues to grow alongside scenario (i) for the time
period of the reporting delay b (median D = 8.6 from initial
phase, see below for a more constrained estimation). Also, we
still observe an exponential increase of new infections after
the intervention becomes effective, because the growth rate

remains positive, 2, =1, —p > 0.
(iii) Strong social distancing: Here, the spreading rate de-
creases to 10% , (A, = &, /10 with median 2, = 0.04 < p ). The

assumptions here are that contacts are severely limited, but
even when people stay at home as much as possible, some
contacts are still unavoidable. Even under such drastic policy
changes, no effect is visible until the reporting delay D is
over. Thereafter, a quick decrease in daily new infections
manifests within two weeks (delay plus change point dura-
tion), and the total number of cases reaches a stable plateau.
Only in this last phase is a plateau reached, because here the

growth rate becomes negative, 1" < 0 , which leads to decreas-
ing numbers of new infections.

In this, the timing of an intervention matters: Apart from the
strength of an intervention, its onset time has great impact on
the total case number (Fig. 2, B and C). For example, focusing on
the strong intervention (iii), by which a stable plateau is reached,
the effect of advancing or delaying the change point by just five
days leads to more than a three-fold difference in cumulative
cases.

While we find that the timing of an intervention has a great
effect on case numbers, the duration over which the change
takes place has only minor effect if the intervals of change are
centered around the same date. In Fig. 2C we illustrate the ad-
justment of A, — A, for mild social distancing with durations of
14, 7 and 1 day(s). The change point duration is a simple way to
incorporate variability in individual behavior, and is not linked
to the reporting delay D . As an interesting effect, a sudden
change in the spreading rate can lead to a temporary decrease of
new case numbers, despite the fact that the effective growth rate
remains positive at all times.

Change point detection for the spread of COVID-19 in

Germany
To model real-world data, we further refined the SIR model.
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Most importantly, we account for systematic variations of
case reports throughout the week, in particular lower case
numbers on the weekend, by explicitly modeling a weekly re-
porting modulation (see Methods). Indeed, comparisons con-
firm that models with this correction outperform those
without (see table S2). In the supplemental material, we fur-
ther generalize our model to include an explicit incubation
period (as in SEIR models; fig. S3) that yields results con-
sistent with our main model.

We incorporate the effect of governmental interventions
into our models by introducing flexible change points in the
spreading rate (see Methods). During the COVID-19 outbreak
in Germany, governmental interventions occurred in three
stages from (i) the cancellation of large events with more
than 1000 participants (around March 9), through (ii) closing
of schools, childcare facilities and the majority of stores (in
effect March 16), to (iii) the contact ban and closing of all
non-essential stores (in effect March 23). The aim of all these
interventions was to reduce the (effective) growth rate

A =i-p. As soon as the growth rate becomes negative (

A <0 ), the number of new confirmed infections decreases
after the respective reporting delay.

Detecting change points in the spreading rate and quan-
tifying the amount of change as quickly as possible becomes
a central modeling challenge when short-term forecasts are
required. To address this challenge, we assume an initial
spreading rate i, (the exponential growth phase; Fig. 1) and
up to three potential change points motivated by German
governmental interventions: In our modelling the first
change point (1, — 2, ) is expected around March 9 (t,) as a
result of the official recommendations to cancel large events.
A second change point (1, — 1, ) is expected around March
16 (t, ), when schools and many stores were closed. A third
change point (1, — 1, ) is expected around March 23 (t,),
when all non-essential stores were closed, and a contact ban
was enacted. We model the behavioral changes that are in-
troduced at these change points to unfold over a few days (
At,), but the changes in duration can be partly compensated

by changes in the onset time (t,) (see Fig. 2C, scenarios). We

chose priors for all parameters based on the information
available to us up to March 28 (see Methods). In addition, we
performed a sensitivity analysis by employing wider priors in
the supplemental material (figs. S5 to S7 and table S2), which
yielded consistent results. On March 28, the data were al-
ready informative about the first change point, and thereby
helped to inform our forecast scenarios.

The inferred parameters for the models with change
points are consistent with the inferred parameters from the
exponential onset phase (Figs. 1 and 3 and figs. S1 and S2). In
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particular, all estimated , -values from models with multiple

change points are compatible with the value of the model
without change points (during the exponential onset phase,

A, =041, CI [0.32,0.51], assuming a stationary A until

March 15; Fig. 1E). Also the scale factor s and the number of
initial infections 1, for the models with change points are

consistent with the initial model inference during the expo-
nential onset phase (Fig. 1, D to F).

Models with two or three change points fit the observed
databetter

The models with three change points describe the data better
than models with fewer change points, as indicated by the
leave-one-out (LOQO) cross-validation-based Bayesian model
comparison (36) (lowest LOO-score in Table 1). However, the
LOO-scores of the model with two and three change points
differ by less than one standard error. This originates from
an extended duration of the second change point in the two-
change-point model, which partially captures the effect of the
third intervention. As expected, the models with none or a
single change point have LOO-scores that are at least one
standard deviation higher (worse) than those of the best
models, and we will not consider them further.

When comparing our inference based on three change
points to the number of confirmed cases, we find them to
largely match (Fig. 3, B and C). The dominant periodic change
in the daily new reported cases (Fig. 3B) is well described by
the weekday modulation. In addition to the periodic change,
the daily new case numbers also reflect the fairly sudden
change of the spreading rate at the change points (cf. Fig. 2
and fig. S4 for the effect of change points without the modu-
lation). Most importantly, the cumulative effect of change
points manifests in an overarching decay in new case num-
bers that is visible after April 5 and follows the third change
point (with reporting delay).

Change point detection quantifies the effect of govern-
mental interventions

Ideally, detected changes can be related to specific mitigation
measures, so that one gains insights into the effectiveness of
different measures (Fig. 3). Indeed, we found clear evidence
for three change points in the posterior distributions of the

model parameters: First, a(t) decreased from i, =0.43

(with 95% credible interval, CI [0.35,0.51]) to a, = 0.25 (CI

[0.20, 0.30]). The date of the change point was inferred to be
March 7 (CI [3, 10])]; this inferred date matches the timing of
the first governmental intervention which included cancella-
tions of large events, as well as increased awareness. After
this first intervention, the (effective) growth rate

A (t) = a(t)-p decreased by more than a factor of 2, from

First release: 15 May 2020

WWWw.sciencemag.org

median 1, -p =0.3 to median A, -p =0.12, given that the
recovery rate was inferred as u = 0.13 (CI[0.09, 0.18]). At the

second change point 2(t) decreased from », =0.25 to

A, =0.15 (CI[0.12, 0.20]), which is larger than our prior as-

sumption. The date of this change point was inferred to be
March 16 (CI [14, 18])]; this inferred date matches the timing
of the second governmental intervention including closing
schools and some stores. After this second intervention, the
median growth rate became " (t)=x,-n=0.02~0 and is

thus in the vicinity of the critical point, yet still positive. The
first two interventions thereby mitigated spread of COVID-19
in Germany by drastically reducing the growth rate, but the
spread remained exponential. A third change point, when
A (t) decreased from 2, =0.15 to &, =0.09 (CI[0.06, 0.13])

was inferred on March 24 (CI [21, 26])]; this inferred date
matches the timing of the third governmental intervention
including contact ban and closing of all non-essential stores.
Only after this third intervention, the median (effective)

growth rate, 2" (t)=x, -n =-0.03<0 (CI [-0.05,-0.02])], fi-

nally became negative, indicating a decrease in the number
of new infections. We can thus clearly relate the change
points to the governmental interventions and quantify their
effect.

Discussion

We presented a Bayesian approach for monitoring of the ef-
fect of non-pharmaceutical governmental interventions on
the epidemic spread of an infectious respiratory disease. Us-
ing the example of the COVID-19 outbreak in Germany, we
applied this approach to infer the central epidemiological pa-
rameters and three change points in the spreading rate from
the number of reported cases. We showed that change points
in the spreading rate affect the confirmed case numbers with
a delay of about two weeks (median reporting delay of
D =11.4 days plus a median change-point duration of 3
days). Thereby, we were able to relate the inferred change
points to the three major governmental interventions in Ger-
many: We found a clear reduction of the spreading rate re-
lated to each governmental intervention and the concurring
adaptation of individual behavior (Fig. 3), (i) the cancellation
of large events with more than 1000 participants (around
March 9), (ii) the closing of schools, childcare centers and the
majority of stores (in effect March 16), and (iii) the contact
ban and closing of all non-essential stores (in effect March
23).

Our results indicate that the full extent of interventions
was necessary to stop exponential growth. The first two in-
terventions brought a reduction of the growth rate 1 from
30% to 12% and down to 2% , respectively. However, these
numbers still implied exponential growth. Only with the
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third intervention, the contact ban, we found that the epi-
demic changed from growth to decay. However, the decay

rate of about -3% (CI [-5%,-2%]) remains close to zero.

Hence, even a minor increase in the spreading rate may again
switch the dynamics to the unstable regime with exponential
growth.

We used a formal Bayesian model comparison to validate
the presence of change points. Our model comparison ruled
out models with fewer than two change points (Table 1 and
table S2). While this may seem trivial, it has important con-
sequences for making short-term forecasts that decision mak-
ers rely on. Demonstrating and quantifying the effect of past
change points can be used to formulate priors for the effects
of future, similar change points. These priors help to project
the effects of more recent change points into future forecasts,
even when these change points are not yet apparent in the
reported case numbers. Consequently, it is important to look
out for and identify potential change points as early as possi-
ble to incorporate them into forecasts.

The detection of change points and their interpretation
depend crucially on an accurate estimate of the reporting de-
lay D . Therefore, the validity of its estimate should be eval-
uated. In our model, D contains at least three distinct
factors: the biological incubation period (median 5-6 days)
(32), an additional delay from first symptoms to symptoms
motivating a test (1-3 days) and a possible delay before a test-
ing results come in (1-4 days). The sum of these delays seems
compatible with our inferred median delay of b =11.4 days,
especially given the wide range of reported incubation peri-
ods.

We chose to keep our main model comparatively simple,
because of the small number of data points initially available
during an epidemic outbreak. With few data points, only a
limited number of parameters can be effectively constrained.
Hence, we chose to approximate a time-dependent spreading

rate A (t) by episodes of constant spreading rates », that are

separated by three change points where a transition occurs.
Our results show that this main model is currently sufficient
for Germany. While we introduced fairly broad priors on the
spreading rates, we obtained comparably narrow posterior
distributions for each spreading rate », (Fig. 3). We addition-

ally evaluated extensions of our main model with three
change points, e.g., by explicitly taking into account the incu-
bation period (fig. S3). These models yield consistent results
for the three change points, and all have LOO scores within
one standard error of each other. Thus, we consider our main
model to be sufficient for case numbers in Germany at pre-
sent.

Our framework can be easily adapted to other countries
and enables incorporation of future developments. For other
countries, or for forecasts within smaller communities (e.g.,
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federal states or cities), additional details may become im-
portant, such as explicit modeling of incubation time distri-
butions (17, 37) (i.e., as in fig. S3), spatial heterogeneity (17,
21), isolation effects (20, 37), subsampling effects hiding un-
detected cases even beyond the reporting delay (38, 39), or
the age and contact structure of the population (26). In coun-
tries where major changes in test coverage are expected, this
will have to be included as well. The methodology presented
here is capable in principle of incorporating such details. It
also lends itself to modeling of continuous drifts in the
spreading rate, e.g., reflecting reactions of the public to news
coverage of a catastrophic situation, or people growing tired
of mitigation measures. Such further adaptations, however,
can only be performed on a per-country basis by experts with
an intimate knowledge of the local situation. Our code pro-
vides a solid and extensible base for this. For Germany, sev-
eral developments in the near future may have to be included
in the model. First, people may have transiently changed
their behavior over the Easter holidays; second, we expect a
series of change points, as well as continuous drifts, with gov-
ernments trying to ease and calibrate mitigation measures.
Third, extensions to hierarchical models will enable regional
assessments, e.g., on the level of federal states.

Even after the three major governmental interventions in
Germany, effective growth rates remain close to zero and
warrant careful consideration of future measures. At present,
estimates of effective growth rates dropped to -3% and
thereby remain close to zero - the watershed between expo-
nential growth or decay. Together with the delay of approxi-
mately two weeks between infection and case report this
warrants caution in lifting restrictions for two reasons. First,
lifting restrictions too much will quickly lead to renewed ex-
ponential growth and second, we would be effectively blind
to this worsened situation for nearly two weeks in which it
transmission will be uninhibited. This may result in a growth
in case numbers beyond the level that the health system can
cope with, especially if active cases are not close to zero be-
fore lifting restrictions. Therefore, it is important to consider
lifting restrictions only when the number of active cases are
so low that a two-week increase will not pose a serious threat
to healthcare infrastructure.

In conclusion, our Bayesian approach allows detection
and quantification of the effect of governmental interven-
tions and, combined with potential subsequent interventions,
forecasting future case number scenarios. Our analysis high-
lights the importance of precise timing and magnitude of in-
terventions for future case numbers. It also stresses the
importance of including the reporting delay b between the
date of infection and the date of the confirmed case in the
model. The reporting delay, D , together with the time re-
quired to implement interventions means that changes in our
behavior today can only be detected in confirmed cases in two
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weeks time. Thus, this delay, combined with a current spread-
ing rate that is still close to zero, indicates extremely careful
planning of future measures is essential.

Materials and methods

As a basis for our Bayesian inference and the forecast scenar-
ios, we use the differential equations of the well-established
SIR (Susceptible-Infected-Recovered) model. We also test the
robustness of our results by means of more sophisticated
models, in particular an SEIR-like model that explicitly incor-
porates an incubation period (fig. S3). While the SIR model-
dynamics is well understood in general, here our main chal-
lenge is to estimate model parameters specifically for the
COVID-19 outbreak, and to use them for forecasting. To that
end, we combined a Bayesian approach — to incorporate
prior knowledge — with Markov Chain Monte Carlo (MCMC)
sampling — to compute the posterior distribution of the pa-
rameters and to sample from it for forecasting. Put simply,
we first estimate the parameter distribution that best de-
scribes the observed situation, and then we use many samples
from this parameter distribution to evolve the model equa-
tions and thus forecast future developments.

The data used comes from the Johns Hopkins University
Center for Systems Science and Engineering (JHU CSSE)
dashboard (40). The JHU CSSE provides up-to-date data on
COVID-19 infections, usually a few days ahead of official Ger-
man sources. The exact version of the data and code is avail-
able at (31). Data were incorporated until April 21. Note that
after this cutoff date, additional modeling of the effects of be-
havioral changes over the Easter holidays becomes necessary.

Simple model: SIR model with stationary spreading
rate

We consider a time-discrete version of the standard SIR
model. In short, we assume that the disease spreads at rate
» from the infected population compartment (1 ) to the sus-
ceptible compartment (s ), and that the infected population
compartment recovers (R ) at rate p . This well-established
model for disease spreading can be described by the follow-
ing set of (deterministic) ordinary differential equations (see,
e.g., Refs (5, 6, 20)). Within a population of size N ,

ds Sl

- = ) —

dt N

dl Sl

— =a——ul (1
dt N

dR

— =ul .

dt

As a remark, during the onset phase of an epidemic only
a very small fraction of the population is infected (1 ) or re-
covered (R ), and thus s ~ N > | suchthat s/N ~1.There-
fore, the differential equation for the infected reduces to a

First release: 15 May 2020

WWWw.sciencemag.org

simple linear equation, exhibiting an exponential growth
dl
I(t) =

U

Because our data set is discrete in time (At = 1 day), we
solve the above differential equations with a discrete time
step (dI /dt ~ Al /At ), such that

solved by | (O)eW“)t . (2)

Slfl new
S, -S,, = At = -1
N
R, - R, = pAtl = R™ (3
( St—l new new
-1, :LKT—HJAHH =1"" - R,
Importantly, 1, models the number of all (currently) ac-

new

tive infected people, while 1" is the number of new infec-
tions that will eventually be reported according to standard
WHO convention. Importantly, we explicitly include a report-
ing delay D between new infections 1" and newly reported

t

cases (C, ) as
c =17 4
We begin our simulations at time t = 0 with 1, infected

cases and start including real-word data of reported cases C,
from day t > D (see below for a parameterization).

In our model we do not explicitly incorporate the inflow
of additional infected people by travel for two reasons. First,
we implicitly model the initial surge of infections with 1.
Second, previous work showed that travel during the out-
break has only modest effects on the dynamics, e.g., travel
restrictions in China merely delayed the exponential spread
if not combined with reductions of spreading (41).

Full model: SIR model with weekly reporting modula-
tion and change points in spreading rate

Our change point detection builds on a generalization of the
simple SIR model with stationary spreading rate. We now as-
sume that the spreading rate a,, i=1,...,n, may change at

certain time points t, from a1, , to a,, linearly over a time

1
window of At, days. Thereby, we account for policy changes
to reduce A, which were implemented in Germany step by
step. Thus, the parameters t,, aAt,, and A, are added to the
parameter set of the simple model above, and the differential
equations are augmented by the time-varying 2, .

In addition, we include a weekly modulation to account
for lower case reports around the weekend which subse-
quently accumulate during the week. To model the system-
atic variation of case reports during the week, we adapted the
newly reported cases by a reporting fraction
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c, =10 (1-f (1)), with

sin(lt—L(D \\| (5)
| WJ}’

=(1-f (1
_( w)l 7 2

{
where f, and o , will also be constrained by the data.

(1)

Estimating model parameters with Bayesian MCMC
We  estimate the set of model parameters

0={r.t.,n,D,0, 1, f &}
Markov-chain Monte-Carlo (MCMC). The parameter ¢ is the
scale factor for the width of the likelihood P (C . 10) between

observed data and model (see below). Our implementation
relies on the python package PyMC3 (42) with NUTS (No-U-
Turn Sampling) (43) using multiple, independent Markov
chains. The structure of our approach is the following:

using Bayesian inference with

Initialization of the Markov chains via variational in-
ference

The posterior is approximated by Gaussian distributions ig-
noring correlations between parameters through automatic
differentiation variational inference (ADVI) (44), which is im-
plemented in PyMC3. From this distribution, four starting
points for four chains are sampled.

Burn-in phase

Each chain performs 1000 burn-in (tuning) steps using
NUTS, which are not recorded. This serves as equilibration in
order to sample from an equilibrium distribution in the next
step.

Sampling phase

Each chain performs 4000 steps, which are used to approxi-
mate the posterior distribution. To ensure that the chains are
equilibrated and sampled from the whole posterior distribu-
tion (ergodicity), we verified that the R-hat statistic is below
1.05, which is implemented in PyMC3. The rank normalized
R-hat diagnostic tests for lack of convergence by comparing
the variances within chains and between chains: For identi-
cal within-chain and between-chain variances R-hat becomes
1, indicating convergence. For well-converged chains the re-
sulting samples will describe the real-world data well, so that
consistent forecasts are possible in the forecast phase.

Forecast using Monte Carlo samples

For the forecast, we take all samples from the MCMC step
and continue time integration according to different forecast
scenarios explained below. Note that the overall procedure
yields an ensemble of forecasts — as opposed to a single fore-
cast that would be solely based on one set of (previously op-
timized) parameters.
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MCMC sampling details
Each MCMC step requires to propose a new set of parameters
6 , to generate a (fully deterministic) time series of new in-

fected cases c (6)={c, (0)} of the same length as the ob-

served real-world data C = { ¢ (} , and to accept or reject o . In

our case, the NUTS implementation (in PyMC3) first pro-
poses a new set of parameters ¢ based on an advanced gra-
dient-based algorithm and subsequently accepts or rejects it
such that the resulting samples reflect the posterior distribu-

tion p(o|C)« p(C|0)p(0), where p(C |6) is the likelihood
for the data given the parameters and p(¢) is the prior dis-

tribution of the parameters (see below). The likelihood quan-
tifies the similarity between model outcome and the available
real-world time series. Here, the likelihood is the product
over local likelihoods

p(C,10) ~ StudentT,_, (mean =C,(0),width = 5,/C, (e)) .

quantifying the similarity between the model outcome for
one time point t, c (0), and the corresponding real-world

data point C,. We chose the Student’s t-distribution because

it resembles a Gaussian distribution around the mean but
features heavy tails, which make the MCMC more robust with
respect to outliers (45), and thus reporting noise. The case-
number-dependent width is motivated by observation noise
through random subsampling (38), resulting in a variance
proportional to the mean. Our likelihood neglects any noise
in the dynamic process, as the SIR model is deterministic, but
could be in principle extended to incorporate typical demo-
graphic noise from stochastic spreading dynamics (35, 46).

Priors that constrain model parameters

As short-term forecasts are time-critical at the onset of an ep-
idemic, the available real-world data are typically not in-
formative enough to identify all free parameters, or to
empirically find their underlying distributions. We therefore
chose informative priors on initial model parameters where
possible and complemented them with uninformative priors
otherwise. Our choices are summarized in Table 2 for the
simple model, i.e., the SIR model with stationary spreading
rate for the exponential onset phase, and in Table 3 for the
full model with change points, and are discussed in the fol-
lowing.

Priors for the simple model (Table 2)

In order to constrain our simple model, an SIR model with
stationary spreading rate for the exponential onset phase, we
chose the following informative priors. Because of the ambi-
guity between the spreading and recovery rate in the expo-
nential onset phase (see description of simple model), we
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chose a narrow log-normal prior for the recovery rate
p ~ LogNormal(log(1/8),0.2) with median recovery time of 8

days (20). Note that our implementation of p accounts for

the recovery of infected people and isolation measures be-
cause it describes the duration during which a person can in-
fect others. For the spreading rate, we assume a broad log-

normal prior distribution A ~ LogNormal(log(0.4),0.5) with

median 0.4 . This way, the prior for » - p has median 0.275
and the prior for the base reproduction number (R, =% /p )

has median 3.2, consistent with the broad range of previous
estimates (I8, 33, 34). In addition, we chose a log-normal

prior for the reporting delay D ~ LogNormal(log(8),0.2) to

incorporate both the incubation time between 1-14 days with
median 5 (32) plus a delay from infected people waiting to
contact the doctor and get tested.

The remaining model parameters are constrained by un-
informative priors, in practice the Half-Cauchy distribution
“47). The half-Cauchy distribution

HalfCauchy (x,B) =2/ zp[l+ (x/ﬁ)z] is essentially a flat prior

from zero to o (p) with heavy tails beyond. Thereby, p

merely sets the order of magnitude that should not be ex-
ceeded for a given parameter. We chose for the number of
initially infected people in the model (16 days before first data

point) I, ~ HalfCauchy (100) assuming an order of magnitude
0 (100) and below. In addition, we chose the scale factor of

the width of the likelihood function as ¢ ~ HalfCauchy (10);

this choice means that the variance in reported numbers may
be up to a factor of 100 larger than the actual reported num-
ber.

Priors for the full model (Table 3)
In order to constrain our full model, an SIR model with
weekly reporting modulation and change points in the
spreading rate, we chose the same priors as for the simple
model but added the required priors associated with the
change points. In general, we assume that each set of govern-
mental interventions (together with the increasing aware-
ness) leads to a reduction (and not an increase) of » at a
change point. As we cannot know yet the precise reduction
factor, we adhere to assume a reduction by ~ 50% , but al-
ways with a fairly wide uncertainty, so that in principle even
an increase at the change point would be possible. We model
the time dependence of » as change points, and not as con-
tinuous changes because the policy changes were imple-
mented in three discrete steps, which were presumably
followed by the public in a timely fashion.

For the spreading rates, we chose log-normal distributed
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priors as in the simple model. In particular, we chose for the
initial spreading rate the same prior as in the simple model,

A, ~ LogNormal(log(0.4),0.5); after the first change point

A, ~ LogNormal(log(0.2),0.5), assuming the first interven-

tion to reduce the spreading rate by 50% from our initial es-
timates (i, ~ 0.4 ) with a broad prior distribution; after the

second change point i, ~ LogNormal(log(1/8),0.5), assum-

ing the second intervention to reduce the spreading rate to
the level of the recovery rate, which would lead to a stationary
number of new infections. This corresponds approximately to
a reduction of » at the change point by 50% ; and after the

third change point 1, ~ LogNormal(log (1/16),0.5), assuming

the third intervention to reduce the spreading rate again by
50% . With that intervention, x, is smaller than the recovery
rate p, causing a decrease in new case numbers and a satu-

ration of the cumulative number of infections.
For the timing of change points, we chose normally dis-
tributed priors. In particular, we chose

t, ~ Normal(2020/03/09,3) for the first change point be-

cause on the weekend of March 8, large public events, like
soccer matches or fairs, were cancelled. For the second

change point, we chose t, ~ Normal (2020/03/16,1) , because

on March 15, the closing of schools and other educational in-
stitutions along with the closing of non-essential stores were
announced and implemented on the following day. Restau-
rants were allowed to stay open until 6 pm. For the third

change point, we chose t, ~ Normal(2020/03/23,1), because

on March 23, a far-reaching contact ban (Kontaktsperre),
which includes the prohibition of even small public gather-
ings as well as complete closing of restaurants and non-es-
sential stores was imposed by the government authorities.
Further policy changes may occur in future; however, for
now, we do not include more change points.

The change points take effect over a certain time period

At, for which we choose At ~ LogNormal(log(3),0.3) with a

median of 3 days over which the spreading rate changes con-
tinuously as interventions have to become effective. The pre-
cise duration of the transition has hardly any effect on the
cumulative number of cases (Fig. 2, E and F). We assumed a
duration of three days, because some policies were not an-
nounced at the same day for all states within Germany; more-
over, the smooth transition also can absorb continuous
changes in behavior.

The number of tests that are performed and reported vary
regularly over the course of a week and are especially low
during weekends. To account for this periodic variation, we
modulated the number of inferred cases by the absolute value
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of a sine function with in total a period of 7 days. We chose
this function as it is a non-symmetric oscillation, fitting the
weekly variation of cases on a phenomenological level. For
the amplitude of the modulation we chose a weakly informa-
tive Beta prior: f, ~ Beta(mean =0.7,std =0.17) and for the
phase a nearly flat circular distribution:

® ~ vonMises(mean =0,k =0.01).

Model comparison

Since change point detection entails evaluating models with
different numbers of parameters, some form of fair model
comparison is needed. This is necessary to compensate for
the higher flexibility of more complex models, as this flexibil-
ity carries the risk of overfitting and overconfident forecasts.
The standard approach to avoid over-fitting in machine
learning is cross-validation, and cross validation has recently
also been advocated for Bayesian model comparison (e.g., (3,
36)), especially for models employed for predictions and fore-
casts. Thus, one would ideally like to compare the models
with different numbers of change points by the probability
they assign to previously unobserved data points. Technically
this is measured by their out-of-sample prediction accuracy,
i.e., their log pointwise predictive density (Ippd):

lppd = ¥ log ([ p(y;" 10)p,,, (8)d6) (6)

where the vector [yfs,.., , yfs] is a an out-of-sample dataset of

N new data points, and where p, (6)= p . (0|y,M ) isthe
posterior distribution of the parameters, given the in-sample

data y and the model M , . In practice, the integral is approxi-

post

mated using a sufficient amount of samples from p . (6). How-

ever, this approach is only reasonable if a sufficient amount of
out-of-sample data are available, which is not the case in the
early stages of a disease outbreak. Therefore, the pointwise out-
of-sample prediction accuracy was approximated using Leave-
one-out cross-validation (LOO) in PyMC3 to compute Eq. 6 indi-
vidually for each left out data point based on the model fit to the
other data points. The sum of these values, multiplied by a factor
of -2 then yields the leave-one-out cross-validation (LOO-CV)
score. Thus, lower LOO-CV scores imply better models.
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Fig. 1. Inference of central epidemiological parameters of the SIR model during the initial
onset period, March 2-15. A: The number of new cases and B: the total (cumulative) number
of cases increase exponentially over time. C—H: Prior (gray) and posterior (orange)
distributions for all model parameters: estimated spreading rate A, recovery rate y, reporting
delay D between infection date and reporting date, number of cases Iy at the start of the
simulation, scale-factor o of the width of the likelihood distribution, and the effective growth
rate A* = A — . I: Log-likelihood distribution for different combinations of A and p. A linear
combination of A and p yields the same maximal likelihood (black line). White dot: Inference
did not converge.
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Fig. 3. Bayesian analysis of the German COVID-19 data (blue diamonds) until April 21 reveals three change points
that are consistent with three major governmental interventions. A: Time-dependent model estimate of the
effective spreading rate A*(t). B: Comparison of daily new reported cases and the model (green solid line for median
fit with 95% credible intervals, dashed line for median forecast with 95% Cl); inset: same data in log-lin scale. C:
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of the posteriors. For the same model with one or two change points, please see the corresponding figures in the SI
(figs. S1and S2 and table S2).
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Table 1. Model comparison shows that the three-change-point model describes the data best. Leave-one-out
(LOO) cross-validation for main models (SIR with weekend correction) and a different number of change points.
Lower LOO-scores represent a better match between model and data.

Model LOO-score Effective number of
parameters (pLOO)

zero change points 927 +9 8.31

one change points 819+16 13.46

two change points 796 +17 12.53

three change points 787 +17 13.42

Table 2. Priors on the model parameters for the SIR model with stationary spreading rate.

Parameter Variable Prior distribution
Spreading rate )

LogNormal(log (0.4),0.5)

Recovery rate H LogNormal(log(1/8),0.2)

Reporting delay D LogNormal(log(8),0.2)
Initially infected I, HalfCauchy (100)

Scale factor o HalfCauchy (10)

Table 3. Priors on the model parameters for the SIR model with change points and weekly reporting modulation.

Parameter Variable Prior distribution
Change points t, Normal (2020 /03/09,3)
t, Normal(2020/03/16,1)
t, Normal(2020/03/23 1)
Change duration At, LogNormaI(Iog 0.3
Spreading rates Ay LogNormaI(Iog(O 4),0.5)
A LogNormal(log(0.2),0.5)
A, LogNormal(log(1/8),0.5)
A, LogNormal(log(1/16),0.5)
Recovery rate # LogNormal(log(1/8),0.2)
Reporting delay D LogNormal(log(8),0.2)
Weekly modulation amplitude f Beta(mean = 0.7,std = 0.17)
Weekly modulation phase ® vonMises (mean = 0,x = 0.01)
v (nearly flat)
Initially infected 1, HalfCauchy (100)
Scale factor o

HalfCauchy (10)
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