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Purpose: Accurate segmentation of liver and liver tumors is critical for radiotherapy. Liver
tumor segmentation, however, remains a difficult and relevant problem in the field of
medical image processing because of the various factors like complex and variable
location, size, and shape of liver tumors, low contrast between tumors and normal tissues,
and blurred or difficult-to-define lesion boundaries. In this paper, we proposed a neural
network (S-Net) that can incorporate attention mechanisms to end-to-end segmentation
of liver tumors from CT images.

Methods: First, this study adopted a classical coding-decoding structure to realize end-
to-end segmentation. Next, we introduced an attention mechanism between the
contraction path and the expansion path so that the network could encode a longer
range of semantic information in the local features and find the corresponding relationship
between different channels. Then, we introduced long-hop connections between the
layers of the contraction path and the expansion path, so that the semantic information
extracted in both paths could be fused. Finally, the application of closed operation was
used to dissipate the narrow interruptions and long, thin divide. This eliminated small
cavities and produced a noise reduction effect.

Results: In this paper, we used the MICCAI 2017 liver tumor segmentation (LiTS) challenge
dataset, 3DIRCADb dataset and doctors’ manual contours of Hubei Cancer Hospital
dataset to test the network architecture. We calculated the Dice Global (DG) score, Dice per
Case (DC) score, volumetric overlap error (VOE), average symmetric surface distance
(ASSD), and root mean square error (RMSE) to evaluate the accuracy of the architecture for
liver tumor segmentation. The segmentation DG for tumor was found to be 0.7555, DCwas
0.613, VOE was 0.413, ASSDwas 1.186 and RMSE was 1.804. For a small tumor, DGwas
0.3246 and DC was 0.3082. For a large tumor, DG was 0.7819 and DC was 0.7632.

Conclusion: S-Net obtained more semantic information with the introduction of an
attention mechanism and long jump connection. Experimental results showed that this
method effectively improved the effect of tumor recognition in CT images and could be
applied to assist doctors in clinical treatment.
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INTRODUCTION

Currently, liver cancer is the fifth most common malignancy and
the second-leading cause of cancer-related death worldwide (1,
2). An accurate contour of the location, volume, and shape of
liver tumors can help radiotherapists develop precise treatment
plans. At the present time, there are several barriers to automated
segmentation of liver tumors. Lesion tissue is often uniformly
gray in color, which hinders automatic segmentation. Some
lesions do not have clear boundaries, which limits the
performance of edge segmentation methods. The specificity of
lesions exists in different samples of tumors, which vary in
location, size, shape, and volume. This presents further
challenges to the process of segmentation. On account of these
variables, automatic segmentation of tumors from the liver is a
difficult task.

To solve these problems, researchers have proposed different
segmentation methods, including the regional growth method,
deformation model method, intensity threshold method, and the
watershed algorithm. Each of these methods has individual
strengths and limitations (1–9). When compared with
traditional segmentation methods, fully convolutional neural
networks (FCNs) have shown powerful efficacy in segmenting
liver tumors. Many researchers have introduced deep learning
into the liver tumor segmentation problem and found
positive results.

Since U-Net was proposed by Ronneberge (10) in 2015, it has
become the most common convolutional neural network
architecture in medical image segmentation. Because of this
finding, more U-Net derived networks were developed like the
H-DenseUnet proposed by Li et al. (11) This combines U-Net
with DenseNet (12) to explore the intra- and inter-slice features.
U-Net++ proposed by Zhou (13) uses full-scale hopping
connectivity and deep supervision to fuse high-level semantic
information with low-level semantic information from feature
maps at different scales and to learn hierarchical representations
from multiscale aggregated feature maps. The coding-decoding
network, proposed by Ginneken et al. (14), improved the
accuracy of liver tumor sketching followed by shape-based
post-processing to refine liver tumor margins. Roth proposed a
two-stage coarse-to-fine 3D FCN. Roth HR et al. (15) proposed a
two-dimensional (2D) FCN that fused three orthogonal planes to
generate voxel predictions by averaging the probabilities of the
three different planes.

Along with the development of different architectures of
convolutional neural networks, some special modules have
been proposed like the integrated attention gate (attention U-
Net) by Oktay et al. (16) This network suppresses the task-
irrelevant part and enhances the learning of the task-relevant
part. This greatly improved the performance of semantic
segmentation. Fu et al. (17) proposed DANet, a dual-attention
mechanism that used network fusing channel attention and
location attention to infer attention concentrated regions from
two specific and mutually independent dimensions. This
improved the segmentation accuracy of the model. Woo et al.
(18) proposed a network called Convolutional Block Attention
Frontiers in Oncology | www.frontiersin.org 2
Module (CBAM) fusing spatial attention mechanism and
channel attention mechanism. The overall architecture of the
attention mechanism (19–21) is light and easy to integrate into
neural networks and engage in model training end-to-end.

Although the existing algorithms have made significant
achievements in liver tumor segmentation, some networks still
have large and cumbersome structures. Other networks do not
effectively fuse the spatial feature information captured in the
down-sampling phase with the up-sampling phase. This leads to
disregarding the spatial architecture of the network. To address
these problems, this study proposes a small, lightweight, end-to-
end, convolutional neural network of S-Net with the fusion of
spatial features and attention mechanisms. The contributions of
this paper include the following:

1. Proposing a pre-processing means of pixel point-to-point
flipping to improve the accuracy.

2. Using small convolutional kernels and multiple batch
processing to extract smaller semantic information.

3. Using a long-hop connection between the encoder and
decoder to fuse spatial features and high-level semantic
features.

4. Introducing attention mechanisms in neural networks to
encode a longer range of semantic information in local
features and to find correspondences between different
channels.

Throughout this paper, researchers used the LITS dataset, as
shown in Figure 1. Figure 1A shows the original image sample
with the liver region in the red dashed line, and Figure 1B shows
the processed liver image sample with the tumor region in the
shaded part in the red dashed line. The white image in Figure 1C
is the tumor label of the original sample.

This paper is structured as follows: Section I introduces the work
on liver tumor segmentation, Section II describes the research
methods of this paper, Section III gives the experimental results,
and Section IV presents the conclusion and summary.
MATERIALS AND METHODS

Algorithm Flow
The main process of the algorithm in this study included three
stages: pre-processing, tumor segmentation, and post-
processing Figure 2.

In the pre-processing stage, we discussed basic processing
means, such as image scaling deformation, grayscale floating,
pixel normalization to eliminate overfitting, pixel flipping to
change the image grayscale value, and point-to-point to flip the
pixel grayscale. Image scaling deformation includes the rotation,
mirroring, translation, and affine transformation of each layer of
the CT image with its corresponding contour outline. Image
grayscale float multiplies the grayscale values of all pixel points
on the image by a random number between 0.8 and 1.2, and then
superimposes a random number between -0.2 and 0.2. The pixel
point-to-point flip first divides each pixel point of the foreground
August 2021 | Volume 11 | Article 680807
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image by 255 to obtain a new pixel point and then subtracts the
new pixel point by the value 1. This value is multiplied by 255 to
achieve the function of the grayscale flip. The image after the
point-to-point flip is shown in Figure 3.

In 2D sections of some samples, the overlap of Hounsfield
unit (HU) values between the liver and tumor leads to poor
training and makes the network model misleading, especially
during the learning process. As a result of this, we used the
critical threshold method throughout this study to remove the
sample cuts with low contrast to increase the learning ability of
the network. Figure 4 shows the two cuts with strong and low
contrast, as well as the HU diagram. In the post-processing stage,
we performed noise reduction through the closed operation.

S-Net Network Architecture
This study proposed a novel convolutional neural network of
S-Net based on 2D U-Net, as displayed in Figure 5. The
Frontiers in Oncology | www.frontiersin.org 3
architecture introduced an attention mechanism based on
U-Net while using a typical encoding and decoding structure.
In this structure, the left path is the contraction path (encoder)
from top to bottom and the right path is the expansion path
(decoder) from bottom to top. Because the target area of some
samples was small, it was difficult to extract the semantic
information in them. Therefore, we used small convolutional
kernels and multiple batch processing for training. To extract
deeper semantic information, the number of convolutional
kernel channels of the contraction path was gradually
increased. The feature map size gradually decreased in the
down-sampling phase by reason of the pooling layer. In the
up-sampling stage, the pooling layer was changed to an up-
sampling layer because of the expansion path. This helped to
recover the resolution of the original image. In addition, the
number of convolutional kernel channels was gradually reduced
to achieve end-to-end segmentation. At the intersection of
A B C

FIGURE 1 | CT image sample with liver and liver tumors. (A) Images in LITS dataset. (B) Liver image. (C) Tumor label.
FIGURE 2 | The 2017 LiTS public dataset with a total sample of 131 patients. In this study, we adaptively partitioned the entire sample into 100 training samples, 10
validation samples, and 21 test samples. The training samples are pre-processed, and the test samples are used to evaluate the segmentation effect of the network model.
August 2021 | Volume 11 | Article 680807
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contraction and expansion paths, we introduced a spatial
attention mechanism and a channel attention mechanism to
enable the network to encode longer-range semantic information
in local features and to find correspondences between different
Frontiers in Oncology | www.frontiersin.org 4
channels. We introduced the long-hop connection between the
layers of the contraction path and the expansion path so that the
semantic information extracted in the contraction path was fused
with the semantic information extracted in the expansion path.
FIGURE 3 | After pixel point-to-point flipping, the liver turns gray, the tumor turns white, and the area outside the liver is black.
FIGURE 4 | The left panel is a high-contrast section and the right panel is a low-contrast section. Blue is the liver HU value and green is the tumor HU value.
August 2021 | Volume 11 | Article 680807
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The Convolutional Attention Module is a simple and effective
attention module for feed-forward convolutional neural
networks. The overall architecture is shown in Figure 6. The
attention module inferred attentional regions along two specific
and mutually independent dimensions, multiplied the channel
attention mechanism with the spatial attention mechanism, and
Frontiers in Oncology | www.frontiersin.org 5
adaptively optimized the local features. Because the attention
mechanism architecture was small and lightweight, it could be
seamlessly integrated into any network architecture and could be
trained end-to-end along with neural networks.

We used the channel attention module illustrated in Figure 7
to find the dependencies between different channels and to
FIGURE 5 | S-Net network architecture diagram.
FIGURE 6 | Overall architecture of the attention mechanism.
August 2021 | Volume 11 | Article 680807
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enhance the dependent features. It focused mainly on the region
of interest of the input image and compressed the spatial
dimension of the input feature map. The module used the
average pooling layer Fc

avg and the maximum pooling layer
Fc
max to extract semantic information between channels. The

shared network consisted of multiple layers of perceptrons. The
workflow of the module is described as follows:

Maximum Pooling and Average Pooling Feature Maps: We
used the maximum pooling layer to select the maximum value of
the image region as the pooled value of the region. This
eliminated nonextreme values and reduced the complexity of
the upper-layer calculation. In addition, this layer could achieve
translation invariance. The average pooling layer calculated the
average value of the image region as the pooled value of the
region. This could fade the combination of the relative positions
between different features. Passing the pooled output through
multiple layers of perceptrons: The multilayer perceptron played
the role of a dimensional transformer. It converted high-
dimensional information into low-dimensional information
while preserving useful information. After a SoftMax function:
Frontiers in Oncology | www.frontiersin.org 6
The attentional mechanism was nonequivalent to the input of
the overall sample. The channel attention module analyzed the
weight of all input channels of a certain feature map and
automatically selected the channels that need to be
emphasized. The model set higher weights where necessary
and smaller weights for those channels that were not
emphasized. We used the SoftMax function to generate the
probability of the importance of each channel.

The spatial attention module shown in Figure 8 allowed the
network to encode a longer range of semantic information in
local features. Unlike the channel attention module, spatial
attention focuses on the “where” as the most informative piece
of information and complements channel attention. We applied
the average pooling and maximum pooling operations along the
channel axes and concatenated the operations to produce valid
feature descriptors. With these descriptors, the channel
information was merged to produce two feature maps: Fc

avg ,
FS
max . The workflow of the spatial attention module is described

as follows. maximum pooling and average pooling were done
along the channel level to compress the image of N channels of
FIGURE 7 | Structure diagram of channel attention module.
FIGURE 8 | Architecture diagram of spatial attention module.
August 2021 | Volume 11 | Article 680807
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HxW into a single channel of HxW. The 1x1 convolution layer
was a linear combination of each pixel on different channels that
retained the original planar structure of the feature map. It only
changed the number of channels, thus achieving both up and
down dimensional functions. The final attention map was
normalized by the SoftMax function.
RESULTS

Evaluation Index and Experimental Result
To demonstrate the effectiveness of the algorithm, we conducted
experiments on the LITS dataset, in which all image data was
collected from academic and clinical institutions worldwide,
including the data of 131 liver cancer patients. The number of
layers per CT scan varied between 42 and 1026 for each sample,
whereas the pixel size of each CT layer was 512 × 512 pixels. The
number of liver tumors in each sample ranged from 0 to 75 and
the size of tumors ranged from 38mm3 to 349 mm3.

To evaluate the effectiveness of S-Net, researchers calculated
the overlap measure according to the evaluation of LITS dataset,
including Dice Global (DG) score, Dice per Case (DC) score,
volumetric overlap error (VOE), average symmetric surface
distance (ASSD), and root mean square error (RMSE). The Dice
Global (DG) score is applied across all cases if they combine in a
single volume, while the Dice per Case (DC) score refers to an
average Dice score per volume. The mask labels provided by the
LiTS dataset, 3DIRCADb dataset and doctors’manual contours of
Hubei Cancer Hospital dataset are defined as the gold standard.
The Dice score can be formulated as:

Dice(A,B) =
2 A ∩ Bj j
Aj j + Bj j

In this formula, A represents predicted results while B
represents true annotations. The loss function, Loss, was
calculated using the formula:

Loss = 1 − Dice(A,B)

The DC, DG, VOE, ASSD and RMSE for this study were
found to be 0.613, 0.755, 0.413, 1.186, 1.703, respectively. These
values of this paper’s network architecture and three different
Frontiers in Oncology | www.frontiersin.org 7
network architectures (U-Net, DenseNet, and ResNet) were
measured separately using the LiTS dataset as shown in
Table 1. The models in the experiments all used 2D
convolutional neural networks. When compared with the
U-Net network, the DC value is improved by 0.099, the DG
value was improved by 0.112, the VOE value is declined by 0.12,
the RMSE is declined by 0.574. When compared with the three
networks, these values were also found to show significant
improvement. These values of different networks were also
improved after applying the post-processing method.

Experimental Details and
Parameter Settings
In this study, we adaptively partitioned all samples into 100
training samples, 10 validation samples, and tested our trained
model from the LITS dataset on 3DIRCADb dataset and Hubei
Cancer Hospital dataset. The 3DIRCADb datasets are composed
of 20 CT scans, where 15 cases have hepatic tumors in the liver.
The Hubei Cancer Hospital datasets included 20 enhanced CT
scans of hepatic carcinoma with contrast from radiology
department of Hubei Cancer Hospital. The auto-delineation
results of this study used by Hubei Cancer Hospital dataset are
shown in Figure 11. The training samples were pre-processed
and the test samples were used to evaluate the segmentation
effect of the network architecture.

We built the network architecture using Keras, with an
NVIDIA Tesla P100 graphics card, and trained the network
using a momentum gradient optimizer. We found initial learning
rate to be 0.01, When the loss rate of the verification set did not
decrease in three cycles, the learning rate was automatically
reduced. A total of 200 cycles were trained. The set of weights
with the highest Dice coefficients on the validation set was
saved as the set of weights used for the testing phase. The
activation function was a linear correction unit (RELU). The
Dice and Loss values for training and validation are shown
in Figure 9.

Auto-Delineation Results
Figure 10 shows the 2D visualizations of the auto-segmented
contours for selected two CT scans from LiTS dataset. Green
lines represent predicted results by S-Net model, while the red
ones are gold standard. As can be seen from the figures, the auto-
TABLE 1 | Liver tumor segmentation results by S-Net, and U-Net, DenseNet and ResNet.

Model Dice per case (DC) Dice global (DG) volumetric overlap
error (VOE)

average symmetric
surface distance (ASSD)

root mean square
error (RMSE)

U-Net (10) 0.514 0.643 0.533 1.763 2.378
U-Net and post-processing 0.525 0.651 0.527 1.759 2.372
DenseNet (22) 0.504 0.612 0.557 1.862 2.765
DenseNet and post-processing 0.513 0.623 0.546 1.831 2.755
ResNet (23) 0.503 0.631 0.431 1.279 2.076
ResNet and post-processing 0.512 0.642 0.427 1.254 2.059
S-Net 0.613 0.755 0.413 1.186 1.804
S-Net and post-processing 0.647 0.761 0.409 1.177 1.801
August 2021 | Volume
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segmentations were close to the gold standard delineations,
especially for the large liver lesions. The small and multiple
lesions, marked by the blue arrows in figures, the overlapped
regions slightly reduced. Therefore, the S-Net model could well
segment the liver and liver tumors, but as for small and multiple
tumors, it still needs more attention to enhance.
DISCUSSION

In this study, researchers proposed a novel convolutional neural
network called S-Net to auto-segmentate liver tumors. The
Frontiers in Oncology | www.frontiersin.org 8
evaluation metric DC, DG, VOE, ASSD and RMSE were found
to be 0.613, 0.755, 0.413, 1.186 and 1.804 respectively. The novel
network S-Net was able to outperform other networks like
U-Net, DenseNet, and ResNet. In addition, we proposed a pre-
processing method of pixel point-to-point flipping, which
improved the contrast of the HU values of CT sections, made
the network learn useful information more easily. Unlike existing
FCN network architectures, this architecture had the following
two features:

1. Ability to add spatial attention mechanism and channel
attention mechanism between encoder and decoder. The
FIGURE 9 | Dice and Loss values for training and verification.
FIGURE 10 | Green contour shows the predicted results by S-Net models, while red shows the gold standard. The small and multiple lesions, marked by the blue arrows.
August 2021 | Volume 11 | Article 680807
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spatial attention mechanism allowed the network to encode a
longer range of semantic information in local features,
whereas the channel attention mechanism found
correspondences between different channels. In practice,
the attention mechanism allowed the network to fully focus
on the learning area, which greatly improved the accuracy of
segmentation.

2. Long-hop connections increased the fusion rate of spatial
feature information in the network, which could aid in the
transfer of different spatial feature information from layer to
layer.

On the basis of the 2017 LITS dataset, which tested the
learning ability of the network, we concluded that the S-Net
used in this study improved DC and DC values when compared
with the U-Net network. DG and DC values were improved by
0.112 in and 0.117 in, respectively. When compared with cutting-
edge algorithms like the cascaded FCN architecture proposed
by Bellver et al. (24), these values improved by 0.015 and 0.023,
Frontiers in Oncology | www.frontiersin.org 9
respectively. When compared with the convolutional neural
network incorporating spatial feature information proposed
by Liu et al. (21), the DC value was improved by 0.021. The
proposed network has a higher Dice value compared with Kaluva
(25) and Pandey (26) et al., who added a residual structure to the
conventional U-shaped structure to segment the tumor. The
main reason for the improvement of segmentation accuracy
is that this architecture adopted a canonical code-decode
structure. It also integrated an attention mechanism based on
the original U-Net network and used small, convoluted kernels
to extract small amounts of semantic information. This
architecture used a modular approach to gradually increase the
number of convoluted kernel channels that extract deeper
semantic information, thus improving the accuracy of
segmentation. These results are shown in Table 2.

We mainly selected the results based on 2D model (14, 25–27,
29), except for some 3D model results by Li and Liu (11, 28). The
proposed S-Net with the fusion of spatial features and attention
mechanisms, outperformed than other 2D models. Indeed, the
TABLE 2 | Liver tumor segmentation results compared with other methods on the LiTS test dataset.

Model Dice per case (DC) Dice global (DG) volumetric overlap
error (VOE)

average symmetric
surface distance (ASSD)

root mean square
error (RMSE)

Chlebus et al. (14) 0.580 — — — —

Song et al. (27) 0.569 0.751 0.437 1.702 —

Kaluva et al. (25) 0.492 0.625 0.411 1.441
Pandey et al. (26) 0.587 — — — —

Bi et al. (26) 0.500 — — — —

T Liu al (28). 0.592 0.764 0.416 1.585 —

Li et al. (11) 0.722 0.824 0.497 0.529 1.111
Our S-Net 0.613 0.755 0.413 1.186 1.804
August 2021 | Volume
The DC, DG, Precision of other methods are obtained from the LITS leaderboard. The S-Net achieves much better performance in the precision score of liver tumors. The bold digitals
denote the best results.
FIGURE 11 | The auto-delineation results of this study used by Hubei Cancer Hospital dataset. Green contour shows automatic results, while red shows the gold standard.
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LiTS Leaderboard currently shows many higher DC and DG
scores than those in the manuscript, especially the highest DC
and DG by user ‘liver_seg’ were 0.7990 and 0.8500 respectively.
Although some of the results are very high, there are still some
reasons why we do not choose to repeat them. Firstly, it remains
difficult to give recommendations about the exact network
design, since the number and order of CNN layers and other
hyperparameters were rough ideas instead of strict, proven
guidelines. Secondly, the use of 3D architectures outperformed
than the 2D ones, but in clinical practice they were not widely
implemented due to memory constraints. Thirdly, more
standard contour datasets will improve the segmentation
accuracy, because state-of-art methods highly benefit from
larger training datasets.

To demonstrate the applicability of our method in clinical
practice, in this study we tested our trained model from the LiTS
datasets on the new 3DIRCADb and Hubei Cancer Hospital
datasets as shown in Table 3. The auto-delineation results of this
study used by Hubei Cancer Hospital dataset are shown in
Figure 11. And it achieved the slightly decreased results on
tumor segmentation, with 0.578 on DC, 0.706 on DG, 0.576
on VOE and 1.673 on ASSD in 3DIRCADb dataset, with 0.527
on DC, 0.654 on DG, 0.594 on VOE and 1.862 on ASSD in Hubei
Cancer Hospital dataset. The auto-segmentation results of
3DIRCADb dataset and Hubei Cancer Hospital dataset
indicated the robustness of S-Net. Although the evaluation
metric slightly decreased, it can effectively improve the effect of
tumor recognition in CT images and could be applied to assist
doctors in clinical treatment. If more datasets from different
clinical centers are added for training, it is believed that the
accuracy could be further increased.

A threshold of 0.2 was used to distinguish large tumors from
small ones. We calculated tumor size by aggregating the tumor
voxels in each real CT image. We did this to further understand
the performance metrics of the network and to analyze the
accuracy of the S-Net architecture in identifying the tumor size
of different patients. The voxel values of the 21 CT tumors in the
test set are shown in Figure 12. We found the tumor sizes in this
data set to be widely variable. To facilitate experimental
development, the data set was partitioned into a large tumor
group and a small tumor group. This was determined by the
Frontiers in Oncology | www.frontiersin.org 10
orange line. We have used Baseline values to shows the
effectiveness of our network in small and large tumors,
Baseline is the 2D U-Net Table 4. The DC value and DG value
of the two sample groups were tested separately. These results are
shown in Table 4. From Table 4, It can be clearly observed that
the large tumor achieves 0.0469 (Dice per case) accuracy
improvements while the score for the small-tumor group is
slightly advanced, with 0.0353 (Dice per case). From the
comparison, we claim that the main reasons for the improve in
Dice value is by adopting adaptive attention convolutional neural
network, which can notice different dimension of semantic
information. As a result, the accuracy of segment large tumor
will be improved considerably. But semantic information
of small tumors are more difficult to extract, so segmentation
for small tumors have limited improvement. This is because
many small lesions only occupying a few voxels, and it’s difficult
to distinguish the surrounding pixels in the lesion border. In
addition, the difference in the HU value of liver and tumor may
affect the segmentation accuracy.
FIGURE 12 | The number of tumor voxels per patient in the test dataset. The
orange line was used to distinguish between a large tumor group and a small
tumor group.
TABLE 3 | Tested our trained model from the LITS dataset on 3D-IRCADb dataset and Hubei Cancer Hospital dataset.

Dataset Dice per case (DC) Dice global (DG) volumetric overlap error (VOE) average symmetric surface (ASSD)

3D-IRCADb 0.578 0.706 0.576 1.673
Hubei Cancer Hospital 0.527 0.654 0.594 1.862
Augu
TABLE 4 | The effectiveness of our network to small and large tumors segmentations.

Small tumors large tumors

Dice per case Dice global Dice per case Dice global

Baseline 0.2613 0.2917 0.7279 0.7548
S-Net 0.3082 0.3246 0.7632 0.7819
st 2021 | Volume 11 | A
As can be seen from the table. The segmentation accuracy of large tumors are better than that of small tumors. Baseline is the 2D U-Net with trained model.
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To tackle with the small and multiple liver tumor
segmentation problem, several methods were proposed. Li
et al. used perceptual generative adversarial networks (GANs)
to generate super-resolved representation for small object by
revealing the intrinsic structural correlations between small and
large objects (30). Kamnitsas et al. proposed a multi-scale 3D
CNN with fully connected CRF for small brain lesion
segmentation (31). Some post-processing methods utilize a
custom criteria of removing lesions as noise if they have large
variation between adjacent slices, because the size of lesions
usually increase/decrease gradually with image slices up-and-
down (32). A new loss function combined with Dice score and
focal loss was better for segmenting small-volume structures
such as optic nerves and chiasm (33). In summary, GANs, multi-
scale representation, new loss function and custom post-
processing methods may be the potential solution to overcome
this challenging problem (34). This should be explored further in
future studies.
CONCLUSION

In this study, an automatic CT image segmentation method
based on S-Net network architecture used to automatically
segment liver tumors from CT images was proposed. This
study focused on the attention mechanism and the fusion of
semantic information at different spatial dimensions. In this
research, experiments based on the LITS dataset demonstrated
that the methods discussed in this paper could improve the
effect of automatic tumor segmentation in CT images. A
drawback is that this algorithm was not effective in segmenting
small tumors and multiple tumors. Future research will focus on
the problem of case segmentation of small tumors and multiple
tumors along with application of deep learning to clinical
adjuvant therapy.
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