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A large-scale metabolomics study to harness
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mechanisms in ryegrass
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Perennial ryegrass (Lolium perenne) is integral to temperate pastoral agriculture, which

contributes most of the milk and meat production worldwide. Chemical profiles and diversity

of ryegrass offer several opportunities to harness specific traits and elucidate underlying

biological mechanisms for forage improvement. We conducted a large-scale metabolomics

study of perennial ryegrass comprising 715 genotypes, representing 118 populations from 21

countries. Liquid/gas chromatography–mass spectrometry based targeted and non-targeted

techniques were used to analyse fructan oligosaccharides, lipids, fatty acid methyl esters,

polar and semi-polar compounds. Fructan diversity across all genotypes was evaluated, high-

and low-sugar groups identified, and fructan accumulation mechanisms explored. Metabo-

lites differentiating the two groups were characterised, modules and pathways they represent

deduced, and finally, visualisation and interpretation provided in a biological context. We also

demonstrate a workflow for large-scale metabolomics studies from raw data through to

statistical and pathway analysis. Raw files and metadata are available at the MetaboLights

database.

https://doi.org/10.1038/s42003-019-0289-6 OPEN

1 AgResearch Limited, Grasslands Research Centre, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand. 2Present address: Institute of
Agriculture and Environment, Massey University, Palmerston North, New Zealand. 3Present address: PepsiCo, Cork, Ireland. 4Present address: Feed and
Forage Biosciences, International Livestock Research Institute, PO Box 5689, Addis Ababa, Ethiopia. Deceased: Jan Huege. Correspondence and requests for
materials should be addressed to A.K.S. (email: Arvind.Subbaraj@agresearch.co.nz)

COMMUNICATIONS BIOLOGY |            (2019) 2:87 | https://doi.org/10.1038/s42003-019-0289-6 | www.nature.com/commsbio 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-1136-4024
http://orcid.org/0000-0002-1136-4024
http://orcid.org/0000-0002-1136-4024
http://orcid.org/0000-0002-1136-4024
http://orcid.org/0000-0002-1136-4024
mailto:Arvind.Subbaraj@agresearch.co.nz
www.nature.com/commsbio
www.nature.com/commsbio


Perennial ryegrass (Lolium perenne L. Family: Poaceae)1

supports most of the milk and meat production world-
wide2. Geno-phenotypic characteristics of ryegrass are

therefore critical in determining feed quality for the animal3,
degradation in the rumen4 and livestock production responses5–7.
Consequently, breeding techniques8–11 are employed to produce
cultivars with desirable traits such as high water soluble carbo-
hydrate content, neutral detergent fibre, crude protein content
and digestibility, in addition to forage yield, seed yield, pest and
disease resistance12,13. Of special interest and relevance to this
study are the high-sugar cultivars, which have elevated levels of
fructans. Fructans are the major storage carbohydrate in ryegrass,
and are made up of varying degrees and complexities of linear or
branched fructose polymers14, denoted by the degree of poly-
merisation (DP). DP directs fructan accumulation and thereby
the total sugar content of these high-sugar cultivars15. High-sugar
cultivars are proposed to increase milk and meat production
through enhanced protein utilisation by ruminants16. In addition,
lipid composition of ryegrass affects quality of animal products12,
and secondary metabolites possess anti-parasitic activity in
ruminants17. We hypothesised that chemical diversity of ryegrass,
especially fructan content, offers opportunities to harness varia-
tion in these traits into cultivars for improved ruminant perfor-
mance and novel product characteristics and, exploring
underlying biochemical mechanisms of high-sugar grasses, in
addition to a better mechanistic understanding of fructan accu-
mulation, will also help decipher major changes in primary and
secondary metabolism.

Metabolomics18,19 provides a snapshot of chemical diversity,
enabling metabotypic classification of genotypes20–22 and in
conjunction with other –omics sciences23, a better understanding
of biological mechanisms18. The advent of advanced bio/che-
minformatic tools and techniques24 have since propelled meta-
bolomics towards system-level evaluations via data-fusion25 and
pathway mapping26. We conducted a mass spectrometry based
metabolomics study of 5 clonal replicates of 715 ryegrass geno-
types (3575 plants), representing 118 populations from 21
countries (Supplementary Figure 1). Fructans, fatty acid methyl
esters (FAMEs), lipids, polar and semi-polar compounds were
analysed using ultra-high-performance liquid chromatography
(U)HPLC and gas chromatography–mass spectrometry (GC–MS)
systems. The objectives of the current study were to verify and
demonstrate quality control measures undertaken for big meta-
bolomics data, evaluate diversity of ryegrass genotypes for fruc-
tan/sugar content, and thereby identify high- and low-sugar plant
genotypes under New Zealand climatic conditions, determine the
role of DP of fructans in directing total sugar content, and finally
elucidate potential metabolic variation between high- and low-
sugar grasses in the context of data from other analytical streams
(lipids, FAMEs, polar and semi-polar compounds).

Constant monitoring and post-run evaluation of quality con-
trol parameters accounted for technical variation in samples, and
where these parameters were not met, batches were re-run fol-
lowing instrument calibration. The quality control procedures
adopted here were therefore appropriate for large-scale metabo-
lomics studies, rendering reliable data for downstream processing.
The sum of low- (3–5), mid- (10–12) and high- (18–20) DP
fructans was used as a measure of total sugar content, and of the
715 genotypes surveyed, 39 high- and 31 low-sugar genotypes
were identified. High-DP fructans contributed significantly more
to the total sugar content, measured as hexose units, in high-sugar
grasses. A negative correlation between high- and low-DP fruc-
tans in the high-sugar group, further identified 11 genotypes
which had greater high-DP content than a reference high-sugar
genotype (Aberdart). These results, in addition to immediate
inclusion in breeding exercises, offer a better understanding of

fructan accumulation in high-sugar grasses, and subsequently
ample scope for genetic improvement. Between high- and low-
sugar grasses, major differences in primary metabolism were
observed, with most lipid classes and fatty acids significantly
higher in the low-sugar group. Differences in secondary meta-
bolism were also noticed, where high-sugar grasses recorded
lower concentrations of flavonoids and lignins. Identification of
compounds and mapping them to metabolic pathways, success-
fully led to visualisation of a biochemical snapshot of high-sugar
grasses.

Results
Quality control monitoring and evaluation. In large-scale
metabolomics studies, demonstration of quality control mon-
itoring and verification of quality control parameters is a pre-
requisite which accounts for technical variation, and affects data
quality and thereby subsequent interpretation. Drifts in mass
accuracy and retention time of the internal standard in quality
control samples indicates technical variation between batches of
samples. Here, drifts in mass accuracy and retention times of the
internal standard 2′,7′-Dichlorofluorescein in quality control
samples of the semi-polar stream (positive ionisation mode),
across all 36 batches was demonstrated (Supplementary Figure 2).
Mass accuracy was within the ±5 ppm threshold (Supplementary
Figure 2A), and retention time drifts were within ±0.2 min from
the median (Supplementary Figure 2B). Quality control mon-
itoring for the lipid and polar streams also generated identical
results.

A post-run evaluation of run-order effects was also conducted
immediately after each batch was completed. Supplementary
Figure 3 shows an exemplar principal component analysis (PCA)
of a single batch of samples classified based on run-order, where
Supplementary Figure 3A shows no significant run-order effect,
while Supplementary Figure 3B shows a notable run-order effect.
In this case, the batch representing Supplementary Figure 3A was
proceeded to the super batch, whereas that representing
Supplementary Figure 3B was re-run. Since quality control
samples were not representative of the sample set, they clustered
separately from the samples.

Chemical diversity. Fructan content: A typical total ion chro-
matogram of a sample run for fructan measurement, depicting
low (3–5), mid (10–12) and high (18–20) DP ranges, is shown in
Supplementary Figure 4. These ranges were used to measure the
total sugar content of the sample. Samples in a single batch for
fructan/sugar estimates before (Supplementary Figure 5A) and
after (Supplementary Figure 5B) normalisation by a linear trend
are shown in Supplementary Figure 5. Likewise, estimates
between all 36 batches of samples, before (Supplementary Fig-
ure 6A) and after (Supplementary Figure 6B) normalisation for
batch-effects, are shown in Supplementary Figure 6. The resultant
data matrix, obtained after these normalisation procedures was
used for classification of genotypes based on total sugar content.

Normal distribution of ryegrass genotypic diversity based on
total sugar content is shown in Fig. 1. Of the top 10%, only
genotypes that fulfilled our two-tier criterion of having a
minimum of three replicates in the top 10% of the whole sample
set (3575), were classified as the high-sugar group (n=
133 samples; p= 0.0001; Tukey’s HSD). Based on these
conditions, the high-sugar group comprised 39 genotypes, of
which 19 had genetic lineage to New Zealand (Supplementary
Table 1). As anticipated, genotypes of the high-sugar grasses
Aberdart and Aurora, bred in the UK27, were present in this
group. The remainder of this pool was made up of genotypes
from Netherlands, Denmark, Australia, Slovakia, Tunisia and
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Germany (Supplementary Table 1). Likewise, the bottom 10%,
low-sugar group (n= 106), comprised 31 genotypes, with 14
being of New Zealand origin and the remainder of genotypes
from Tunisia (Supplementary Table 1).

Fructan accumulation in high- vs. low-sugar grasses: Fructan
accumulation was significantly higher (p= 0.0001; Tukey’s HSD)
in high-sugar grasses across all DPs (Fig. 2a). However, within the
high-sugar group, the contribution of high- and mid-DPs to the
total sugar content was more prominent than low-DP (Fig. 2a). A
negative correlation between high- and low-DP was evident
within high-sugar genotypes (Fig. 2b), which when extended to
the 39 genotypes, revealed the ones with higher high- to low-DP
ratios (Fig. 2c). Provided genotypes with high-DP levels are
preferred within the high-sugar group, 11 genotypes with greater
high-DP content than the current standard for high-sugar
genotypes (Aberdart) were identified (Fig. 2c).

Polar and semi-polar compounds: Following data processing,
the final data matrices from the HILIC streams had 222 (positive)
and 198 (negative), and those from the C18 streams had 175
(positive) and 152 (negative) metabolic features, respectively.
Data for high- and low-sugar groups were compared, and of the
total 747 features, 293 were significantly different between the two
groups, based on t tests with a false-discovery rate cut-off of p <
0.05 (Fig. 3; Supplementary Data 1). Multivariate analysis with
PCA for each analytical stream, failed to discriminate the two
groups (Supplementary Figure 7).

An overview of the discriminating features (Fig. 3) showed that
polar compounds from HILIC positive and negative-ionisation
streams, indicative of primary metabolism, demonstrated max-
imum variation between the high- and low-sugar groups,
compared to semi-polar compounds from C18 positive- and
negative-ionisation streams, largely representative of secondary
metabolism. The HILIC positive stream accounted for 104 sig-
nificantly different features, 35 of which were higher in the high-
sugar group (Fig. 3). The HILIC negative stream revealed

64 significantly different features, of which 29 were higher in
the high-sugar group (Fig. 3). C18 positive and negative streams
had 80 and 45 discriminating features, of which 29 and 16
respectively, were significantly higher in the high-sugar group
(Fig. 3).

Lipids: Major lipid classes identified by the non-targeted
lipidomics method (Fig. 4a) and the targeted FAMEs method
(Fig. 4b) are shown in Fig. 4. Taken together, concentrations of
phosphatidylserine (p= 0.005), phosphatidylglycerol (p=
0.0001), phosphatidylcholine (p= 0.001), monogalactosyldiacyl-
glycerol (p= 0.004), sulfoquinovosyldiacylglycerol (p= 0.0001),
digalactosyldiacylglycerol (p= 0.009), diglycerides (p= 0.0001)
and fatty acids C16:0 (p= 0.0001), C16:1 (p= 0.0001), C18:1 (p
= 0.0001), C18:2 (p= 0.0001) and C18:3 (p= 0.0001) were
higher in the low-sugar group (Fig. 4; Tukey’s HSD). Lysopho-
sphatidylethanolamine, lysophosphatidylglycerol, lysophosphati-
dylcholine, phosphatidic acid, phosphatidylmethanol,
phosphatidylethanolamine, phosphatidylinositol, monogalacto-
sylmonoacylglycerol, digalactosylmonoacylglycerol, monoglycer-
ides and fatty acid C18:0, were not significantly different between
the two groups (p > 0.05). Triglycerides alone were in higher
concentrations in the high-sugar group (p= 0.002; Tukey’s HSD;
Fig. 4). Overall, 100 lipid species belonging to 18 lipid classes were
identified by the non-targeted lipidomics stream (Supplementary
data 2).

Compound identification: Compounds identified in the current
study based on matching with a local library of authentic
standards, de novo matching with public domain mass spectral
databases, and/or the Mummichog programme, are presented in
Table 1. A matching with the local library was given maximum
confidence (Level 1), followed by matching with spectral
databases (Level 2). Supplementary Figure 8 shows one such
match of quinic acid/quinate (C7H12O6; KEGG ID—C00296),
where the extracted ion chromatogram for the parent mass
[M–H]− m/z 191.0554 from a sample in HILIC-negative

a b
To

ta
l s

ug
ar

 c
on

te
nt

(F
ru

ct
an

 p
ea

k 
in

te
ns

ity
 in

 h
ex

os
e 

un
its

)

10000E+10

8,000,000,000

6,000,000,000

4,000,000,000

2,000,000,000

Genotypic
diversity

Genotype
250 200 150 100 50 0
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ionisation stream co-elutes with those for diagnostic fragments
m/z 173.0449 (C7H9O5), 127.0392 (C6H7O3), 111.0443 (C5H3O3)
and 93.0336 (C6H5O) (Supplementary Figure 8A). Also, mass
spectra of diagnostic fragments m/z 93.0336, 111.0078, and
127.0392 (Supplementary Figure 8B) matched with correspond-
ing spectra in the public domain MS database METLIN28

(Supplementary Figure 8C).
Metabolic features (m/z) and their tentative matches used by

Mummichog for identification are presented in Table 1. As is
evident, a single ion mass may relate to many compounds or a
group of masses may relate to one compound. Nevertheless, the
compound classes identified by Mummichog provides sufficient
information to interrogate the data further towards a higher level
of confidence (Level 2). In the case of coniferyl aldehyde (Table 1),
which was initially identified by Mummichog using m/z 193.0501
and 223.0608 corresponding to M–H+O[−] and M+HCOO
[−], respectively, the parent mass of coniferyl aldehyde
(C10H10O3), [M–H]− m/z 177.0550, and its diagnostic fragment
m/z 162.0321 (C9H6O3) were subsequently queried in the sample
and spectral databases. As explained in Supplementary Figure 8,
co-elution of the extracted ion chromatograms of these features,
and matching of these spectra in the sample with corresponding
spectra in MassBank29, with a mass error of <5 ppm, led to
tentative identification of coniferyl aldehyde with Level 2
confidence. Even so, redundancies in identifications by Mummi-
chog, for example, D-Ribose 5-Phosphate, alpha-D-Galactose,
beta-D-Glucose, beta-D-Galactose etc., all identified for m/z
145.0496, only conform to the identification of monosaccharides
or monosaccharide phosphates in the high-sugar group. There-
fore, Mummichog results helped identify potential leads for
compound identification, albeit with a lower level of confidence.

Modules and pathway analysis: Of all identified compounds
input into KEGG Mapper (Table 1) with rice pathways (osa) as a
reference, 29 mapped to metabolic pathways (osa01100), 23 to the
biosynthesis of secondary metabolites (osa01110), 8 to the
biosynthesis of amino acids (osa01230), 6 to carbon metabolism
(osa01200) and the rest to miscellaneous pathways related to
primary and secondary metabolism (Table 2). Each pathway is
characterised by several modules, and each module comprises
several compounds and corresponding reactions. Redundancies
in a single compound represented in multiple modules, and a
single module accommodating several identified compounds, was
observed (Table 2). A pictorial representation of compounds

mapped to respective pathways/modules in the context of high-
sugar grasses is depicted in Fig. 5.

All major pathways, i.e., metabolic, biosynthesis of secondary
metabolites, biosynthesis of amino acids and carbon metabolism,
were broadly classified into nucleotide and amino acid,
carbohydrate and lipid and energy metabolism modules (Fig. 5).
Other modules related to primary metabolism comprised
galactose metabolism, glycolysis, amino sugar metabolism, carbon
fixation, oxocarboxylic acid metabolism, pentose phosphate
pathway, ascorbate metabolism, pentose and glucuronate con-
versions, fructose and mannose metabolism, starch and sucrose
metabolism, inositol phosphate metabolism and glyceropho-
spholipid metabolism, while modules related to secondary
metabolism comprised flavone, flavonol, anthocyanin, flavonoid
and phenylpropanoid biosynthesis (Table 2; Fig. 5).

In all major pathways, compounds related to metabolism of the
amino acids cysteine, methionine, serine, threonine, arginine and
proline were found in low concentrations in the high-sugar
group. However, their intermediate products (S)-2-Aceto-2-
Hydroxybutanoate, O-Acetyl-L-Homoserine, (2S)-2-Isopropyl-3-
Oxosuccinate and 2-Dehydropantoate were at higher concentra-
tions (Fig. 5). These intermediate products were in turn involved
in the biosynthesis of branched-chain amino acids leucine,
isoleucine and valine (M00019, M00570 and M00432; Fig. 5;
Table 2). On the other hand, compounds related to carbohydrate,
lipid and energy metabolism were at high concentrations, while
those related to the biosynthesis of secondary metabolites were
low (Fig. 5). L-Serine and S-Adenosyl-L-Homocysteine were
primarily involved in cysteine, methionine, serine and threonine
metabolism (Modules M00035, M00609, M00021, M00338 and
M00020; Table 2). L-Citrulline was involved in arginine and
proline metabolism via the urea cycle (M00029), and (S)-2-Aceto-
2-Hydroxybutanoate was involved in branched chain amino acid
metabolism (M00019 and M00570). Glycerone phosphate, a
breakdown product of fructose 1, 6-Biphosphate and an isomer of
3-Phosphoglyceraldehyde (3-PGA), D-Ribose 5-Phosphate, D-
Xylulose 5-Phosphate and alpha-D-Glucose, all found in higher
concentrations in the high-sugar group, were involved in the
central carbohydrate metabolism via glycolysis/gluconeogenesis
(M00001, M00002 and M00003) and the pentose phosphate
pathway (M00007, M00580 and M00004; Fig. 5; Table 2). Other
compounds such as myo-Inositol were involved in lipid
metabolism via the inositol phosphate metabolism module
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Table 1 Summary of compounds identified by matching with a local library of authentic standards, public domain mass spectral
databases and/or Mummichog, with their respective KEGG IDs, analytical stream, univariate statistics and level of confidence in
identification

KEGG
ID

Name Stream Univariate statistics Identification

Fold t stat AUC Confidence Library Database Mummichog

Parent
[M ± H]±

Diagnostic m/z m/z Tentative match

C00317 Amylopectin ↑ HP 4.62 17.11 1.0 Level 3 867.2384 M + K[1+]
C00208 Maltose ↑ HP 2.49 10.15 0.9 Level 3 307.1023, 325.1129,

381.0794
M–H4O2+H[1+], M–H2O+H[1+],
M+ K[1+]

C01083 alpha,alpha-Trehalose ↑ HP 2.49 10.15 0.9 Level 3 307.1023, 325.1129,
381.0794

M–H4O2+H[1+], M–H2O+H[1+],
M+ K[1+]

C01235 Galactinol ↑ HP 2.49 10.15 0.9 Level 3 307.1023, 325.1129,
381.0794

M–H4O2+H[1+], M–H2O+H[1+],
M+ K[1+]

C04332 6,7-Dimethyl-8-(1'-D-Ribityl)
Lumazine

↑ HP 2.49 10.15 0.9 Level 3 325.1129 M[1+]

C00117 D-Ribose 5'-Phosphate ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–HCOOK+H[1+]
C00124 D-Galactose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C00137 Myo-inositol ↑ HN 2.04 9.60 0.8 Level 1 179.0556
C00221 Beta-D-Glucose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C00231 D-Xylulose 5'-Phosphate ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–HCOOK+H[1+]
C00267 Alpha-D-Glucose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C00962 Beta-D-Galactose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C00966 2-Dehydropantoate ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M[1+]
C01077 O-acetyl-L-homoserine ↑ HP 2.04 9.60 0.8 Level 2 102.0550,

74.0609
90.0556, 116.071,
118.0867, 145.0496,
180.0867

M–C3H4O2+H[1+], M–HCOOH+H[1
+], M–CO2+H[1+], M-NH3+H[1+],
M+H2O+H[1+]

C01112 D-Arabinose 5-Phosphate ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–HCOOK+H[1+]
C01825 L-Galactose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C01906 Hamamelose ↑ HP 2.04 9.60 0.8 Level 2 181.0714,

163.0608
145.0496 M–H4O2+H[1+]

C02336 Beta-D-Fructose ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–H4O2+H[1+]
C03906 Beta-L-Arabinose 1-Phosphate ↑ HP 2.04 9.60 0.8 Level 3 145.0496 M–HCOOK+H[1+]
C04236 (2S)-2-Isopropyl-3-

Oxosuccinate
↑ HP 2.04 9.60 0.8 Level 3 101.0237, 127.0394,

145.0496
M–C3H4O2+H[1+], M–HCOOH+H[1
+], M–CO+H[1+]

C06006 (S)-2-Aceto-2-
Hydroxybutanoate

↑ HP 2.04 9.60 0.8 Level 3 145.0496 M[1+]

C00555 4-Aminobutyraldehyde ↑ HP 1.70 6.95 0.8 Level 3 127.0394 M+ K[1+]
C01210 N-Methylethanolamine

Phosphate
↑ HP 1.70 6.95 0.8 Level 3 109.0288, 127.0394 M–HCOOH+H[1+], M–CO+H[1+]

C02351 1,2-Benzoquinone ↑ HP 1.70 6.95 0.8 Level 2 109.0282,
81.0342

109.0288, 81.034,
127.0394

M+H[1+], M-CO+H[1+],
M+H2O+H[1+]

C00296 Quinate/Quinic acid ↑ HN 2.26 6.72 0.8 Level 2 191.0554
C00111 Glycerone Phosphate ↑ HP 1.66 6.65 0.8 Level 3 125.0003, 85.029 M–CO2+H[1+], M–HCOOK+H[1+]
C00661 D-Glyceraldehyde 3-Phosphate ↑ HP 1.66 6.65 0.8 Level 3 125.0003, 85.029 M–CO2+H[1+], M–HCOOK+H[1+]
C01234 1-Aminocyclopropane-1-

Carboxylate
↑ HP 1.66 6.65 0.8 Level 3 102.0554, 74.0606,

84.0449, 85.029,
120.066

M+H[1+], M–CO+H[1+], M–H2O+H
[1+], M–NH3+H[1+], M+H2O+H[1
+]

C02631 2-Isopropylmaleate ↑ HP 1.66 6.65 0.8 Level 3 85.029 M–C3H4O2+H[1+]
C13482 Phosphodimethylethanolamine ↑ HP 1.66 6.65 0.8 Level 3 97.029, 85.029 M–C3H4O2+H[1+], M+ 2 H[2+]
C17759 1-O-Feruloyl-Beta-D-Glucose ↑ HN 1.53 4.45 0.7 Level 3 337.0929, 371.0984 M–H2O-H[−], M–H+O[−]
C10883 (+)-Sesamolin ↑ HN 1.72 3.43 0.7 Level 3 371.0984, 390.0726 M(37Cl)–H[−], M+Na-2H[−]
C00152 L-Asparagine ↓ HP 1.77 −2.54 0.6 Level 1 133.0614
C09315 Umbelliferone ↓ CN 2.15 −2.75 0.6 Level 2 161.0237,

162.0272
161.0239, 202.0505 M–H[−], M+ACN-H[−]

C01460 Vitexin ↓ CN 1.65 −2.75 0.6 Level 2 431.0976,
311.0555

447.0929, 477.1036 M–H+O[−], M+HCOO[−]

C01714 Isovitexin ↓ CN 1.65 −2.75 0.6 Level 3 447.0929, 477.1036 M-H+O[−], M+HCOO[−]
C01821 Isoorientin ↓ CN 1.65 −2.75 0.6 Level 3 447.0929, 506.1017 M(13C)–H[−], M+ CH3COO[−]
C08604 Chrysanthemin ↓ CN 1.65 −2.75 0.7 Level 3 447.0929, 463.088,

493.1007, 506.1017
M–H[−], M–H+O[−], M+HCOO[−],
M+ CH3COO[−]

C10114 Orientin ↓ CN 1.65 −2.75 0.6 Level 2 447.0925,
327.0499

447.0929, 506.1017 M(13C)–H[−], M+ CH3COO[−]

C12137 Pelargonidin-3-O-Beta-D-
Glucoside

↓ CN 1.65 −2.75 0.6 Level 3 447.0929, 477.1036 M–H+O[−], M+HCOO[−]

C16298 Cyanidin 5-O-Beta-D-
Glucoside

↓ CN 1.65 −2.75 0.6 Level 3 447.0929, 506.1017 M(13C)–H[−], M+ CH3COO[−]

C01617 Taxifolin ↓ CP 1.77 −2.85 0.6 Level 3 287.0548 M–H2O+H[1+]
C05631 Eriodictyol ↓ CP 1.77 −2.85 0.6 Level 3 287.0548 M[1+ ]
C05909 Leucodelphinidin ↓ CP 1.77 −2.85 0.6 Level 3 287.0548 M–H4O2+H[1+]
C00327 L-Citrulline ↓ HP 1.66 −4.25 0.7 Level 2 176.1038,

159.0772
159.0766 M–NH3+H[1+]

C00065 L-Serine ↓ HP 1.51 −4.41 0.6 Level 1 106.0506
C01092 8-Amino-7-Oxononanoate ↓ CN 1.75 −4.91 0.7 Level 3 223.0608 M+ K-2H[−]
C02666 Coniferyl Aldehyde ↓ CN 1.75 −4.91 0.7 Level 2 177.0550,

162.0321
193.0501, 223.0608 M–H+O[−], M+HCOO[−]

C05610 Sinapoyl Aldehyde ↓ CN 1.75 −4.91 0.7 Level 3 207.0658, 223.0608 M–H[−], M–H+O[−]
C03319 DTDP-Beta-L-Rhamnose ↓ HP 2.15 −5.04 0.8 Level 3 501.0645 M–HCOOH+H[1+]
C11907 DTDP-4-Dehydro-6-Deoxy-

Alpha-D-Glucopyranose
↓ HP 2.15 −5.04 0.8 Level 3 501.0645 M–CO2+H[1+]

C00021 S-Adenosyl-L-Homocysteine ↓ CN 1.75 −5.71 0.7 Level 3 385.1138 M(34S)–H[−]
C01175 1-O-Sinapoyl-Beta-D-Glucose ↓ CN 1.75 −5.71 0.7 Level 2 385.1133,

205.0499,
191.0554

385.1138, 367.103 M–H[−], M–H2O–H[−]

C16827 1-O-(4-Coumaroyl)-Beta-D-
Glucose

↓ CN 1.75 −5.71 0.7 Level 3 341.0875, 371.098,
385.1138

M–H+O[−], M+HCOO[−],
M+ CH3COO[−]

HP, HN, CP and CN denote different analytical streams corresponding to HILIC positive, negative and C18 positive and negative, respectively; a positive t stat value indicates high- > low-sugar group (↑),
whereas a negative value indicates high- < low-sugar group (↓); area under the curve (AUC) is a summary statistic for receiver–operator characteristic (ROC) curves, and denotes the trade-off between
the specificity and sensitivity of a compound to enable binary classification of the two groups. On a rough scale, AUC values of 0.9–1.0= excellent, 0.8–0.9= good, 0.7–0.8= fair, 0.6–0.7= poor and
0.5–0.6= fail, denote respective powers of the compound to direct binary classification79; compounds with matches in the library, spectral database or Mummichog were scored with 1, 2 or 3 levels of
confidence, respectively44.
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Table 2 KEGG pathway modules and hierarchical bin structure for MapMan style representation of compounds identified in
Table 1, matched with rice reference pathways (osa) using KEGG Mapper

Bin code Name Module Reaction Compound KEGG ID

1 Metabolic pathways
1.1 Nucleotide and amino acid metabolism
1.1.1 Cysteine and methionine metabolism
1.1.1.1 Methionine degradation M00035 S-Adenosyl-L-Methionine→

L-Homocysteine
S-Adenosyl-L-Homocysteine C00021 ↓

1.1.1.2 Methionine degradation M00035 L-Serine→ L-Cystathionine L-Serine C00065 ↓
1.1.1.3 Cysteine biosynthesis M00609 Methionine→ Cysteine S-Adenosyl-L-Homocysteine C00021 ↓
1.1.1.4 Cysteine biosynthesis M00021 Serine→ Cysteine L-Serine C00065 ↓
1.1.1.5 Cysteine biosynthesis M00338 Homocysteine+ Serine→

Cysteine
L-Serine C00065 ↓

1.1.2 Serine and threonine metabolism
1.1.2.1 Serine biosynthesis M00020 Glycerate-3P→ Serine L-Serine C00065 ↓
1.1.3 Cofactor and vitamin biosynthesis
1.1.3.1 Ascorbate degradation M00550 Ascorbate→ D-Xylulose

5-Phosphate
D-Xylulose 5-Phosphate C00231 ↑

1.1.3.2 Pantothenate biosynthesis M00119 Valine/L-Aspartate→
Pantothenate

2-Dehydropantoate C00966 ↑

1.1.3.3 Biotin biosynthesis M00123 Pimeloyl-ACP/CoA→ Biotin 8-Amino-7-Oxononanoate C01092 ↓
1.1.3.4 Biotin biosynthesis, BioI pathway M00573 Long-chain-acyl-ACP→ Pimeloyl-

ACP→ Biotin
8-Amino-7-Oxononanoate C01092 ↓

1.1.3.5 Biotin biosynthesis, BioW pathway M00577 Pimelate→ Pimeloyl-CoA→
Biotin

8-Amino-7-Oxononanoate C01092 ↓

1.1.3.6 Ascorbate biosynthesis M00114 Glucose 6-Phosphate→
Ascorbate

L-Galactose C01825 ↑

1.1.3.7 Riboflavin biosynthesis M00125 GTP→ Riboflavin/FMN/FAD 6,7-Dimethyl-8-(D-Ribityl)Lumazine C04332 ↑
1.1.4 Arginine and proline metabolism
1.1.4.1 Urea cycle M00029 L-Citrulline C00327 ↓
1.1.5 Branched-chain amino acid metabolism
1.1.5.1 Valine/Isoleucine biosynthesis M00019 Pyruvate→Valine/2-

Oxobutanoate→ Isoleucine
(S)-2-Aceto-2-Hydroxybutanoate C06006 ↑

1.1.5.2 Isoleucine biosynthesis M00570 Threonine→ 2-Oxobutanoate→
Isoleucine

(S)-2-Aceto-2-Hydroxybutanoate C06006 ↑

1.2 Carbohydrate and lipid metabolism
1.2.1 Lipid metabolism
1.2.1.1 Ceramide biosynthesis M00094 L-Serine C00065 ↓
1.2.1.2 Inositol phosphate metabolism M00131 Ins(1,3,4,5)P4→ Ins(1,3,4)P3→

Myo-inositol
Myo-Inositol C00137 ↑

1.2.2 Other carbohydrate metabolism
1.2.2.1 Photorespiration M00532 L-Serine C00065 ↓
1.2.2.2 Nucleotide sugar biosynthesis M00554 Galactose→ UDP-Galactose D-Galactose C00124 ↑
1.2.2.3 Galactose degradation, Leloir pathway M00632 Galactose→ Alpha-D-Glucose

1-Phosphate
D-Galactose C00124 ↑

1.2.2.4 Glucuronate pathway, Uronate pathway M00014 D-Xylulose 5-Phosphate C00231 ↑
1.2.2.5 Nucleotide sugar biosynthesis M00549 Glucose→UDP-Glucose Alpha-D-Glucose C00267 ↑
1.2.2.6 Trehalose biosynthesis M00565 D-Glucose 1-Phosphate→

Trehalose
alpha,alpha-Trehalose C01083 ↑

1.2.3 Central carbohydrate metabolism
1.2.3.1 Glycolysis (Embden–Meyerhof pathway) M00001 Glucose→ Pyruvate Glycerone Phosphate C00111 ↑
1.2.3.2 Glycolysis, core module involving three-

carbon compounds
M00002 Glycerone Phosphate C00111 ↑

1.2.3.3 Gluconeogenesis M00003 Oxaloacetate→ Fructose
6-Phosphate

Glycerone Phosphate C00111 ↑

1.2.3.4 Pentose phosphate pathway (pentose
phosphate cycle)

M00004 D-Ribose 5-Phosphate C00117 ↑

1.2.3.5 PRPP biosynthesis M00005 Ribose 5-Phosphate→ PRPP D-Ribose 5-Phosphate C00117 ↑
1.2.3.6 Pentose phosphate pathway, non-

oxidative phase
M00007 Fructose 6-Phosphate→ Ribose

5-Phosphate
D-Ribose 5-Phosphate C00117 ↑

1.2.3.7 Pentose phosphate pathway, archaea M00580 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Ribose 5-Phosphate C00117 ↑

1.2.3.8 Pentose phosphate pathway (pentose
phosphate cycle)

M00004 D-Xylulose 5-Phosphate C00231 ↑

1.2.3.9 Pentose phosphate pathway, non-
oxidative phase

M00007 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Xylulose 5-Phosphate C00231 ↑

1.2.3.10 Glycolysis (Embden–Meyerhof pathway) M00001 Glucose→ Pyruvate Alpha-D-Glucose C00267 ↑
1.2.4 Lipopolysaccharide metabolism
1.2.4.1 CMP-KDO biosynthesis M00063 D-Arabinose 5-Phosphate C01112 ↑
1.3 Energy metabolism
1.3.1 Carbon fixation
1.3.1.1 Reductive pentose phosphate cycle

(Calvin cycle)
M00165 D-Ribose 5-Phosphate C00117 ↑

1.3.1.2 Reductive pentose phosphate cycle M00167 Glyceraldehyde 3-Phosphate→
Ribulose 5-Phosphate

D-Ribose 5-Phosphate C00117 ↑

1.4 Secondary metabolism
1.4.1 Biosynthesis of secondary metabolites
1.4.1.1 Monolignol biosynthesis M00039 Phenylalanine/Tyrosine→

Monolignol
Coniferyl Aldehyde C02666 ↓

1.4.1.2 Monolignol biosynthesis M00039 Phenylalanine/Tyrosine→
Monolignol

Sinapoyl Aldehyde C05610 ↓

1.5 Others
1.5.1 Amino acid L-Asparagine C00152 ↓
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Table 2 (continued)

Bin code Name Module Reaction Compound KEGG ID

1.5.2 Oligosaccharides Maltose C00208 ↑
1.5.3 Glycolysis/Gluconeogenesis Beta-D-Glucose C00221 ↑
1.5.4 Arginine and proline metabolism 4-Aminobutyraldehyde C00555 ↑
1.5.5 Cysteine and methionine metabolism O-Acetyl-L-Homoserine C01077 ↑
1.5.6 Lipopolysaccharide biosynthesis D-Arabinose 5-Phosphate C01112 ↑
1.5.7 Biosynthesis of secondary metabolites 1-Aminocyclopropane-1-Carboxylate C01234 ↑
1.5.8 Biosynthesis of phenylpropanoids Taxifolin C01617 ↓
1.5.9 Ascorbate and aldarate metabolism L-Galactose C01825 ↑
1.5.10 Amino sugar and nucleotide sugar

metabolism
Beta-L-Arabinose 1-Phosphate C03906 ↑

1.5.11 Biosynthesis of secondary metabolites (2S)-2-Isopropyl-3-Oxosuccinate C04236 ↑
1.5.12 Biosynthesis of secondary metabolites Pelargonidin 3-O-Glucoside C12137 ↓
2 Biosynthesis of secondary metabolites
2.1 Nucleotide and amino acid metabolism
2.1.1 Cysteine and methionine metabolism
2.1.1.1 Cysteine biosynthesis M00021 Serine→ Cysteine L-Serine C00065 ↓
2.1.1.2 Ethylene biosynthesis M00368 Methionine→ Ethylene 1-Aminocyclopropane-1-Carboxylate C01234 ↑
2.1.2 Cofactor and vitamin biosynthesis
2.1.2.1 Pantothenate biosynthesis M00119 Valine/L-Aspartate→

Pantothenate
2-Dehydropantoate C00966 ↑

2.1.2.2 Ascorbate biosynthesis M00114 Glucose 6-Phosphate→
Ascorbate

L-Galactose C01825 ↑

2.1.2.3 Riboflavin biosynthesis M00125 GTP→ Riboflavin/FMN/FAD 6,7-Dimethyl-8-(D-Ribityl)Lumazine C04332 ↑
2.1.3 Branched-chain amino acid metabolism
2.1.3.1 Valine/Isoleucine biosynthesis M00019 Pyruvate→Valine/2-

Oxobutanoate→ Isoleucine
(S)−2-Aceto-2-Hydroxybutanoate C06006 ↑

2.2 Carbohydrate and lipid metabolism
2.2.1 Other carbohydrate metabolism
2.2.1.1 Photorespiration M00532 L-Serine C00065 ↓
2.2.1.2 Trehalose biosynthesis M00565 D-Glucose 1-Phosphate→

Trehalose
alpha,alpha-Trehalose C01083 ↑

2.3 Secondary metabolism
2.3.1 Biosynthesis of secondary metabolites
2.3.1.1 Monolignol biosynthesis M00039 Phenylalanine/Tyrosine→

Monolignol
Coniferyl Aldehyde C02666 ↓

2.3.1.2 Monolignol biosynthesis M00039 Phenylalanine/Tyrosine→
Monolignol

Sinapoyl Aldehyde C05610 ↓

2.4 Others
2.4.1 Flavonoid biosynthesis Eriodictyol C05631 ↓
2.4.2 Flavonoid biosynthesis Leucodelphinidin C05909 ↓
2.4.3 Biosynthesis of phenylpropanoids Umbelliferone C09315 ↓
2.4.4 Biosynthesis of secondary metabolites Pelargonidin 3-O-Glucoside C12137 ↓
2.4.5 Biosynthesis of phenylpropanoids Taxifolin C01617 ↓
2.4.6 Biosynthesis of secondary metabolites 2-Isopropylmaleate C02631 ↑
2.4.7 Biosynthesis of secondary metabolites (2S)-2-Isopropyl-3-Oxosuccinate C04236 ↑
3 Biosynthesis of amino acids
3.1 Nucleotide and amino acid metabolism
3.1.1 Cysteine and methionine metabolism
3.1.1.1 Cysteine biosynthesis M00609 Methionine→ Cysteine S-Adenosyl-L-Homocysteine C00021 ↓
3.1.1.2 Cysteine biosynthesis M00021 Serine→ Cysteine L-Serine C00065 ↓
3.1.1.3 Cysteine biosynthesis M00338 Homocysteine+ Serine→

Cysteine
L-Serine C00065 ↓

3.1.2 Serine and threonine metabolism
3.1.2.1 Serine biosynthesis M00020 Glycerate 3-Phosphate→ Serine L-Serine C00065 ↓
3.1.3 Arginine and proline metabolism
3.1.3.1 Urea cycle M00029 L-Citrulline C00327 ↓
3.1.3.2 Arginine biosynthesis M00844 Ornithine→Arginine L-Citrulline C00327 ↓
3.1.3.3 Arginine biosynthesis M00845 Glutamate→Acetylcitrulline→

Arginine
L-Citrulline C00327 ↓

3.1.4 Branched-chain amino acid metabolism
3.1.4.1 Valine/Isoleucine biosynthesis M00019 Pyruvate→Valine/2-

Oxobutanoate→ Isoleucine
(S)-2-Aceto-2-Hydroxybutanoate C06006 ↑

3.1.4.2 Isoleucine biosynthesis M00570 Threonine→ 2-Oxobutanoate→
Isoleucine

(S)-2-Aceto-2-Hydroxybutanoate C06006 ↑

3.2 Carbohydrate and lipid metabolism
3.2.1 Central carbohydrate metabolism
3.2.1.1 Glycolysis, core module involving three-

carbon compounds
M00002 Glycerone Phosphate C00111 ↑

3.2.1.2 PRPP biosynthesis M00005 Ribose 5-Phosphate→ PRPP D-Ribose 5-Phosphate C00117 ↑
3.2.1.3 Pentose phosphate pathway, non-

oxidative phase
M00007 Fructose 6-Phosphate→ Ribose

5-Phosphate
D-Ribose 5-Phosphate C00117 ↑

3.2.1.4 Pentose phosphate pathway, archaea M00580 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Ribose 5-Phosphate C00117 ↑

3.2.1.5 Pentose phosphate pathway, non-
oxidative phase

M00007 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Xylulose 5-Phosphate C00231 ↑

3.3 Others
3.3.1 Amino acid L-Asparagine C00152 ↓
4 Carbon metabolism
4.1 Nucleotide and amino acid metabolism
4.1.1 Serine and threonine metabolism
4.1.1.1 Serine biosynthesis M00020 Glycerate 3-Phosphate→ Serine L-Serine C00065 ↓
4.1.2 Cysteine and methionine metabolism
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Table 2 (continued)

Bin code Name Module Reaction Compound KEGG ID

4.1.2.1 Cysteine biosynthesis M00021 Serine→ Cysteine L-Serine C00065 ↓
4.2 Energy metabolism
4.2.1 Methane metabolism
4.2.1.1 Formaldehyde assimilation, serine

pathway
M00346 L-Serine C00065 ↓

4.2.1.2 Formaldehyde assimilation, xylulose
monophosphate pathway

M00344 Glycerone Phosphate C00111 ↑

4.2.1.3 Formaldehyde assimilation, ribulose
monophosphate pathway

M00345 Glycerone Phosphate C00111 ↑

4.2.2 Carbon fixation
4.2.2.1 Reductive pentose phosphate cycle

(Calvin cycle)
M00165 D-Ribose 5-Phosphate C00117 ↑

4.2.2.2 Reductive pentose phosphate cycle M00167 Glyceraldehyde 3-Phosphate→
Ribulose 5-Phosphate

D-Ribose 5-Phosphate C00117 ↑

4.3 Carbohydrate and lipid metabolism
4.3.1 Central carbohydrate metabolism
4.3.1.1 Glycolysis (Embden-Meyerhof pathway) M00001 Glucose→ Pyruvate Glycerone Phosphate C00111 ↑
4.3.1.2 Glycolysis, core module involving three-

carbon compounds
M00002 Glycerone Phosphate C00111 ↑

4.3.1.3 Pentose phosphate pathway (Pentose
phosphate cycle)

M00004 D-Ribose 5-Phosphate C00117 ↑

4.3.1.4 PRPP biosynthesis M00005 Ribose 5-Phosphate→ PRPP D-Ribose 5-Phosphate C00117 ↑
4.3.1.5 Pentose phosphate pathway, non-

oxidative phase
M00007 Fructose 6-Phosphate→ Ribose

5-Phosphate
D-Ribose 5-Phosphate C00117 ↑

4.3.1.6 Pentose phosphate pathway, archaea M00580 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Ribose 5-Phosphate C00117 ↑

4.3.1.7 Pentose phosphate pathway (Pentose
phosphate cycle)

M00004 D-Xylulose 5-Phosphate C00231 ↑

4.3.1.8 Pentose phosphate pathway, non-
oxidative phase

M00007 Fructose 6-Phosphate→ Ribose
5-Phosphate

D-Xylulose 5-Phosphate C00231 ↑

4.3.1.9 Glycolysis (Embden-Meyerhof pathway) M00001 Glucose→ Pyruvate Alpha-D-Glucose C00267 ↑
4.3.2 Other carbohydrate metabolism
4.3.2.1 Photorespiration M00532 L-Serine C00065 ↓
4.4 Others
4.4.1 Glycolysis/Gluconeogenesis Beta-D-Glucose C00221 ↑
5 Galactose metabolism
5.1 Glycolysis, core module involving three-

carbon compounds
Glycerone Phosphate C00111 ↑

5.2 Galactose degradation D-Galactose C00124 ↑
5.3 Inositol phosphate metabolism Myo-Inositol C00137 ↑
5.4 Glycolysis (Embden–Meyerhof pathway) Alpha-D-Glucose C00267 ↑
5.5 Galactose metabolism Galactinol C01235 ↑
6 ABC transporters
6.1 Phosphate and amino acid transporters L-Serine C00065 ↓
6.2 Monosaccharide transporters Myo-Inositol C00137 ↑
6.3 Oligosaccharide, polyol, and lipid

transporters
Maltose C00208 ↑

6.4 Oligosaccharide, polyol, and lipid
transporters

alpha,alpha-trehalose C01083 ↑

7 Cysteine and methionine metabolism
7.1 Methionine degradation M00035 S-Adenosyl-L-Homocysteine C00021 ↓
7.2 Glycine, serine and threonine metabolism L-Serine C00065 ↓
7.3 Aspartate metabolism O-Acetyl-L-Homoserine C01077 ↑
7.4 Propanoate metabolism 1-Aminocyclopropane-1-Carboxylate C01234 ↑
8 Flavonoid biosynthesis
8.1 Flavone and flavonol biosynthesis Vitexin C01460 ↓
8.2 Flavone and flavonol biosynthesis Taxifolin C01617 ↓
8.3 Flavanone biosynthesis Eriodictyol C05631 ↓
8.4 Flavan 3,4-diols biosynthesis Leucodelphinidin C05909 ↓
9 Glycerophospholipid metabolism
9.1 Ether lipid metabolism Glycerone Phosphate C00111 ↑
9.2 Phosphocholine biosynthesis N-Methylethanolamine Phosphate C01210 ↑
9.3 Phosphocholine biosynthesis Phosphodimethylethanolamine C13482 ↑
10 Glycolysis/gluconeogenesis
10.1 Core module involving three-carbon

compounds
Glycerone Phosphate C00111 ↑

10.2 Starch and sucrose metabolism Beta-D-Glucose C00221 ↑
10.3 Starch and sucrose metabolism Alpha-D-Glucose C00267 ↑
11 Amino sugar and nucleotide sugar

metabolism
11.1 Uridine diphosphate sugar metabolism Alpha-D-Glucose C00267 ↑
11.2 Uridine diphosphate sugar metabolism Beta-D-Fructose C02336 ↑
11.3 Uridine diphosphate sugar metabolism Beta-L-Arabinose 1-Phosphate C03906 ↑
12 Carbon fixation in photosynthetic

organisms
12.1 Glycolysis Glycerone Phosphate C00111 ↑
12.2 Reductive pentose phosphate cycle D-Ribose 5-Phosphate C00117 ↑
12.3 Reductive pentose phosphate cycle D-Xylulose 5-Phosphate C00231 ↑
13 2-Oxocarboxylic acid metabolism
13.1 Pyruvate reductive amination 2-Isopropylmaleate C02631 ↑
13.2 Pyruvate reductive amination (2S)−2-Isopropyl-3-Oxosuccinate C04236 ↑
13.3 Pyruvate reductive amination (S)−2-Aceto-2-Hydroxybutanoate C06006 ↑
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(M00131: Table 2), and D-Arabinose 5-Phosphate was involved in
lipopolysaccharide biosynthesis (M00063: Table 2), both report-
edly at increased concentrations in the high-sugar group (Fig. 5).

L-Serine (low concentration), D-Galactose, D-Xylulose 5-
Phosphate, alpha-D-Glucose and alpha,alpha-Trehalose (all high
concentrations) were some of the metabolites involved in other
carbohydrate metabolism modules which comprised photore-
spiration (M00532), galactose degradation (M00632), glucuronate
pathway (M00014) and nucleotide sugar biosynthesis (M00549).
Ryegrass being a C-3 plant30, the energy metabolism pathway
comprising carbon fixation and methane metabolism modules
involved D-Ribose 5-Phosphate (high concentration) in the
Calvin cycle (M00165) and glycerone phosphate (high concen-
tration) in formaldehyde assimilation (M00344 and M00345),
respectively. Biosynthesis of secondary metabolites involved
coniferyl aldehyde, sinapoyl aldehyde, 1-O-Sinapoyl-beta-D-
Glucose and 1-O-(4-Coumaroyl)-beta-D-Glucose, all in low
concentrations, and related to the biosynthesis of monolignols
(M00039). Compounds classified as others’ represented metabo-
lites that did not feature in any modules, but were indirectly
involved in the corresponding pathways. In that light, compounds
classified as others’ in metabolic pathways mainly comprised
amino acids, sugars and sugar phosphates (predominantly in
higher concentrations), and those classified under the

biosynthesis of secondary metabolites comprised umbelliferone,
vitexin, isovitexin, orientin, isoorientin, pelargonidin-3-O-beta-D-
Glucoside, cyanidin-3-O-beta-D-Glucoside and cyanidin 5-O-
beta-D-Glucoside, (predominantly in lower concentrations; Fig. 5;
Table 2).

Compounds belonging to minor pathways were classified as
those involved in primary or secondary metabolism (Fig. 5).
Clearly, compounds related to the primary metabolism of sugars
via galactose metabolism, glycolysis, amino sugar metabolism,
carbon fixation, oxocarboxylic acid metabolism, pentose phos-
phate pathway, ascorbate metabolism, pentose and glucuronate
conversions, fructose and mannose metabolism, starch and
sucrose metabolism, inositol phosphate metabolism and lipids
via glycerophospholipid metabolism, were all found at higher
concentrations in high-sugar grasses. Likewise, compounds
related to secondary metabolism via flavone, flavonol, anthocya-
nin, flavonoid, and phenylpropanoid biosynthesis, were all found
in lower concentrations (Fig. 5; Table 2). Amongst the ABC
transporters, L-Serine, a phosphate and amino acid transporter
was found in low concentration, whereas myo-Inositol, maltose
and alpha, alpha-Trehalose, mono- and oligosaccharide trans-
porters, were found at higher concentrations (Fig. 5; Table 2).
Quinate/Quinic acid, involved in the biosynthesis of phenylala-
nine, tyrosine and tryptophan via the shikimate pathway, was

Table 2 (continued)

Bin code Name Module Reaction Compound KEGG ID

14 Phenylpropanoid biosynthesis
14.1 Sinapate derivatives 1-O-Sinapoyl-Beta-D-Glucose C01175 ↓
14.2 Coniferyl alcohol derivatives Coniferyl Aldehyde C02666 ↓
14.3 Sinapate derivatives Sinapoyl Aldehyde C05610 ↓
15 Pentose phosphate pathway
15.1 PRPP biosynthesis Ribose 5-Phosphate→ PRPP D-Ribose 5-Phosphate C00117 ↑
15.2 PRPP biosynthesis Beta-D-Glucose C00221 ↑
15.3 PRPP biosynthesis D-Xylulose 5-Phosphate C00231 ↑
16 Anthocyanin biosynthesis
16.1 Flavonoids Chrysanthemin C08604 ↓
16.2 Flavonoids Pelargonidin 3-O-Glucoside C12137 ↓
16.3 Flavonoids Cyanidin 5-O-Glucoside C16298 ↓
17 Ascorbate and aldarate metabolism
17.1 Sugar alcohols Myo-Inositol C00137 ↑
17.2 Ascorbate degradation Ascorbate→ D-Xylulose

5-Phosphate
D-Xylulose 5-Phosphate C00231 ↑

17.3 Aldoses L-Galactose C01825 ↑
18 Valine, leucine and isoleucine biosynthesis
18.1 Pyruvate metabolism 2-Isopropylmaleate C02631 ↑
18.2 Leucine biosynthesis (2S)-2-Isopropyl-3-Oxosuccinate C04236 ↑
18.3 Isoleucine biosynthesis (S)-2-Aceto-2-Hydroxybutanoate C06006 ↑
19 Glycine, serine and threonine metabolism
19.1 Pyruvate, cysteine and tryptophan

metabolism
L-Serine C00065 ↓

20 Pentose and glucuronate interconversions
20.1 Glucuronate interconversion Glycerone Phosphate C00111 ↑
20.2 Pentose interconversion D-Xylulose 5-Phosphate C00231 ↑
21 Fructose and mannose metabolism
21.1 Core module involving three-carbon

compounds
Glycerone Phosphate C00111 ↑

21.2 Fructose biosynthesis Alpha-D-Glucose C00267 ↑
22 Starch and sucrose metabolism
22.1 Oligosaccharides Maltose C00208 ↑
22.2 Oligosaccharides alpha,alpha-Trehalose C01083 ↑
23 Inositol phosphate metabolism
23.1 Core module involving three-carbon

compounds
Glycerone Phosphate C00111 ↑

23.2 Inositol phosphate metabolism Ins(1,3,4,5)P4→ Ins(1,3,4)P3→
Myo-Inositol

Myo-Inositol C00137 ↑

24 Flavone and flavonol biosynthesis
24.1 Flavones Vitexin C01460 ↓
24.2 Flavones Isovitexin C01714 ↓
25 Phenylalanine, tyrosine and tryptophan

biosynthesis
25.1 Shikimate pathway Quinate C00296 ↑

KEGG pathways and modules that involve compounds identified in Table 1 were generated by KEGG Mapper75; Bin codes denote the hierarchical structure of KEGG pathways and modules used to
generate MapMan77 style representation of the identified compounds (Fig. 4); ↑ refers to a compound with positive t stat value (high- > low-sugar group), whereas ↓ refers to a compound with a
negative t stat value (high- < low-sugar group).
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found at higher concentration in high-sugar grasses, and so were
compounds involved in the biosynthesis of the branched chain
amino acids valine, leucine and isoleucine (Fig. 5; Table 2).

Overall, a snapshot of metabolic pathways in high-sugar
grasses revealed: an increase in concentrations of compounds
involved in primary metabolism, mainly comprising sugars;
decrease in concentrations of compounds involved in secondary
metabolism, mainly comprising flavonoids and lignins; decrease
in concentrations of compounds involved in cysteine, methio-
nine, serine, arginine, proline and threonine metabolism, and; a
concomitant increase in concentrations of compounds involved
in the metabolism of branched chain amino acids valine,
isoleucine and leucine, and aromatic amino acids phenylalanine,
tyrosine and tryptophan.

Discussion
The distribution of 715 ryegrass genotypes based on their total
sugar content (Fig. 1), provides an overview of their performance
under natural NZ autumn conditions. High-sugar content in
leaves has a direct relationship with the metabolisable energy of
ryegrass, which in turn enhances protein capture and supply to
the ruminant16,31. While, seasonal variation of fructan content
has also been hypothesised32, we have only measured fructan
content at a single seasonal time point. A time-resolved analysis
of fructan diversity is therefore expected to shed more light on the
genotype and/or genotype × environment interactions33 in the
high-sugar group identified here (Supplementary Table 1).

We also hypothesised that the DP contributes to differences in
total sugar content, both between and within the high- and low-
sugar groups. Between the high- and low-sugar groups, all three

DP classes (low, mid or high) were significantly higher in the
high-sugar group (Fig. 2a). However, as reported earlier15, within
the high-sugar group, the contribution of high-DP fructans to the
total fructan content was greater than the low-DP fructans
(Fig. 2a). For the standard high-sugar genotypes (Aber cultivars),
high-DP fructans are considered critical in retaining the total
sugar content under seasonal variation compared to normal
genotypes34. Therefore, considering high-DP fructans are sought
for breeding reliable high-sugar genotypes, 11 genotypes which
have greater high-DP content than Aberdart, have been identified
(Fig. 2c). Given that fructan accumulation and degradation in
ryegrass is still poorly understood14, the negative correlation
between high- and low-DPs within the high-sugar group
(Fig. 2b), remains unexplained and deems further investigation.
The metabolomics approach employed here for fructan analysis
has therefore led to a better understanding of fructan accumu-
lation in high-sugar genotypes prior to genotype selection.
Moreover, the contrast provided here with the low-sugar group,
in the context of lipids, polar and semi-polar compounds (Figs. 3
and 4), has established a platform to scrutinise underlying bio-
logical mechanisms (Fig. 5; Table 2).

Another route to high-metabolisable energy has been via
increased lipid content in leaves35. Elevated levels of triglycerides/
triacylglycerols and poly-unsaturated fatty acids at the cost of
proteins, would lead to improved nitrogen utilisation and feed
conversion efficiency of the ruminants35, resulting in enhanced
nutritional value of the end-products36. Exclusive efforts aimed at
high-lipid content, primarily based on metabolic engineering, are
therefore in practice35,37,38. While fatty acids have been the focus
of this endeavour36, other lipid classes or the lipidome have lar-
gely been ignored. The lipid profile presented here (Fig. 4a),

Nucleotide and amino
acid metabolism

Carbohydrate and
lipid metabolism

Carbohydrate and
lipid metabolism

Carbohydrate and
lipid metabolism

Carbohydrate and
lipid metabolism

Lipid

Cys
Met

Cys
Met

Ser
Thr

C-fixation

Biosynthesis of
secondary
metabolites

Biosynthesis of
secondary

metabolites

CoF
Vit

CoF
Vit

Arg
Pro

Bra
AA

Cys
Met

Cys
Met

Ser
Thr

Ser
Thr

Arg
Pro

Bra
AA

Cys
Met

Val
lIe

Leu

Gly
Ser
Thr

Phe
Tyr
Trp

Bra
AACentral

CHO

Central
CHO

Central
CHO

Other
CHO

Other
CHO

Other
CHO

Lipo-
CHO

Metabolic pathways

Biosynthesis of
amino acids

Amino acid
metabolism

Energy
metabolism

Carbon metabolism
Nucleotide and amino

acid metabolism

Biosynthesis of
seondary metabolites

Nucleotide and
amino acid
metabolism

Nucleotide and
amino acid
metabolism

Primary metabolism
RGM_Paper.bmp

mapping: RGM_Mappings.txt
mapped: 160 of 54 data points

visible: 160 data points

data: MapMan_RGM.txt
Sugars

–1

–0.5

0

0.5

1

Starch &
sucrose

Inositol

Oxocarboxylic
acids

Lipids

Glyc
oly

sis

Pen
to

se

ph
os

ph
at

e

pa
th

way

Galactose

Ascorbate

Am
ino sugar

Pentose &

glucuronate

C-fi
xa

tio
n

Fr
uc

to
se

 &

m
an

no
se

Secondary
metabolism

Secondary
metabolism

ABC
transporters

Secondary metabolism

Flavonoids Anthocyanins

Flavone &
flavonolPhenylpropanoid

Energy
metabolism

Others

Others

Others
C-fixation

CH4
metabolism

Others

Fig. 5 Pictorial representation of biochemical activity of high-sugar grasses in MapMan77 (Ver 3.6.0RC1; copyright of the Max–Planck-Institute for
Molecular Plant Physiology, Golm, Germany), depicting KEGG pathways and modules involving the compounds identified in Table 1, with rice pathways
(osa) as a reference (Table 2). Dots represent compounds identified in respective modules, where red dots denote compounds with positive t stat value
(high- > low-sugar group), and blue dots denote compounds with negative t stat value (high- < low-sugar group). CHO: carbohydrates, Bra-AA: branched
chain amino acids, CoF and Vit: cofactor and vitamins, ABC: ATP-binding cassette

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0289-6

12 COMMUNICATIONS BIOLOGY |            (2019) 2:87 | https://doi.org/10.1038/s42003-019-0289-6 | www.nature.com/commsbio

www.nature.com/commsbio


therefore potentially marks the first comprehensive report of the
ryegrass lipidome (Supplementary Data 2). A negative relation-
ship between sugar and fatty acid content (Fig. 4b) has also been
reported by Morgan36. When the sugar content is low due to
diurnal, environmental or genotypic factors, plants have the
ability to redirect cellular activity towards lipid catabolism,
resulting in an increase in fatty acids39. Manipulating this carbon
flux towards lipid biosynthesis has also been suggested to achieve
elevated levels of lipids in plants37.

A few classes of phospholipids, i.e., phosphatidylserine, phos-
phatidylglycerol and phosphatiylcholine, diglycerides and galac-
tolipids were found in higher concentrations in the low-sugar
group and triglycerides were higher in the high-sugar group
(Fig. 4a). Galactolipids are found in thylakoid membranes of
chloroplasts and are abundant in photosynthetically active
leaves40. A hypothesis that an increase in FA content correlates
with chlorophyll content in leaves, and thereby galactolipids, was
tested by Morgan36. In general, polar lipids mainly contributed by
galactolipids had a positive correlation with FA content, whereas
neutral lipids mainly comprising triglycerides had a negative
correlation36. These results are in accordance with the present
study (Fig. 4). Triglycerides are storage lipids and, until recently,
were thought to be absent in leaves41. They are believed to be
intermediate products in the catabolism of galactolipids to
sucrose, mostly accumulating in leaves during the day41. While
their role in lipid metabolism is largely unknown, their elevated
levels in high-sugar grasses provides sufficient context to pursue
this result further.

Few studies have investigated the impact of changes in primary
metabolism on the fluxes into secondary metabolism42,43. Non-
targeted metabolomics, through a wide coverage of primary and
secondary metabolites as demonstrated in this study, is well
positioned to elucidate global metabolic changes, and thereby the
cross-linkages between primary and secondary metabolism.
Combined with other –omics data, metabolomics provides a
robust platform for biological interpretation. In spite of these
inherent advantages, non-targeted studies are limited by the
bottleneck of compound identification, resulting in compounds
predominantly identified with low to medium-level confidence44.
Taking cues from non-targeted studies and proceeding towards
unequivocal identification using targeted approaches is therefore
recommended. Here, a snapshot of metabolic activity in the high-
sugar group (Fig. 5) revealed an increase in concentrations of
compounds involved in primary metabolism, mainly comprising
sugars, a decrease in concentrations of compounds related to
metabolism of the amino acids cysteine, methionine, serine,
threonine, arginine and proline, increase in concentrations of
compounds involved in the biosynthesis of aromatic and bran-
ched chain amino acids, and a concomitant decrease in com-
pounds involved in secondary metabolism, mainly comprising
flavonoids and lignins.

Plant secondary metabolites are of interest due to their
bewildering diversity, and their roles in defence, stress response,
UV protection, allelopathy and signalling45. The link between
carbohydrate and secondary metabolism is primarily mediated by
the shikimate pathway, through synthesis of aromatic amino
acids, leading into the phenylpropanoid pathway46,47. Quinic
acid, a constituent of the phenylpropanoid pathway, is a pre-
cursor of chlorogenic acid47, and also involved in the biosynthesis
of lignins and flavonols. Quinic acid was found at higher con-
centrations in the high-sugar group, and on the other hand,
coniferyl aldehyde and sinapoyl aldehyde (lignin subunits48),
were found in lower concentrations (Table 1). Chlorogenic acid
concentrations were not significantly different between the high-
and low-sugar groups. In sorghum (Sorghum bicolor) plants with
high biomass, quinic acid and lignin contents were high, whereas

in the high-sugar ryegrass cultivar ‘Aberdove’, the concentration
of chlorogenic acid was high49. A partitioning of quinic acid
towards biosynthesis of either lignin or chlorogenic acid was
therefore hypothesised47. However, the preferential flux towards
either of these compounds is unknown. Grass-fibre composition
is another key target of breeding which affects feed intake and
digestibility50. This is largely determined by cell wall components,
and lignins, complex polyphenolic polymers and end products of
the phenylpropanoid pathway are amongst the major cell wall
constituents51. The shikimate pathway described here in the
context of total sugar content, should persuade further studies on
secondary metabolism in ryegrass. In addition to the shikimate
pathway, the interface between primary and secondary metabo-
lism in plants is far more complex, with the production of sec-
ondary metabolites associated with glycolysis, TCA cycle,
aliphatic amino acids, pentose phosphate pathway52 and nitrogen
status53.

Towards the primary objective of screening for high-sugar
cultivars, we set-off with a survey of 715 ryegrass genotypes based
on their fructan content. However, breeding for select traits
requires a thorough understanding of the population wide
diversity of these traits, and their genetic control mechanisms21.
Non-targeted metabolomics studies, as employed here, delivered
the broadest coverage of metabolites, thereby enabling a better
understanding of the underlying biochemical mechanisms. A
snapshot of metabolites and the corresponding modules/path-
ways they represent in the high-sugar group (Fig. 5), established
key insights on primary and secondary metabolism, that merit
further investigation. This study therefore signifies one of many
avenues that can be explored with these data. For example, the
low-sugar group indirectly led to genotypes with greater lipid
content, thereby creating opportunities to tap into lipid content
through breeding applications. Likewise, the flux from primary to
secondary metabolism, as reported here, may facilitate breeding
strategies specifically targeting select secondary metabolites. Stu-
dies exploring these avenues in secondary metabolites are already
underway20,54. In conclusion, we have established levers that help
explain biochemical activity in ryegrass, which when operated
towards specific objectives can deliver desired traits. The raw files
from this study, maintained at MetaboLights database, we envi-
sage will cater to further explorations towards these objectives.

Methods
Experimental. Plant material: Ryegrass seeds were obtained from the Margot
Forde Germplasm Centre at AgResearch Limited, Grasslands Research Centre,
Palmerston North, New Zealand. Seeds of 724 genotypes (denoted by a specific
code, e.g., PG0698) which included NZ cultivars (82), natural population/ecotypes
(49), NZ elite breeding populations (336), overseas cultivars (181), enhanced
germplasm (71) and unknown cultivars (5) were selected. Five clonal replicates (n
= 5; denoted as PG0698_1 for the first replicate) per genotype were cultivated and
used for metabolomics studies. Plant trial conditions are described in Supple-
mentary Methods.

Perennial ryegrass forms a natural symbiotic association with epichloae fungi
(Epichloë spp.)50, which produce metabolites that protect the host from biotic and
abiotic stresses55. It has been shown that infection with these endophytes affects the
metabolic profiles of ryegrass49,56. To ensure that the ryegrass metabolome alone
was analysed and reported, endophyte-free plants were used. This was achieved by
heat and fungicide treatment of seed to kill the fungus, prior to germinating and
growing the plants. After growing out and prior to clonal replication, the
endophyte-free status of plants was assessed by an immunoblot analysis57 of 10
tillers per plant. Subsequently, the presence of peramine, a pyrrolopyrazine
alkaloid58 specific to most endophytes, was also monitored. Nine genotypes that
showed presence of peramine were identified and excluded (Supplementary
Figure 9). This resulted in 715 genotypes from 118 populations for subsequent
analyses. Here, a genotype refers to a group of plants with the same genetic
makeup, while a population consists of one or more genotypes grouped together
based on a common trait (genotypic/phenotypic/geographical origin). For example,
PG0698 refers to the genotype in a population named ‘Hillary’, a NZ based cultivar
(Supplementary Table 1).

Extractions: At 60 days after transplanting, leaves were harvested during late
autumn (May 2012), snap-frozen in liquid nitrogen, freeze-dried, ground to a
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coarse powder, transferred to glass vials and stored at −80 °C until further use. Five
aliquots of 50 mg each (4 for analyses and 1 standby) of each sample were weighed
into microcentrifuge tubes. A surrogate QC sample59 comprising random amounts
of ground ryegrass leaf material, irrespective of the presence or absence of
endophyte was used. Since this QC sample was not representative of the sample set,
it was solely used for monitoring sample degradation and for tracking run-order
effects within a batch and not used for batch normalisations or ensuing data
processing.

Polar and semi-polar compounds. A single aliquot (50 mg) was used for
analysing both polar and semi-polar compounds. One millilitre (1 ml) of extraction
solvent comprising acetonitrile:water containing 0.1% formic acid (50:50, v/v), and
2′,7′-Dichlorofluorescein (1 µg/ml; CAS No. 76-54-0; MW= 401.2) and L-
Tyrosine-3, 3-d2 (10 µg/ml; CAS No. 72963-72-0; MW= 183.20) as internal
standards for semi-polar and polar compounds respectively, were added to the
aliquot. A ceramic bead was added and samples were mixed in a bead-mill
homogeniser (TissueLyser II; Qiagen, Valencia, CA, USA) for 3 min, after which
they were centrifuged for 6 min (18188g). Approximately 500 µl of the aqueous
extract was transferred to an autosampler vial and stored at −20 °C until analysis.

Lipids. For lipids, all procedures were similar to that of polar and semi-polar
compounds, except that the extraction solvent was made of damp chloroform:
methanol (67:33, v/v), containing 2′,7′-Dichlorofluorescein (20 µg/ml) as an
internal standard.

Fructans. Boiling water (1.5 ml) was added to another aliquot (50 mg). After
homogenisation, samples were placed in a hot water bath (90 °C) for 30 min.
Samples were cooled to room temperature, centrifuged, and approximately 500 µl
of the aqueous extract was transferred to an autosampler vial for analysis. Samples
were stored (−20 °C) for a minimal period to avoid fructan degradation.

Fatty acid methyl esters (FAMEs). After extraction of fructans, the remaining
supernatant was discarded and the pellet was freeze-dried overnight. The dried
aliquot was transferred to a 15 ml Falcon tube containing 50 µl of pentadecanoic
acid (C15:0; CAS No. 1002-84-2; MW= 242.4) in heptane (4 mg/ml) as an internal
standard. After the addition of 1 ml of 1M methanolic HCl reagent60, the tubes
were purged with nitrogen, sealed and heated in a hot water bath (80 °C) for 1 h.
Tubes were then cooled to room temperature, and 50 µl of heptadecanoic acid
methyl ester (Premethyl ester C17:0; CAS No. 1731-92-6; MW= 284.48) in
heptane (4 mg/ml) was added as another internal standard. A total of 600 µl of
heptane and 1 ml of 0.9% sodium chloride (w/v; NaCl) were added and the tubes
were manually shaken to extract FAMEs into the heptane phase. Totally, 150 µl of
the heptane layer was transferred to a 250 µl glass insert fitted in an autosampler
vial for GC–MS analysis.

Chromatography and tandem mass-spectrometry: (U)HPLC-MS. (U)HPLC-MS
conditions for analysis of polar and semi-polar compounds using ZIC-pHILIC61

and C1862 columns, were as described in respective references. An Exactive
Orbitrap (Thermo Fisher Scientific, Waltham, MA, USA) mass spectrometer with
electrospray ionisation was used for analyses in both positive and negative modes.
Fructans were analysed as described by Harrison, et al.63 using a porous graphitised
carbon column and LTQ linear ion trap mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, USA) with electrospray ionisation in negative mode.

The Thermo LC–MS system (Thermo Fisher Scientific, Waltham, MA, USA)
for analysis of lipids consisted of an Accela 1250 quaternary UHPLC pump, a PAL
auto-sampler fitted with a 15,000 psi injection valve (CTC Analytics AG., Zwingen,
Switzerland) a 20 μl injection loop, and a Q-Exactive OrbitrapTM mass
spectrometer with electrospray ionisation. A C1 column (50 × 2.1 mm, 5 µm;
Thermo Fisher Scientific, Waltham, MA, USA), maintained at 25 °C with a
gradient elution programme and a flow rate of 500 µl/min, was used for
chromatographic separation. The mobile phase comprised water containing 0.1%
formic acid (Solvent A) and isopropanol:acetonitrile containing 0.1% formic acid
(50:50, v/v; Solvent B). The gradient was set to hold solvent A at 80% from 0 to 1
mins, gradually decline to 0% at 18.1 mins, maintained at the same level up to 20
mins, increased to 80% at 20.1 mins and finally allowed to equilibrate as such for
the rest of the programme, i.e., 25 min. The samples were cooled in the auto-
sampler at 4 °C and the injection volume of each sample was 2 μl. The first 1.5 min
and the last 5 min of the chromatogram were diverted to waste. Both full and data
dependent MS2 scans were collected in profile data acquisition mode. For full scan
mode, a mass resolution setting of 35,000 was set to record a mass range of m/z
200–2000 with a maximum trap fill time of 250 ms. For MS2 scan mode, the same
mass resolution setting was maintained with a maximum trap fill time of 120 ms.
The isolation window of selected MS1 scans was ± 1.5m/z with a collision energy of
30 eV. Samples were run in both positive and negative ionisation modes separately.
Positive-ion mode parameters were as follows: spray voltage, 4.0 kV; capillary
temperature, 275 °C; capillary voltage, 90 V, tube lens 120 V. Negative-ion mode
parameters were as follows: spray voltage, −4.0 kV; capillary temperature, 275 °C;
capillary voltage, −90 V, tube lens −100 V. The nitrogen source gas desolvation
settings were the same for both modes (arbitrary units): sheath gas, 40; auxiliary
gas, 10; sweep gas, 5. The Xcalibur software package provided by the manufacturer
was used to create these settings.

GC–MS. Analysis of FAMEs was undertaken using a Thermo DSQ II Trace Ultra
gas chromatograph (Thermo Fisher Scientific, Waltham, MA, USA) fitted with a DB5
GC capillary column. GC–MS conditions were as described by Browse et al.60.

Standards and reagents: All standards were purchased from Sigma–Aldrich
Chemicals Co. (St. Louis, MO). Ultrapure water was obtained from a Milli-Q

system (Millipore, Bedford, MA). All solvents used were of Optima LC–MS grade
and were purchased from Thermo Fisher Scientific (Auckland, New Zealand).

Data analysis. Sample sequence and batches: For each stream of analysis, samples
(3575) were systematically randomised across 36 batches, making sure that two
clonal replicates of a genotype were not present in the same batch. A single batch
comprised approximately 100 samples interspersed with a QC sample for every
10 samples (10–12 QC samples per batch). The sequence comprised blanks, QC
and samples run in positive mode, followed by the same order in negative mode.
Fructans and FAMEs were analysed in negative-63 and positive- ionisation modes
alone, respectively.

QC monitoring and troubleshooting: For each batch, the quality of runs was
determined by constantly monitoring the respective internal standard in QC
samples for: (1) consistency in retention time (±0.5 min), (2) mass accuracy (±5
ppm) and (3) signal intensity. In the instance of constant drift in one of these
parameters, the batch was immediately stopped and re-run after recalibrating the
mass spectrometer. After completion of the run sequence, samples of each batch
were retained at −20 °C until another QC check (based on PCA) was conducted.
PCA of samples classified based on run-order within each batch was used to reveal
any significant run-order effects. Where a significant run-order effect was apparent,
the batches were re-run. Otherwise, batches were passed on to a super batch (a
collection of batches that have passed the QC tests), for further processing. Score
plots of PCA provide a simple and quick qualitative assessment of variability within
a sample set64.

Fructans: Fructan identification and DP measurements were based on XCMS65

(Supplementary Table 2) and an in-house R script. Essentially, a target list from
DP2 to DP20, denoting the parent mass, dimer and commonly formed adducts
(formic acid and chlorine) for each DP, with corresponding retention times, was
created based on respective extracted ion chromatograms. The script was used for
(1) peak detection, (2) peak grouping, (3) retention time correction, (4) peak filling,
(5) normalisation of run-order within each batch20, (6) normalisation of batch-
effects using comBat66, (7) matching the resultant data matrix with the target list
and (8) creating a table with peak intensities for each DP, including the molecular
ion, dimer and adduct masses, across all samples.

Peak intensities of all ions representing each DP were summed, and the sum
was multiplied by the number of hexose units, to establish a common baseline for
comparisons. An exemplar is presented in the case of DP3 (Supplementary
Table 3). As a measure of the total sugar content, fructans in the low (DP3, 4 and
5), mid (DP10, 11 and 12) and high (DP18, 19 and 20) DP ranges were added.

To delineate maximum separation between high- and low-sugar groups and
maintain consistency of results, a two-tier criterion was established. First, the 715
genotypes (n= 5) were ranked as top 10% and bottom 10% based on total sugar
content, and second, the full sample set (3575) was ranked as top 10% and bottom
10% based on total sugar content. Within the top 10% and bottom 10% of
genotypes identified, only genotypes with three or more (out of five) clonal
replicates were selected for comparisons. This two-tier criterion enabled
identification of genotypes with minimum variation. Raw files corresponding to
these high- (n= 133) and low-sugar (n= 106) samples from other analytical
streams (polar, semi-polar, FAMEs and lipids) were collated for further
comparative analysis.

Lipids, polar and semi-polar compounds: XCMS65 (Supplementary Table 2) and
in-house R scripts with appropriate parameters for UHPLC (C18) and HPLC
(Lipids and HILIC) settings were used for: (1) peak detection using centwave; (2)
grouping; (3) retention time alignment using obiwarp; (4) peak re-grouping and (5)
filling of missing peaks.

The resultant data matrices were cleaned and post-processed by using: (1)
diffreport function of XCMS to generate extracted ion chromatograms of all
identified peaks, and eliminating the ones that represented background noise, and;
(2) CAMERA67 to identify and eliminate isotopes (HILIC and C18) and (3)
normalisation for batch-effects using comBat66. The final data matrices of
metabolic features were used for local library matching and statistical analysis.
Metabolic features, defined here as molecular entities or ion types with a unique
mass-to-charge ratio (m/z) and retention time.

LipidSearch and local library matching: Lipid identification was performed
using LipidSearch software (Thermo Fisher Scientific, USA)68. Raw lipid files
corresponding to high- and low-sugar groups were uploaded to LipidSearch
separately for positive and negative ionisation modes. Product ion search on Q-
ExactiveTM data was selected with a mass tolerance of 6 ppm for precursor ions
and 10 ppm for product ions, along with a selection of lipid classes (Supplementary
Table 4). Lipid species/classes identified for each file were then merged based on
retention time alignments and a single file with the merged results, one each for
each ionisation mode, was generated. This library of identified lipids was matched
against the final data matrices based on parent mass and retention times. Peak
intensities generated by XCMS settings for the identified lipids were ultimately used
for further statistical analyses.

The lipidomics results shown here were obtained by a low level data fusion25 of
the positive and negative ionisation modes by horizontal concatenation, and taking
an average of the different lipid ions that were detected for a specific lipid class. For
example, an average of the peak intensities of lysophosphatidylethanolamine LPE
(16:0)−H, LPE(18:3)−H, LPE(18:2)−H, LPE(16:0)+H, LPE(18:3)+H and
LPE(18:2)+H was taken to obtain the overall peak intensity of the LPE class.
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Authentic standards, mostly plant based, from the AgResearch chemical
inventory were run through the HILIC and C18 streams, under conditions identical
to the current study. Parent masses in respective ionisation modes and retention
times were listed in a table, and this library of authentic standards was matched
against the corresponding final data matrices with tolerances of 5 ppm for parent
mass and 3 s for retention time, to identify any hits. The libraries had 297, 170, 142
and 227 parent masses to match in C18 positive and negative, and HILIC positive-
and negative-ionisation modes, and predominantly contained amino acids,
secondary metabolites and their derivatives in C18, and amino acids, sugars,
organic acids and their derivatives in HILIC streams, respectively.

Statistical analysis: Statistical analyses were performed using MetaboAnalyst ver
3.0, an online metabolomics analysis suite69. A data scaling procedure (auto-
scaling) was carried out, where the data were normalised (mean-centred and
divided by standard deviation of each variable) so that the features (peak
intensities) are comparable.

Univariate and multivariate data analyses70 were conducted. For univariate
analysis using t tests, features detected as significant with a false discovery rate cut-
off of p < 0.05 were evaluated. For the multivariate approach, PCA was used to
interrogate the data. Score plots which display the distribution of each sample
along the composite variables of the score plot graph are presented.

Minitab 18 (Minitab Inc., USA) software was used to generate the interval plot
(Fig. 1), cloud plot (Fig. 3), and boxplots (Fig. 2a, Fig.4); MS Excel (Microsoft Inc.,
USA) was used to generate Fig. 2c; and an online correlation analysis tool (www.
sthda.com) was used to generate Fig. 2b.

Pathway analysis and compound identification: While eliminating redundant
signals is vital for the identification of biomarkers, retaining these signals will
facilitate network predictions25. Therefore, the raw data matrix obtained from the
diffreport function (high- vs. low-sugar groups) of XCMS was used for pathway
analysis. Network predictions/pathway analysis was performed using
Mummichog71, a programme that combines metabolite prediction and network
analysis in one step72,73. In contrast to the traditional approach, Mummichog first
populates related spectral features to a network, with the hypothesis that if features
reflect biological activity, then the metabolites they represent must exhibit
enrichment in the local network. Metabolite identifications along with enriched
pathway modules impart a broad understanding of tentative mechanisms, and
provides scope for further probing. Input files forMummichog from the HILIC and
C18 streams comprised m/z values, retention time, p values and fold-change values.
Due to its genetic synteny with ryegrass74, metabolic networks/pathways of barley
(Hordeum vulgare) from the Plant Metabolic Network (PMN), www.plantcyc.org,
December, 2016, were used as a reference. Appropriate parameters were selected
for the ionisation mode, instrument (Orbitrap) and mandatory identification of
parent masses, while other parameters were set as default.

Significant nodes of all four streams from respective activity networks were
collated, and m/z features showing fold-change greater than 1.5 alone were selected.
Features that matched authentic standards in the local library, and manually
identified compounds that had fold-change greater than 1.5, were also added to this
list. KEGG IDs for these shortlisted features were uploaded to KEGG Mapper75,
http://www.kegg.jp/kegg/tool/map_pathway2.html, December, 2016. Modules
directly involving the identified compounds with reference to rice (Oryza sativa)
pathways, were displayed.

In addition to compounds identified with level 1 confidence44 by matching with
a local library of authentic standards, de novo compound identification with level 2
confidence was performed as demonstrated by Subbaraj et al.76. Compounds
identified by Mummichog were only given a level 3 status, a level that implies
compound class.

Pathway visualisation using MapMan: MapMan uses a hierarchical ontology
approach to visualise pathways and their corresponding modules in a functional
context77. A customised map, based on the module/pathway data generated by
KEGG Mapper, was built for the current study. The experimental data file
comprised the compounds identified in Table 1, along with the respective t stat
values. KEGG Mapper results were sorted into appropriate bins in accordance with
MapMan syntax (Table 2) and added as the mapping file. Finally, a custom made
picture (.bmp) that accommodates all the identified pathways and modules was
added to the pathways folder. The ImageAnnotator module of MapMan uses
mapping files as its data source, and then paints the input experimental data to the
custom made images/maps according to the hierarchical structure of the mapping
files77.

A summarised overview of data analysis is presented in Fig. 6.

Data availability
Raw data files (Thermo.raw files) are available at MetaboLights database78 (www.ebi.ac.
uk/metabolights), under the following study IDs: Oligosaccharides (MTBLS 529), HILIC-
positive ionisation mode (MTBLS 62), HILIC-negative ionisation mode (MTBLS 63),
C18-positive ionisation mode (MTBLS 64), C18-negative ionisation mode (MTBLS 65),
lipids-positive ionisation mode and FAMEs (MTBLS 66) and lipids-negative ionisation
mode (MTBLS 68). Allied metadata was created using the ISA-creator package from
MetaboLights, and comprised genotype, replicate, extraction, chromatography and
instrument conditions, ionisation mode and mass range information.
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