
Integrated Small RNA Sequencing,
Transcriptome andGWASData Reveal
microRNA Regulation in Response to
Milk Protein Traits in Chinese Holstein
Cattle
Wentao Cai1,2,3, Cong Li2, Junya Li1*, Jiuzhou Song3* and Shengli Zhang2*

1Laboratory of Molecular Biology and Bovine Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing, China, 2Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering
Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China,
3Department of Animal and Avian Science, University of Maryland, College Park, MD, United States

Milk protein is one of the most important economic traits in the dairy industry. Yet, the
regulatory network of miRNAs for the synthesis of milk protein in mammary is poorly
understood. Samples from 12 Chinese Holstein cows with three high ( ≥ 3.5%) and three
low ( ≤ 3.0%) phenotypic values for milk protein percentage in lactation and non-lactation
were examined through deep small RNA sequencing. We characterized 388 known and
212 novel miRNAs in the mammary gland. Differentially expressed analysis detected 28
miRNAs in lactation and 52 miRNAs in the non-lactating period with a highly significant
correlation with milk protein concentration. Target prediction and correlation analysis
identified some key miRNAs and their targets potentially involved in the synthesis of milk
protein. We analyzed for enrichments of GWAS signals in miRNAs and their correlated
targets. Our results demonstrated that genomic regions harboring DE miRNA genes in
lactation were significantly enriched with GWAS signals for milk protein percentage traits
and that enrichments within DE miRNA targets were significantly higher than in random
gene sets for the majority of milk production traits. This integrated study on the
transcriptome and posttranscriptional regulatory profiles between significantly
differential phenotypes of milk protein concentration provides new insights into the
mechanism of milk protein synthesis, which should reveal the regulatory mechanisms
of milk secretion.
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INTRODUCTION

Milk protein is one of the best protein sources for humans
(Anderson et al., 2004). It also affects milk-manufacturing
properties such as cheese yields, milk coagulation time and
curd firmness (Auldist et al., 2004; Wedholm et al., 2006).
Improving milk protein yields and quality can increase the
economic outcome of the dairy industry. It has been reported
that the amount and compositions of proteins in milk are
determined mainly by genetic factors (Auldist et al., 2004).
The heritabilities of milk protein compositions were moderate
to high in Dutch Holstein-Friesian cattle, ranging from 0.25 to
0.80 (Schopen et al., 2009). So far, several strategies, such as QTL
mapping, candidate gene analysis, genome-wide association
studies (GWAS), or next-generation sequencing (NGS)
technologies (Georges et al., 1995; Gambra et al., 2013; Zhou
et al., 2019), have been adopted to identify several causal genes
and mutations associated with increased protein yield and
composition. However, the synthesis and secretion of milk
proteins involve complex physiological and biochemical
processes. One of these mechanisms is related to the role of
microRNAs (miRNAs), which need to be thoroughly examined.

MiRNAs are a class of small (18–24 nucleotide) RNAs that are
involved in the regulation of gene expression by targeting
messenger RNAs (mRNAs). The vast majority of miRNA
genes are transcribed by the RNA polymerase II, which
generates long primary transcripts (pri-miRNA) that contain a
hairpin stem-loop structure (Lee et al., 2003). miRNAs are
processed from double-stranded hairpin precursors by Drosha
protein in the nucleus and Dicer protein in the cytoplasm. The
final single-stranded mature miRNA hybridizes with the RNA-
induced silencing complex (RISC) to undergo gene inhibition
(Robb and Rana, 2007; Kim et al., 2009). Unlike other regulators,
miRNAs exert highly complex and combinatorial regulations by
targeting hundreds of mRNA transcripts (Shivdasani, 2006).
Extensive research in the past decade indicates the
involvement of miRNAs in various biological processes such
as cell development, proliferation, differentiation and apoptosis
(Johnson et al., 2005; Gu and Iyer, 2006; Zhou et al., 2007).
Recently, miRNAs have been shown to play important roles in the
milk secretion process through their altered regulation of genes
involved in milk protein and fat synthesis (Wang et al., 2016; Cui
et al., 2020). Fifty-six mammary miRNAs were reported to have
significant differences in expression between the lactation and
non-lactating periods (begins 60 days before the expected
calving) in Holstein cows (Li et al., 2012b). Several miRNAs,
such as miR-15a (Li et al., 2012a), miR-139 (Cui et al., 2017),
miR-423-5p (Mahmoudi et al., 2015), miR-101b (Tanaka et al.,
2009), miR-486 (Li et al., 2015a), miR-152 (Wang et al., 2014),
miR-135 (Ji et al., 2015) and miR-138 (Li et al., 2012b), appear to
affect milk protein synthesis by regulating key genes of protein
synthesis pathways. Although the identification and
characterization of miRNA in bovine have been reported (Li
et al., 2012b; Le Guillou et al., 2014; Li et al., 2015b; Wang et al.,
2016), to our knowledge, only a few studies describe miRNA
profiles specific to the synthesis of milk protein in bovine. The
inspiration of many miRNA studies in milk protein synthesis in

bovine was extrapolated, some even from another biological
process that was unknown in mammary tissue before (Li
et al., 2015a; Cui et al., 2017). The real miRNA profiles
specific to milk protein traits are limited in bovine.

In this study, the hypothesis was that miRNAs have potential
roles in milk protein production of cattle. Using miRNA-seq and
RNA-seq, we investigated the miRNA profiles of mammary
glands from 12 Chinese Holstein cows with three high
(≥3.5%) and three low (≤3.0%) phenotypic values for milk
protein percentage in lactation and non-lactating period. We
believe that the results from the integrated transcriptome analyses
of miRNA, mRNA and GWAS signals will help us identify new
miRNA related to milk protein, further enhancing our
understanding of the mechanisms of milk protein synthesis.

MATERIALS AND METHODS

Ethics approval and consent to participate
All animal experiments were performed following the
recommendations in the Guide for the Care and Use of
Laboratory Animals of China. The study protocol was
approved by the College of Animal Science 98 and
Technology, China Agricultural University (Permit Number:
DK996).

Mammary Samples
The 12 multiparous (second to fourth parities) and healthy
Chinese Holstein cows with three too high and three low
phenotypic values for milk protein percentage peak and non-
lactation period were chosen from the Beijing Sanyuan Dairy
Farm Center (Beijing, China), which has been described in the
previous study (Li et al., 2016). In brief, the cows were maintained
in free stall housing and were fed a total mixed ration (TMR) with
ad libitum access to water. We defined a high milk protein
percentage group as those cows with 3.5% protein and the low
milk protein percentage group was composed of cows with 3.0%
protein throughout the previous lactation based on Dairy Herd
Improvement system (DHI) data (Supplementary Table S1). Six
cows were selected at approximately 79 days postpartum (peak
lactation) and the other six cows during the non-lactating period
(∼30 days before the expected calving).

All mammary samples were retrieved using a biopsy, which
was performed according to the method of with modifications.
Briefly, the skin of the selected biopsy site was first shaved and
disinfected with ethanol (75%). Then, the site was anesthetized
with SU-MIAN-XIN and injected subcutaneously with 1 ml of
procaine. A 1.5-cm incision was made in the skin at the midpoint
of a rear quarter of the mammary gland and connective tissue
using shears and tweezers, which was blunt-dissected away
exposing the secretory gland capsule. Mammary tissue biopsy
(∼500 mg) was then obtained and immediately placed in liquid
nitrogen and subsequently stored at −80°C until RNA isolation.
The suture was tied as the cannula was removed and pressure
applied to reduce the collection of blood under the skin.
Immediately after the experiment, all 12 cows received
antibiotic prophylaxis and anti-inflammatory therapy.
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RNA Extraction and Library Preparation for
Small RNA Sequencing
Total RNA was extracted using TRIzol reagent (Invitrogen,
Carlsbad, CA, United States). Twelve small RNA libraries
from RNA integrity and concentration were assessed using the
RNA Nano 6000 Assay Kit of the Bioanalyzer 2,100 System
(Agilent Technologies, CA, United States). All RNA samples
had an RNA integrity number of at least 7.5. Fifteen percent
agarose gels separated the total RNA to extract the small RNA
(18–30 nt). After precipitation by ethanol and centrifugal
enrichment of small RNA samples, the library was prepared
according to the method and process of Small RNA Sample
Preparation Kit (Illumina, RS-200-0048). The RNA
concentration of the library was measured using Qubit® RNA
Assay Kit in Qubit® 2.0 for preliminary quantification and then
diluted to 1 ng/μl. Insert size was assessed using the Agilent
Bioanalyzer 2100 system (Agilent Technologies, CA,
United States). After the insert size consistent with
expectations, the qualified insert size was accurate quantitative
using the Taqman fluorescence probe of AB Step One Plus Real-
Time PCR system (Library valid concentration >2 nM). The
qualified libraries were sequenced by an Illumina HiSeq 2500
platform and 50-bp single-end reads were generated.

Identification of Small RNAs
Quality trimming and adaptor removal of the Illumina reads were
carried out using Cutadapt 2.8 and Trimmomatic 0.36 (Martin,
2011; Bolger et al., 2014). After filtering for their size (18–30 nt),
the cleaned reads were categorized into unique tags and then
mapped to the bovine (ARS-UCD 1.2) reference genomes by
Bowtie 1.1.1 with one mismatch (Langmead, 2010). All the
downstream analyses were based on the mapped small RNA tags.

The matching sequences ranging from 18 to 30 nt were used to
align against mirbase 22.0 (http://www.mirbase.org/) to identify
known miRNAs by miRDeep2 with a quantifier. pl module
(Mackowiak, 2011). The sequences matching other small
RNAs, including rRNA, snRNA, repeat RNA, tRNA and
snoRNA, were compared with Bos taurus noncoding RNA
sequences in the Sanger RNA family database (Rfam 12.1)
using Infernal 1.1 (Griffiths-Jones et al., 2003; Nawrocki and
Eddy, 2013). Unannotated sequences combined with the known
miRNA annotation from Ovis aries, Capra hircus, Sus scrofa,Mus
musculus, and Homo sapiens were used to predict the novel
miRNAs according to the characteristic hairpin structure of
miRNA precursors by miRDeep2 core module miRDeep2. pl.
The miRNAs expressed in at least two samples were considered as
novel miRNAs. To make small RNA mapped to unique
annotation, we followed the priority rule: known miRNA >
rRNA > tRNA > snRNA > snoRNA > repeat > novel miRNA
> ta-siRNA.

Differential Expression Analysis
Differentially expressed (DE) miRNAs between high and low
milk protein percentage during peak and non-lactating periods
(i.e., HP vs. LP, HD vs. LD) were investigated using the DESeq2 R
package (Love et al., 2014). RNA-Seq read counts were modeled

by a generalized linear model considering the experimental
design, with two phenotypes (high milk protein percentage
and low milk protein percentage) and two stages of lactation
(peak lactation and non-lactating period). The model for the HP
vs. LP and HD vs. LD comparisons only included the phenotype
factor. The statistical power of this experimental design was
estimated using the SSPA R package (Iterson et al., 2013),
which reached 0.63 and 0.76 for the HP vs LP and HD vs.
LD, respectively (Supplementary Figure S1). MiRNAs with a
p-value <0.05 and log2 (fold change)| >0.8 were assigned as DE
(Zheng et al., 2015). The expression patterns of DE miRNAs
across four groups were performed using the k-mean method
(Ahmad and Dey, 2007). Using gap statistics, we determined that
k � 7 was the optimal choice for distinguishing these miRNAs
(Supplementary Figure S2).

MiRNA Function Prediction and Regulatory
Network Construction
We predicted the binding of DE miRNAs to the putative targets
using miRanda V3.3a with score ≥50 and energy ≤ −20 kcal/mol
(Enright et al., 2003). The predicted target genes were combined
with the previous transcriptome profiling data (Li et al., 2016).
We identified the correlations between miRNA and target genes
in expression using an in-house R script. Briefly, the expressions
of miRNA and their targets were sample-matched for all samples.
Then for each miRNA, Pearson correlation coefficients were
computed for all its targets; only targets significantly (p-value
<0.05) and inversely correlated with miRNAs in expression were
obtained. To evaluate the miRNA-gene regulatory network, GO
term and KEGG pathway enrichment analyses were used to
investigate putative functions of target genes using DAVID
(https://david.ncifcrf.gov/) (Huang et al., 2007). The statistical
significance of GO term or KEGG pathway enrichment was
measured by Fisher’s exact test with p-value <0.1.

Regulatory Network Construction
We selectively analyzed the DE miRNA-DE mRNA pairs that the
targets of DE miRNA were also in DE either HP vs. LP or HD vs.
LD. After the functional annotation, miRNAs and their targeting
genes and pathways were subjected to the network visualization
analysis. The Cytoscape 3.2.1 software was used to construct the
network (Smoot et al., 2011).

The Enrichment Analysis of Genome-Wide
Association Studies Signals
We obtained summary statistics of single-trait GWAS for five
milk production traits (milk yield, milk protein yield, milk fat
yield, milk protein percentage, and milk fat percentage), heifer
conception rate, and somatic cell score (SCS) in cattle, as
described previously (Jiang et al., 2019). Here we provided a
summary. The de-regressed PTAs (predicted transmitting
abilities) were used as a phenotype in all seven traits. The
imputation phase was from Run 5 of the 1000 Bull Genomes
Project (Daetwyler et al., 2014). After sequence marker
imputation and quality control, genotypes of 3,148,506

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7267063

Cai et al. Mammary microRNAs Affecting Milk Proteins

http://www.mirbase.org/
https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


sequence variants for 27,214 Holstein bulls were obtained. The
single-trait GWAS analyses were conducted using a mixed-model
approach by MMAP (https://mmap.github.io/).

To check whether the SNP effects were more enriched in
candidate feature than background regions, we applied a sum-
based method for GWAS signal enrichment analysis. The sum-
based method uses signals of all markers within a predefined
candidate feature. Briefly, we calculated the following summary
statistics for candidate feature:

Tsum � ∑mg

i�1 β
2 (1)

in which Tsum is the summary statistics for a tested feature group,
is the number of SNPs located in the candidate feature and β is the
estimate of marker effect obtained from the GWAS summary
statistics. Using Eq. 1, we calculated the Tsum for candidate
feature.

To perform the permutation test in background feature, we
first assumed the SNP markers of the GWAS summary statistics
located in background regions which were numbered as 1 . . . M.
The observed SNPs located in the prior feature wereN1,N2,N3,
. . ., Nn. Their test statistics were β2N1

, β2N2
, β2N3

, . . ., β2Nn
. We

chose number R within 1 ∼ M. Then, the observed SNP set was
shifted to the new rank order (P1, P2, P3, . . ., Pn) based on
random number R using the following formula:

Pi � {Ni + R, Ni + R≤M
Ni + R −M , Ni + R>M (2)

All test statistics were moved to the new positions, with the
remaining markers maintaining the original order. A new
summary statistic of a background region (β2P1

, β2P2
, β2P3

, . . .,
β2Pn

) was calculated based on the original position of the feature.
The permutation in background regions was repeated
10,000 times for each studied candidate feature and an
empirical p-value was then calculated based on one-tailed tests
of the proportion of randomly sampled summary statistics larger
than that observed using the following formula:

P � (Nover+1)/10001 (3)

where Nover represents the times of the permutated Tsum which
was found larger than that of the candidate feature Tsum. We
corrected empirical p values for the multiple testing using the
FDR method implemented in R (p.adjust function) and then
considered FDR < 0.05 as significant. To avoid bias by the
DGAT1 gene, we conducted the GWAS enrichment analysis by
excluding SNPs located in the DGAT1 gene or 1-Mb upstream/
downstream extended region of the DGAT1 gene. This sum-
based method for GWAS signal enrichment analyses using Perl
scripts is available (https://github.com/WentaoCai/GWAS_
enrichment).

RESULTS

Overview Over Small RNA Sequencing
To study miRNAs in milk protein synthesis’ complex process, we
profiled miRNA expression differences between the high milk

protein percentage and low milk protein percentage groups in
both lactation and non-lactating period using small RNA
sequencing. After trimming adaptor sequences and removing
contaminated reads, an average of 23.0 million clean reads ranges
from 22.4 to 23.9 million were generated. Then, we categorized
them into unique tags; an average of 1.1 million unique tags was
obtained (Supplementary Table S2). We separately mapped
clean reads and unique tags to the bovine (ARS-UCD1.2)
reference genomes. The mapping rates were about 90.0 and
74.4% using total clean reads and unique tags, respectively
(Supplementary Table S3). The majority of the mapped reads
ranged from 21 to 23 nt in length and the 22-nt small RNA was
the most abundant (Figure 1A). As expected, most reads were
observed to match with the 3′-untranslated region (UTR) and 5′-
UTR allocating miRNAs (Figure 1B). These results confirm that
the small RNA sequencing process is reliable in our study. The
residual fraction of mapped reads not corresponding to miRNAs
was distributed among a miscellanea of annotated regions,
including rRNAs (14.76%), tRNAs (3.48%), snoRNAs (0.38%),
snRNAs (0.78%) and repeats (0.04%) (Figure 1C).

Identification of Known and Novel miRNAs
We identified 388 known miRNAs expressed in at least two
samples, which accounted for 38.7% of all known bovine miRNAs
deposited in miRbase 22.0 (transcripts per million, TPM >0.5).
Despite differences in sample characteristics, samples from the
same group clustered together based on their miRNA expression
profiles (Figure 2A). The first principal component (PC1),
explaining the most variance in miRNA expression, separates
the samples by lactating stage. PC2 separates the samples by the
phenotype of milk protein percentage. We also compared the
miRNAs with the top greatest expression (top 20) in the
mammary tissue at lactation and non-lactating periods
(Supplementary Figure S3). The top expressed miRNAs in
both of the two stages were the same except for miR-142 and
miR-126, which were explicitly expressed higher in lactation and
non-lactating period, respectively. The highest expression of
miRNAs in lactation was miR-148a, while miR-143 was the
most highly expressed in the non-lactating period. In addition,
we characterized 297 novel miRNAs expressed in at least two
samples, including 172 and 188 novel miRNAs identified in
lactation and non-lactating period. Interestingly, we found 17
novel miRNAs expressed in all 12 samples (Supplementary
Table S4).

Differentially Expressed miRNA Within
Extreme Phenotypes in Lactation and
Non-lactating Period
We identified 28 DE miRNAs between HP and LP groups in
lactation, including 11 upregulated and 17 downregulated
miRNAs in the LP group relative to the HP group (p-value
<0.05, |log2 (fold change)| >0.8, as shown in Figures 2B,C;
Supplementary Table S5A). A total of 52 miRNAs were DE
between the HD and LD groups in the non-lactating period,
including 22 upregulated and 30 downregulated miRNAs in the
LD group relative to the HD group (Supplementary Table S5B).
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Interestingly, we found that 14 DE miRNAs exhibited common
expression level differences across the two comparison groups
(Table 1; Figure 2D). The clustering heat map of all 66 DE
miRNA expression profiles from HP vs. LP or HD vs. LD is
shown in Figure 3A.

Target Gene Prediction of Differentially
Expressed miRNAs
To better understand the function of DE miRNAs, putative
target genes were predicted using the 3′-UTR sequence of
mRNA by the miRanda software. We predicted 9,156 target
mRNAs for the 28 DE miRNAs in HP vs LP and 10,045 target
mRNAs for the 52 DE miRNAs in HD vs. LD. To identify
target genes with high confidence, we performed correlation
analysis between DE miRNAs and their target genes in the
expression levels in the 12 mammary samples. The expression
of target genes from the 12 similar samples was quantified by

RNA-seq mentioned in our previous study (Li et al., 2016). We
detected 28 DE miRNAs inversely correlated with 1,685
targets resulting in 2,468 miRNA-mRNA pairs for HP vs.
LP and 52 DE miRNAs inversely correlated with 2,280 targets
resulting in 3,697 miRNA-mRNA pairs for HD vs. LD
(Supplementary Tables S6A,B). For the 14 common DE
miRNAs across HP vs. LP and HD vs. LD, we found 914
inversely correlated targets resulting in 1,210 miRNA-mRNA
pairs (p-value <0.05, Supplementary Table S6C).

Functional Annotation of Differentially
Expressed miRNAs
To functionally classify the DE miRNAs, GO and KEGG
enrichment analyses were performed for DE miRNAs’
confident target genes in lactation and non-lactating period,
respectively. Functional annotation showed that these 914
target genes of common DE miRNAs were significantly

FIGURE 1 | Mapping statistics. (A) Length distribution of the mapped reads across 12 libraries. (B) The genome distributions of the mapped reads for all 12
samples. (C) The relative abundance of different classes of small RNAs in the total reads was successfully mapped to the bovine genome.
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FIGURE 2 | Differentially expressed miRNAs between high and low milk protein percentage. (A) The principal component analysis (PCA) scatter plot of miRNA
expression in the 12 samples. PCA plot showing variance of the three biological replicates of each of the groups. The percentages on each axis represent the
percentages of variation explained by the principal components. (B) Volcano plot displaying differentially expressed miRNAs of HP vs. LP. The pink and blue dots
represent the significantly upregulated and down-regulated miRNA; the gray dots represent miRNAs whose expression levels do not reach statistical significance.
(C) Volcano plot displaying differentially expressedmiRNAs of HD vs. LD. (D) Venn diagram depicting commonly and uniquely DEmiRNAs detected by HP vs. LP and HD
vs. LD.

TABLE 1 | The differentially expressed miRNAs between high and low milk protein content in lactation and non-lactation.

Group DE miRNAs number DE miRNA list

HP vs LP 28 Up: let-7a-3p, let-7f, miR-150, miR-204, miR-2478, miR-320a, miR-326, miR-340, miR-423-3p, miR-423-5p, miR-92b
Down: miR-143, miR-144, miR-146a, miR-146b, miR-152, miR-16a, miR-185, miR-24–3p, miR-2904, miR-34a, miR-
374a, miR-379, miR-382, miR-411c-3p, miR-425–3p, miR-451, miR-655

HD vs LD 52 Up: miR-1185, miR-1296, miR-132, miR-147, miR-149-5p, miR-150, miR-199a-5p, miR-20b, miR-2411-3p, miR-2478,
miR-2887, miR-2904, miR-296-3p, miR-326, miR-331-3p, miR-429, miR-484, miR-494, miR-495, miR-505, miR-665,
miR-885
Down: miR-1, miR-100, miR-10a, miR-10b, miR-1271, miR-1388–5p, miR-141, miR-143, miR-144, miR-146a, miR-146b,
miR-152, miR-16a, miR-185, miR-192, miR-195, miR-196a, miR-196b, miR-24–3p, miR-26a, miR-26b, miR-27b, miR-
30a-5p, miR-374a, miR-379, miR-409a, miR-486, miR-6524, miR-99a-5p, miR-99b

Common 14 miR-143, miR-144, miR-146a, miR-146b, miR-150, miR-152, miR-16a, miR-185, miR-24–3p, miR-2478, miR-2904, miR-
326, miR-374a, miR-379
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enriched in 60 pathways and 123 GO terms. Many pathways were
associated with protein synthesis, insulin secretion, mTOR
signaling pathway, estrogen signaling pathway, insulin
signaling pathway and GnRH signaling pathway. Many GO
terms were involved in protein synthesis, such as protein
transport, trans-Golgi network, metabolic process and protein
serine/threonine kinase activity (Supplementary Table S7A).

For specifically DE miRNAs in lactation, their target genes
were enriched in 18 pathways and 110 GO terms. The pathways
were involved in the mTOR signaling pathway, TNF signaling
pathway, leukocyte transendothelial migration and MAPK
signaling pathway. The functional terms involved in protein
synthesis were noticed for positive regulation of transcription,
post-Golgi vesicle-mediated transport, mRNA 3′-UTR binding
and ER to Golgi transport vesicle (Supplementary Table S7B).
For specifically DE miRNAs in the non-lactating period, their
target genes were enriched in 37 pathways and 205 GO terms.
Several target genes were observed to be involved in the PI3K-Akt
signaling pathway, metabolic pathways and mTOR signaling
pathway. Their functional terms were associated with protein
transport, transcription, vasculogenesis and positive regulation of
gene silencing by miRNA (Supplementary Table S7C). All
enriched KEGG pathways and the top 10 significant GO terms
are shown in Figure 3B.

Trends in DE miRNAs in lactation or non-lactating period
were examined using k-means clustering, which revealed that
66 DE miRNAs in either HP vs. LP or HD vs. LD could be
divided into seven distinct clusters with differentially
expression level pattern changes (Figure 4). Most clusters
(such as clusters 1, 2, 5 and 7) revealed that the expression

change pattern of miRNAs in HP vs LP was similar to HD vs
LD. Functional annotation reveals that these 26 miRNAs with
similar expression patterns were involved in a variety of
biological processes, such as biosynthesis of antibiotics,
metabolic pathways and TNF signaling pathway
(Supplementary Table S8). Clusters 3 and 4 indicated that
some miRNAs were stably expressed between HP and
LP, while they were dynamically changed between HD
and LD.

Regulatory Networks for Differentially
miRNAs-mRNAs
To better understand the relationship between miRNAs and
milk protein traits, we selectively analyzed the 214 miRNA-
mRNA pairs. Both miRNAs and their targets were DE in HP
vs LP or HD vs LD. We found that 22 DE miRNAs potentially
regulated 24 DEGs which were involved in milk protein
synthesis (Table 2). For example, PSPH, as a
phosphoserine phosphatase that functions as
phosphotransferase that is responsible for the third and last
steps in L-serine formation, was involved in the biosynthesis
of amino acids, metabolic pathways and glycine, serine and
threonine metabolism. The expression of miR-1 was
negatively correlated with PSPH. FABP3, targeted by miR-
146b and miR-185, influences fat and protein content in cattle
(Kulig et al., 2013). Additional genes are listed in Table 2. The
networks of candidate target genes involved in milk
protein synthesis through various pathways are shown in
Figure 5.

FIGURE 3 | The functional annotation of DE miRNAs. (A,B) Cluster analysis of DE miRNAs in HP vs. LP and HD vs. LD based on their standardized expression by
z-score. Red indicates higher expression and blue shows lower expression. (C) Predominant function categories targeted by common DEmiRNAs, lactation-specific DE
miRNAs and non-lactating-specific DE miRNAs. More significant values and shapes were suggesting higher relevance and higher enriched fold, respectively. The red
labels represent the milk protein-associated pathways.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7267067

Cai et al. Mammary microRNAs Affecting Milk Proteins

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Differentially Expressed miRNA Genes are
EnrichedWith GWAS Signals of Milk Protein
Traits
To assess whether DE miRNAs were associated with GWAS
signals, we applied enrichment analysis from GWAS for all
correlated targets of DE miRNAs across five milk traits (milk
yield, milk protein yield, milk fat yield, milk protein percentage
and milk fat percentage), one reproduction trait (heifer
conception rate) and one health trait (somatic cell sore, SCS).
Since very few imputed SNPs were observed within the miRNA
precursor regions due to their short lengths, the analysis included
the flanking ±50 kb sequences of DE miRNA precursors to
capture proximal SNPs in the regulatory regions. The
background regions were all miRNA precursors in miRbase
22.0 and their flanking ±50-kb regions. We did not detect
significant enrichments for milk production in both HP vs LP
and HD vs LD (Supplementary Table S9a). However, after
removing 1,737 SNPs close to DGAT1, significant (FDR <
0.05) enrichments were observed for the milk protein
percentage trait in DE miRNA of HP vs LP, while the GWAS
signals of the protein trait were enriched in DEmiRNAs of HD vs
LD (FDR < 0.1, Table 3). Next, the DE miRNAs were separated
into upregulated and downregulated miRNAs based on their

log2FC >0 (up) or <0 (down) across comparison groups. The
milk protein GWAS signals were significantly more enriched in
upregulated miRNAs than in downregulated miRNAs in HP vs
LP, while the opposite results were found in HD vs LD
(Supplementary Table S9B). These results suggested that the
milk protein variations in the traits may be associated with the DE
miRNA genes.

Target Genes of Differentially Expressed
miRNAs are EnrichedWith GWAS Signals of
Milk Protein Traits
To investigate the joint effect of genetic variations in miRNA
targets on milk production traits in dairy cattle, we conducted the
GWAS enrichment analysis using inversely and significantly
correlated targets of DE miRNA. Only SNPs located in targets
or in the 5 kb extended region of targets were included in
calculating the squares of their effects. For comparison, 10,000
random SNP sets located in all annotated genes (Ensemble 95) or
their 5 kb extended areas were generated. As shown in Figure 5A,
the correlated targets of DE miRNAs were enriched with GWAS
signals of the milk protein trait (FDR < 0.05, Supplementary
Table S10A). After correcting the DGAT1 bias, significant (FDR

FIGURE 4 | The expression pattern of DE miRNAs using k-means clustering. The 66 DE miRNAs in either HP vs. LP or HD vs. LD could be divided into seven
distinct clusters with differentially expression level pattern changes. The y-axis represents the relative expression using mean normalization. Most clusters (such as
clusters 1, 2, 5 and 7) revealed that the expression change pattern of miRNAs in HP vs. LP was similar to HD vs. LD.

Frontiers in Genetics | www.frontiersin.org October 2021 | Volume 12 | Article 7267068

Cai et al. Mammary microRNAs Affecting Milk Proteins

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


< 0.05) enrichments were observed for all five milk production
traits in HP vs LP. For the targets of DE miRNAs in HD vs LD,
significant enrichments were kept for milk protein and SCS traits.
Similar with the GWAS enrichment analysis of DEmiRNA genes,
we also found that the milk protein GWAS signals were
significantly more enriched in targets of upregulated miRNAs
than in targets of downregulated miRNAs in HP vs LP, while the
opposite results were found in HD vs LD (Supplementary Table
S10B). In addition, we did not find any enrichments in either HP
vs LP or HD vs LD for the GWAS signals of the heifer conception
rate trait (Supplementary Table S10B).

DISCUSSION

In this study, we obtained a comprehensive landscape of miRNAs
associated with milk protein in the context of miRNA profiles
across 12 mammary tissue samples during two different stages of
lactation. Importantly, we identified candidate miRNAs and
networks related to milk protein by integrating miRNAs,
transcriptome and GWAS signals. These findings provide
valuable insights for lactogenesis and yield a suite of molecular
breeding resources to optimize the content of milk proteins.

There were 388 known miRNAs expressed in our study,
accounting for 38.7% of all known bovine miRNAs deposited
in miRbase 22.0. A total of 297 novel miRNAs were detected in
this study, which will considerably increase bovine miRNAs’

repertoire. A weakness of this study is the lack of visual
inspection for the biopsy sample, but we found that the top
expressed miRNAs of our mammary biopsy sample were similar
with those of previous studies (Jin et al., 2014; Billa et al., 2019).
The differentially regulated expression patterns of miRNAs in
mammary gland tissue underscore that the synthesis and
secretion of milk protein involve a high level of
posttranscriptional regulation of gene expression by miRNAs.
The 14 DE miRNAs between high and low milk protein
percentages across both lactation and non-lactating periods
suggest that these miRNAs may partially regulate the
functions of the same biological or physiological processes in
the two periods.

After combining the target prediction with expression
correlation analysis, we matched 1,685 inversely correlated
targets that resulted in 2,468 miRNA-mRNA pairs for HP vs
LP and 2,280 inversely correlated targets that resulted in
3,697 miRNA-mRNA pairs for HD vs LD. Functional
annotation showed that these inversely correlated targets of
common DE miRNAs across two stages were associated with
mTOR signaling pathway, estrogen signaling pathway, insulin
signaling pathway, and GnRH signaling pathway, implying that
these miRNAs could be critical to factors that affect milk quality
and yield. It should be noted that some of the common DE
miRNAs in this study have been previously suggested to play
essential roles in milk protein synthesis. For example, miR-152
negatively regulates DNA methyltransferase 1 (DNMT1),

TABLE 2 | The differentially expressed miRNAs with their potential target genes related to milk protein synthesis.

Group miRNAs log2 (fold
change)

p value padj Targets

HP vs LP let-7a-3p 0.90 0.0351 0.2489 BAMBI, COL4A5, DNAJC6
miR-150 1.27 0.0401 0.2684 MYB
miR-144 −1.84 0.0058 0.0985 MYB
miR-16a −0.94 0.0422 0.2706 MYB
miR-2478 0.94 0.0008 0.0351 MYB
miR-146a −1.35 0.0002 0.0094 ALOX15, FABP3
miR-146b −1.61 4.15E-07 0.0001 ALOX15, FABP3
miR-2478 0.94 0.0008 0.0351 ME3, MYB
miR-2904 −0.84 0.0203 0.1910 DNAJC6
miR-374a −0.94 0.0053 0.0985 MYB, DUSP13

HD vs LD miR-1 −2.94 0.0094 NA PSPH
miR-1296 0.81 0.0443 0.1589 CCNB2
miR-141 −1.51 0.0001 0.0012 SMAD9, ITGA8, ATP6V0D2, MAD2L1
miR-195 −1.00 0.0056 0.0329 CCNB2
miR-16a −1.05 0.0016 0.0113 CCNB2
miR-1271 −1.36 0.0017 0.0123 COL2A1
miR-152 −1.28 0.0005 0.0048 COL2A1
miR-196b −0.83 0.0172 0.0808 COL2A1
miR-196a −1.38 4.89E-06 0.0001 COL2A1
miR-2887 2.08 0.0001 0.0018 ANGPT4
miR-429 1.05 0.0002 0.0025 SPP1
miR-505 0.99 0.0104 0.0529 ACSBG1
miR-885 2.14 0.0355 NA NR1D1
miR-144 −3.43 0.0007 0.0060 ASF1B, SPP1, CDK1
miR-146a −1.97 0.0000 0.0001 FABP3
miR-146b −1.83 3.37E-08 4.04E-06 FABP4
miR-185 −1.79 3.42E-06 0.0001 SPP1, FABP3
miR-2478 1.56 0.0001 0.0014 KCNJ2
miR-2904 1.31 0.0470 0.1612 PODN, SFRP1
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decreasing the global DNA methylation and increasing the
expression of serine/threonine protein kinase Akt (AKT) and
peroxisome proliferator-activated receptor gamma (PPARc)
(Wang et al., 2014). These target genes of DE miRNAs,
specifically for lactation, were involved in positive
transcription, mRNA 3′-UTR binding, and ER to the Golgi
transport vesicle. Also, miR-423-5p has been shown to
regulate AMPK-gamma1 (AMPKc1) negatively. The 3′-UTR
SNP of AMPKc1 was influential on the milk and protein yield
traits. This mutation also changed target mRNA base-pairing to

miR-423-5p, which implied that miR-423-5p plays an important
role in milk metabolism pathways (Mahmoudi et al., 2015). These
target genes of DE miRNAs, especially for the non-lactating
period, were also associated with some milk protein
metabolisms, such as PI3K-Akt signaling pathway, metabolic
pathways and mTOR signaling pathway. For example, miR-
486 directly downregulates PTEN gene expression, altering
the expression of downstream genes, such as AKT and mTOR.
miR-486 as a downstream regulator of PTEN is required for the
development of the cow mammary gland (Li et al., 2015a).

FIGURE 5 | The functional network of candidate miRNAs, mRNAs, and pathways. The blue triangles, green circles, and pink diamonds represent miRNAs, mRNAs
and pathways, respectively. The dashed and solid lines represent the lactating and non-lactating period networks, respectively.

TABLE 3 | The enrichment results of GWAS signals for the DE miRNA precursors and targets of DE miRNAs.

Traits DE miRNA precursors Targets of DE miRNAs

HP vs. LP HD vs. LD HP vs. LP HD vs. LD

p-value FDR p-value FDR p-value FDR p-value FDR

Milk 0.149 0.260 0.191 0.268 0.007 0.024* 0.066 0.093
Fat 0.244 0.342 0.143 0.250 0.026 0.045* 0.063 0.093
Fat percentage 0.086 0.200 0.139 0.250 0.013 0.030* 0.199 0.232
Protein 0.064 0.200 0.011 0.080 0.002 0.014* 0.002 0.014*
Protein percentage 0.005 0.033* 0.289 0.289 0.043 0.060 0.061 0.093
SCS 0.443 0.516 0.110 0.250 0.076 0.089 0.004 0.019*
Heifer_Conc_Rate 0.649 0.649 0.244 0.285 0.584 0.584 0.642 0.642

The 1,737 SNPs close to DGAT1 genes were discarded in GWAS enrichment analysis. The significant (<0.05) false discovery rate (FDR) correction of p-value were marked with star
symbols and bold values.
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The DE miRNA-DEG regulatory networks provided a
comprehensive profile for understanding the mechanism of
milk protein synthesis in cows. Twenty-two DE miRNAs
which potentially regulated 24 DEGs associated with milk
protein metabolism were identified. MiR-1 is a known
suppressor involved in PI3K-AKT, mTOR, and NFκB
pathways (Safa et al., 2020). miR-1 controls cholesterol
synthesis and regulates mammary proliferation by targeting
IGF1 and TBX3 in the sow’s mammary gland (Lin et al.,
2020). Here, we found that the expression of miR-1 was
negatively correlated with PSPH, which is an insulin-
responsive gene in bovine mammary that is involved in
protein synthesis (Menzies et al., 2009). Besides, proteins
encoded by PSPH are engaged in serine synthesis (Brearley
et al., 2019; Xuan et al., 2020). miR-146b was upregulated in
the mammary glands of the HP group, which was reported to
be involved mainly in leukemia, epidermal growth factor receptor
(EGFR) signaling, MAPK, and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling pathways
(Mathews et al., 2004; Taganov et al., 2006; Xiang et al., 2014).
Moreover, miR-146b was associated with mammary gland
development and stem cell activity (Wicik et al., 2016). The
expression of FABP3 was negatively correlated with miR-146b.
SNPs within FABP3 have been reported to influence fat and protein
content in cattle (Kulig et al., 2013). These findings indicated that
the expression change in DEGs and DE miRNAs within networks
might contribute to milk protein metabolism in cows.

We integrated DE miRNA genes and their correlated targets
with GWAS signals of milk production traits using the sum-based
marker-set test method, which has been demonstrated to have
higher power or at least equal to most commonly used marker-set
test methods in polygenic traits (Sorensen et al., 2017; Fang et al.,
2018). Our analysis revealed significant enrichment of milk protein
GWAS signals in proximity to the precursors and target genes of
DE miRNAs, especially to DEmiRNAs in lactation, which implied
that the DE miRNAs of lactation were more associated with milk
protein traits. The GWAS signals of heifer conception rate trait
were not enriched in targets of milk protein-associated miRNAs,
which could be explained by negative genetic correlations between
milk production traits and reproduction traits (Strucken et al.,
2012; Tiezzi et al., 2012). Previous studies have reported that the
DEGs in non-lactating periods could help the mammary tissue
prevent issues with inflammation and udder disorders (Li et al.,
2016). Of interest, we found that the DE miRNAs of the non-
lactating period were related to the SCS trait. The differences in
enrichments of up/downregulated miRNAs between lactation and
non-lactating period indicated that the miRNAs might have
different patterns of regulation involved in milk-related activities.

CONCLUSION

This study integrated small RNA sequencing with RNA-seq in the
mammary gland to detect genes/pathways associated with milk
protein synthesis in cows. We provide genomic evidence that DE
miRNA genes in lactation are significantly enriched with GWAS
signals for milk protein percentage traits and that enrichments

within DEmiRNA targets are significantly higher than in random
gene sets for the majority of milk production traits. Responsive
miRNAs in the mammary gland played roles in the regulation of
the milk protein synthesis and the dysregulation of overall
metabolism, providing novel milk-biological insights into the
genetic mechanisms. The results should further enhance our
understanding of miRNA expression profiles associated with
milk protein concentration, allowing us to develop more
effective breeding strategies.
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Supplementary Figure 1 | The statistical power of this experimental design. The
points with green and red color represent the statistical power for HP vs LP and HD
vs LD, respectively. When sample size is 3, the statistical power reached 0.63 and
0.76 for the HP vs. LP and HD vs. LD, respectively.

Supplementary Figure 2 | The optimization of the k-mean using gap statistics.
We determined that k � 7 was the optimal choice for distinguishing these DE
miRNAs.

Supplementary Figure 3 | Expression of the top 20 highest miRNAs in lactation
and non-lactation period.

Supplementary Figure 4 | The enrichment of GWAS signals for up-regulated and
down-regulated DE miRNAs in HP vs. LP and HD vs. LD. (A) The GWAS enrichment
for DE miRNA precursors. The dark green and gold color represent the p-values of
permutation tests for the up-regulated and down-regulated DE miRNAs,
respectively. (B) The GWAS enrichment for targets of DE miRNAs.
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