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ABSTRACT The subseafloor is a vast habitat that supports microorganisms that have a
global scale impact on geochemical cycles. Many of the endemic microbial communities
inhabiting the subseafloor consist of small populations under growth-limited conditions.
For small populations, stochastic evolutionary events can have large impacts on intra-
specific population dynamics and allele frequencies. These conditions are fundamentally
different from those experienced by most microorganisms in surface environments, and
it is unknown how small population sizes and growth-limiting conditions influence evo-
lution and population structure in the subsurface. Using a 2-year, high-resolution envi-
ronmental time series, we examine the dynamics of microbial populations from cold,
oxic crustal fluids collected from the subseafloor site North Pond, located near the mid-
Atlantic ridge. Our results reveal rapid shifts in overall abundance, allele frequency, and
strain abundance across the time points observed, with evidence for homologous
recombination between coexisting lineages. We show that the subseafloor aquifer is a
dynamic habitat that hosts microbial metapopulations that disperse frequently through
the crustal fluids, enabling gene flow and recombination between microbial populations.
The dynamism and stochasticity of microbial population dynamics in North Pond sug-
gest that these forces are important drivers in the evolution of microbial populations in
the vast subseafloor habitat.

IMPORTANCE The cold, oxic subseafloor is an understudied habitat that is difficult to
access, yet important to global biogeochemical cycles and starkly different compared to
microbial habitats on the surface of the Earth. Our understanding of microbial evolution
and population dynamics is largely molded by studies of microbes living in surface habi-
tats that can host 10 to 1,000 times more microbial biomass than is frequently observed
in the subsurface. This study provides an opportunity to observe population dynamics
within a low biomass, growth-limited environment and reveals that microbial populations
in the subseafloor are influenced by changes in selection pressure and gene sweeps. In
addition, recombination between strains that have dispersed from elsewhere within the
aquifer has an important impact on the evolution of microbial populations. Much of the
microbial life on the planet exists under growth-limited conditions, and the subseafloor
provides a natural laboratory to explore how life evolves in such environments.
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The marine subsurface is home to more than half of the archaea and bacteria inhab-
iting the oceans (1, 2). Marine subsurface habitats are frequently energy limited,

which impacts the total biomass that can be supported in these environments (3). As a
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result, microbial communities in these habitats are often composed of relatively low
biomass (4–7) (,104 cells per unit volume). Population size can have important conse-
quences for how microbial populations evolve over time, and factors such as genetic
drift can have an exaggerated impact on small microbial populations compared to
habitats in which microbial populations are larger. Most previous studies of adaptation
in natural microbial communities have focused on habitats with high biomass and
thus larger population sizes, such as the surface ocean, deep-sea hydrothermal vents,
and freshwater lakes (8–11). It is unclear how natural selection and genetic drift shape
the evolution of microbial communities in low-biomass habitats, despite the fact that a
substantial fraction of global microbial biomass is found in such habitats.

North Pond, located near the mid-Atlantic ridge (12), offers a unique opportunity to
examine the dynamics of microbial adaptation in natural populations in a low-biomass,
growth-limited habitat. The North Pond site consists of exposed crustal ridges with a
depression that has accumulated ,100 m of low permeability sediment, causing the
bulk of fluid exchange and transport to occur beneath the sediment basin (13). This
subseafloor aquifer connects the deep waters of the oceans through a porous network
of crustal rock, which globally contains about 2% of the oceans’ volume (14–16). The
crustal aquifer beneath the sediments of North Pond is accessible through two circula-
tion obviation retrofit kits (CORKs) installed by the International Ocean Drilling
Program (IODP) in 2011, providing direct access to the fluids circulating within the aq-
uifer, while preventing exchange with the overlaying water and sediment environ-
ments (17, 18). Repeated sampling in 2012, 2014, and 2017, including an eighth sample
in situ time series collected from 2012 to 2014, revealed a dynamic microbial commu-
nity with a high degree of functional redundancy in a complex hydrological system
depleted in dissolved organic carbon (6, 19–21). The aquifer microbial communities are
distinct from bottom seawater, and there are multiple lines of genetic evidence to sug-
gest that the microbial community within the aquifer is motile and metabolically flexi-
ble, with the ability to carry out both autotrophic and organotrophic pathways (6, 19,
22). The North Pond subseafloor microbial community has low biomass (103 to 104 cells
mL21), and incubation experiments suggest the North Pond microbial community is
growth limited and that increasing temperature and enrichment with carbon sources
result in rapid growth (6, 7, 22).

An open question in subsurface habitats is what the major drivers of evolution are in
energy- and growth-limited environments such as North Pond. It has been hypothesized
that in energy- and growth-limited environments, such as low-deposition deep-sea sedi-
ments, adaptive mutations would be unable to sweep through populations and mutations
would accumulate as a result of energy limitation (23). However, many crustal habitats like
North Pond do not reflect the limited fluid flow and isolated cellular environments in low-
energy sediments and instead may reflect the population dynamics of soils with high fluid
connectivity (24). North Pond fluids are capable of traversing distances of approximately
(21) 2 to 40 m day21, although this fluid flux is spatially and temporally complex, resulting
in convective and oscillatory fluid movement rather than linear flow along the North-
South axis (13). Fluid movement appears to impact the microbial community, as previous
analysis of the system revealed discrete ecological units within the time series that would
oscillate between presence and absence with extended time periods (e.g., hundereds of
days) between reoccurrences (6). However, it is unclear how this dynamic environment
impacts the endemic microbial populations.

Intraspecies diversity results from the introduction of variation through mutation or
gene flow, and that variation is removed through selection and genetic drift. Thus, ex-
amination of patterns of genomic variation within populations can provide insights
into evolutionary dynamics within a system. Here, we present an analysis of the intra-
specific population dynamics of the North Pond aquifer microbial community from a
metagenomic time series spanning 10 time points over a 2-year period. We sought to
characterize the dynamics of population variation over time in order to determine
what processes constrain variation within microbial populations at North Pond and to
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assess the balance between deterministic processes such as selection and more sto-
chastic processes such as dispersal. We show that abundant microorganisms within
the crustal fluids have patterns of genome diversity suggesting that large-scale
genomic sweeps are infrequent and small gene sweeps, recombination, and dispersal
of populations within the aquifer may have a more pronounced impact on genome di-
versity and therefore evolution in this habitat. These results provide new understand-
ing of microbial population dynamics over time and how microorganisms adapt and
persist in the largest habitat on the planet.

RESULTS AND DISCUSSION
Improving North Pond metagenome-assembled genomes. By comparing and

combining the total set of new metagenome-assembled genomes (MAGs) to the origi-
nal 2018 North Pond (NORP) MAGs (6) (n = 195 MAGs), it was possible to replace 22
2018 NORP MAGs with newly reconstructed MAGs with higher completion and/or
lower redundancy statistics and to produce 137 completely new MAGs, previously
unrecovered from the metagenomic data sets (see Data set S1 at https://doi.org/10
.6084/m9.figshare.17698631). Additional results and discussion of these MAG results
can be found in the supplemental material (Text S1).

It is important to note that MAGs represent the overall diversity of a mixture of
strains in a microbial population at a specific site at a specific point in time. Therefore,
the terms “MAG” and “population” are used interchangeably or in conjunction with
each other for the remainder of this article. Many of the methods described below
require a robust signal over many genomic sites to allow for interpretation, such that
the analyses conducted here should not have been strongly affected by incomplete-
ness or small amounts of redundancy in the MAGs.

Targeting of specific populations in North Pond fluids. To conduct a robust anal-
ysis of genome dynamics at borehole U1382A over the 2-year time series, we focused
on MAGs that occurred in at least three samples with $5 reads per kbp MAG per Mbp
metagenomic sample (reads per kilobase per million [RPKM]) (Table 1; Fig. 1; see Data
set S2 at https://doi.org/10.6084/m9.figshare.17698631). In total, six MAGs met these
criteria. In addition, we identified another four MAGs with high coverage (.30 RPKM)
in only one sample. In all four instances, these MAGs had low coverage (,3 RPKM) in
the other time points, with three MAGs having extremely low coverage at other time
points (,0.15 RPKM) (Table 1; Fig. 1). We conducted an in-depth analysis of these 10
MAGs to understand the impacts of dispersal, selection, and recombination on micro-
bial populations in the aquifer. Due to the complexity of fluid movement within the aq-
uifer, it is challenging to determine whether rapid changes in cell abundance result
from a dispersal event, whereby cells are flushed from the sampling location, or the
result of “rapid” death and growth over the measured time points. Given the dyna-
mism of the aquifer, we assumed that rapid shifts in population structure were likely

TABLE 1 Information for the MAGs of interesta

Calendar Date 25-Apr-12 6-Aug-12 5-Oct-12 4-Dec-12 2-Feb-13 3-Apr-13 2-Jun-13 1-Aug-13 30-Oct-13 5-Apr-14
Julian Days 116 219 279 339 399 459 519 579 669 826

MAG ID GTDB Taxonomy (R95) TP0 TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9
NORP83 (o) Rhizobiales 0.02 16.62 0.23 13.69 11.27 2.73 9.95 1.04 0.38 0.00
NORP139 (f) Parvibaculaceae 2.13 6.84 6.90 4.37 9.78 8.50 6.97 1.27 1.21 0.01
NORP147 (f) Rhizobiaceae 0.00 36.41 0.08 20.33 12.36 0.11 0.30 0.02 0.02 0.03
NORP163 (c) Gammaproteobacteria 20.86 16.51 48.66 3.43 2.92 1.12 0.24 19.77 20.95 2.97
NORP169 (g) Nitratireductor_B 2.12 6.53 5.09 0.82 0.52 1.43 8.38 4.84 4.14 0.08
NORP246 (g) Shewanella 0.02 11.60 0.10 8.34 5.24 1.74 0.12 0.10 0.13 0.00
NORP6 (g) Desulforhopalus 0.00 0.00 0.00 0.00 88.61 0.00 0.02 0.00 0.00 0.00
NORP57 (g) Halomonas 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 38.25
NORP100 (o) Thiohalomonadales 1.05 0.10 1.97 0.08 0.16 0.11 0.01 2.46 2.77 38.98
NORP167 (f) Flavobacteriaceae 0.03 30.13 0.07 0.13 0.01 0.00 0.00 0.01 0.00 0.00
aValues at each time point represent RPKM. MAGs in the top half of the table occurred in at least three samples with$5 RPKM. MAGs in the bottom half of the table
represent MAGs that demonstrated a sudden increase in abundance at a single time point.
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associated with dispersal; however, given the small population sizes within these mi-
crobial communities, drift during bottleneck events remains likely.

MAGs represent extant populations in the aquifer. In general, the planktonic
component of the microbial community within the aquifer has low cell density (103 to
104 cell mL21) (6, 7, 22). Under these low biomass conditions, we hypothesized that
some of the microbial populations represented by the MAGs may be derived from
organisms that had undergone a recent clonal expansion. A clonal expansion occurs
when a population undergoes rapid growth, usually due to expansion into a new
niche, and subsequently does not have enough time to accumulate mutations within
the population (25). Few previous studies have defined metrics for what constitutes a
clonal expansion in natural populations, and metrics will vary depending on methodol-
ogy for assembly, binning, mapping, and defining single nucleotide variants (SNVs).
Here, we assessed all MAGs for features indicative of a recent clonal expansion by
searching for rapid shifts in abundance accompanied by extremely low SNV density rel-
ative to other populations. Each of the MAGs had rapid shifts in abundance, and we
were particularly interested in the four MAGs (NORP6, NORP57, NORP100, and
NORP167) that demonstrated a sudden increase in abundance at a single time point,
with extremely low abundance at other time points (Table 1; Fig. 1). The number of
detected polymorphisms, or single nucleotide variants per kilobase pair (SNVs kbp21),
nucleotide diversity, and evidence of active replication were used as metrics to deter-
mine if any of the populations were candidates for clonal expansion (see Data set S3
and 4 at https://doi.org/10.6084/m9.figshare.17698631). We calculated trough-to-peak
ratios (T:P), which can be used as an estimate of genome replication from MAGs (26). It
should be noted that while T:P ratios have been validated with pure cultures grown in
chemostats (27), T:P ratios do not always correlate with cell growth rates in mixed com-
munities (28). Based on genome coverage T:P ratios calculated for the North Pond
MAGs, most MAGs in the time points of interest had evidence of active replication,
with between 1.3 and 6.8. Despite drastic changes in abundance between time points
(increasing from ;0 to 38.3 and 88.6 RPKM, respectively; Table 1), a T:P ratio for NORP6
and NORP57 could not be determined by the tool iRep. Clonal expansions have been
rarely observed in nature. The only defined clonal population from a previous study,

FIG 1 Scatterplot of the abundance for each of the 10 MAGs of interest sampled from North Pond CORK U1382A. The size of
each marker is scaled to the number of polymorphisms detected in the sample. Dotted lines highlighted RPKM values of 30 and
5, which were used as cutoffs to determine time points of interests. Markers with $5 RPKM are outlined with black lines.
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which was also based on MAGs, observed a population with 0.003 SNVs kbp21 poly-
morphisms (29) in a freshwater environment. Three of the North Pond MAGs (NORP6,
NORP57, and NORP147) had notably few polymorphisms, ranging from 0.2 to 1.3 SNVs
kbp21, but all others had more (5.7 to 63.8 SNVs kbp21; Fig. 1; Data set S3). This level of
population diversity is approximately equivalent to that observed for soils in grassland
meadows (ranging between 4.7 and 43.0 SNVs kbp21) and higher than single species-
dominated photosynthetic mats in a connected watershed (ranging between 0.01 and
8.7 SNVs kbp21) (11, 24). Based on the observed nucleotide diversity of the North Pond
MAGs across all relevant time points (p = 0.002 to 0.01), each population is diverse
and shares minor alleles. The accumulation of diversity within the populations of inter-
est, as measured through nucleotide diversity, suggests that there were no large-scale
genome sweeps shortly before sampling. Collectively, this evidence suggests that
none of the populations that met the criteria for analysis were candidates of recent clo-
nal expansion. Instead, we observed high underlying diversity indicative of a complex
system with coexisting subpopulations, approximately equivalent to subspecies or
strains.

Nucleotide-level heterogeneity reveals coexistence of multiple strains within
populations. For the six MAGs with high abundance across multiple time points, it
was possible to compare patterns in allele frequency and reconstruct strain abundance
patterns, revealing the coexistence of multiple subpopulations/strains. The MAG popu-
lations represented by NORP169 and NORP246 are estimated to contain approximately
three strains each (Fig. 2; Fig. S1 in the supplemental material). There were pronounced
shifts in the relative abundance of the three strains between time points. For example,
in the NORP246 population, strain Str1 is ;65% of the population in TP1, while in TP3
strain Str2 becomes the dominant strain at ;51% of the population and reaches
;62% in TP4 (Fig. 2A).

The other four MAG populations (NORP83, NORP139, NORP147, and NORP163) dif-
fered in that during the time points of interest, at least one strain enters the population
that was not present at other time points. For example, the NORP139 population con-
sisted of six strains (Str1 to Str6; Fig. S1). The NORP139 strain Str1 was dominant in TP2

FIG 2 Strain relative abundance as determined using DESMAN for NORP246 (A) and NORP83 (B). Major allele
frequency for SNVs detected in time points of interest for NORP246 (C) and NORP83 (D). The major allele frequencies
have been hierarchically clustered and scaled from 0 to 1. Both 0.0 and 1.0 represent a fixed allele; 0.5 represents a
split allele.
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(;62% of the population) but essentially absent (,0.7%) for other time points.
Distinctly, NORP147, in the first time point of interest, was dominated by a single strain,
with two different strains appearing as a minor component (,9%) of the population
over subsequent time points (Fig. S1). For all four of these populations, the introduc-
tion of these strains supports the existence of a larger metapopulation, or spatially
delimited local populations connected by migration (30), for which specific members
were observed at North Pond at discrete time points. We observed shifts in the major
allele frequency corresponding to the appearance of these new strains. This was exem-
plified by the transition in strain membership for NORP83 from TP1 to TP3, where the
dominant strain Str4 (;87% of the population) was supplanted by the introduction of
strain Str2 (;54% of the population), and more than half of the alleles shift from being
nearly fixed at one allele to another different allele state (Fig. 2B and D). Moreover,
when all four strains are present in TP4 and TP6 in a plurality (14% to 48% of the popu-
lation), most of the major allele frequencies are close to 0.5 (Fig. 2D). The shifts in rela-
tive strain abundance were reflected in the major allele frequency, where time points
dominated by a single strain have more sites that are fixed at a single allele (TP1 and
TP3 major allele frequency 83.1% and 83.4%, respectively), while time points with mul-
tiple strains in similar proportions tend to have major allele frequencies closer to 0.5
(TP4 and TP6 major allele frequency 62.5% and 64.6%, respectively; Fig. 2). The ecology
of these populations, with multiple strains disappearing and appearing across time
points and changes in major allele frequencies corresponding to these shifts, and the
high underlying genetic diversity, without indications of recent population-wide re-
moval of diversity, supports an argument that the larger aquifer metapopulation is the
source of genetic diversity observed at the North Pond site. This high observed diver-
sity suggests that these strains originate through evolutionary selection and drift else-
where in the aquifer over time periods longer than those observed in this study.

Homologous recombination is common and varies by population. If population
differentiation occurs elsewhere and throughout the aquifer, the degree of recombina-
tion between coexisting strains has important implications for speciation and gene
transfer. Low rates of recombination could lead to sympatric speciation or more fre-
quent genome-wide sweeps, whereas high rates of recombination between strains
could hold lineages together and also lead to gene-specific sweeps and facilitate gene
transfer. We used the decay rate of linkage disequilibrium and the four-gamete test as
a proxy for detecting recombination within the populations represented by each MAG.
Linkage disequilibrium is a measurement that uses the distance between any two
allelic variants as a proxy for recombination; variants in close proximity are less likely to
become unlinked via recombination. As the recombination rate increases, the number
of paired variants decreases as distance between variants increases (see Materials and
Methods). Similarly, the four-gamete test is a measure of recombination that searches
for pairs of segregating sites (see Materials and Methods). All of the populations had
four alleles (denoted as H4; the four-gamete test assumes that the presence of the AB,
ab, Ab, and aB haplotypes can only occur through homologous recombination) at
some of the linked biallelic SNV sites. Low H4 frequencies indicate low recombination
rates. The mean H4 frequencies for each population ranged from 0.44% to 14.84%.
Several of the MAG populations (NORP83, NORP147, and NORP169) had H4 frequencies
(0.44%, 1.17%, and 1.45%, respectively) below the lowest values estimated for single
species photosynthetic mats (3.4% H4 frequency [11]; Table 2). NORP147 did not dis-
play decay of the linkage disequilibrium values as genetic distance increased for any of
the mutation type pairs, indicating a lack of recombination within the population (S-S,
N-S, or N-N; Fig. 3A). NORP83 displayed linkage disequilibrium decay (Fig. 3B), although
the rate of decay was substantially lower than in the other North Pond populations
(e.g., NORP246; Fig. 3C; Fig. S2), which is an indication of lower recombination rates.
NORP57 did not display linkage decay (Fig. 3D) but had a slightly larger H4 frequency
(5.40%). Both NORP83 and NORP169 had sufficient data to produce an estimate of
recombination-to-mutation (gamma/mu [g/m]) from the tool mcorr, which had values
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(NORP83g/m: 1.10 to 4.59 and NORP169g/m: 4.71 to 8.25) similar to those of human
pathogens (24, 31) (see data set S5 at https://doi.org/10.6084/m9.figshare.17698631).
Collectively, this evidence suggests the NORP83, NORP57, NORP147, and NORP169
populations did not undergo high rates of recombination relative to other North
Pond populations. For NORP147, the limited number of coexisting strains would
reduce the opportunity for recombination, but for NORP83 and NORP169, which
have multiple coexisting strains, this may imply that intrinsic biological characteris-
tics prevented high rates of recombination within these populations. Diminished
rates of recombination could increase the potential for sympatric speciation and ge-
nome-wide sweeps.

Conversely, the other six MAG populations had distinct patterns of linkage decay
and higher frequencies of the H4 allele, suggesting likely recombination; however, the
degree of linkage disequilibrium varied between them (Table 2; Fig. S2). For all of these
populations, homologous recombination could maintain cohesion among the coexist-
ing strains, preventing sympatric speciation while potentially facilitating gene-specific
sweeps and possibly gene exchange among closely related strains. The balance between
recombination and selection dictates the degree to which coexisting microbial lineages
can speciate in the absence of geographical barriers (32–34). Recombination can play a co-
hesive role by maintaining sequence clusters and preventing speciation, particularly if the
effects of recombination are higher than that of mutation (35). If recombination rates
are low, clusters of organisms can form from selective sweeps, resulting in “ecotypes” that
are adapted to specific niches (36). These ecotypes are maintained by periodic selection
for or against specific mutations. However, if recombination rates are high enough, specific
genes could sweep through populations without initiating a genome-wide sweep (29, 32).
Our results suggest that recombination is common but populations likely do not reach
panmictic equilibrium in the aquifer, in which recombination occurs frequently enough
such that alleles are not linked across microbial genomes. Thus, both genome-wide and
gene-specific sweeps are possible among these microbial populations.

Gene content variation across strains. Genes that are unique to individual strains
may provide a selective advantage. Genes limited to specific strains were identified by
calculating changes in gene copy number based on observed changes in coverage
over time ($1� change in coverage between time points; see data set S6 at https://
doi.org/10.6084/m9.figshare.17698631). In order to identify genes with abnormal cov-
erage relative to each other, we used a minimum contig length of 2.5 kb to decrease
the likelihood that any contig contained a single open read framing (ORF). As such,
genes with variable coverage tend to be embedded on contigs between genes that
were near the median genomic value.

The NORP147 population, dominated by a single strain at all three time points of in-
terest, did not have genes with variable copy number, and NORP139, which had higher
comparative rates of recombination, only had five genes with variable gene copy num-
ber, for which four had no KEGG annotations. We examined the four other populations

TABLE 2 Percent mean four-gamete test results for all time points of interesta

MAG ID H1 (%) H2 (%) H3 (%) H4 (%)
Mean no. of
biallelic sites

NORP83 0.11 84.61 14.85 0.44 25,653
NORP139 0.11 42.96 51.43 5.49 15,355
NORP147 0.00 76.48 22.35 1.17 452
NORP163 0.30 53.04 43.14 3.52 22,613
NORP169 0.13 76.76 21.66 1.45 5,132
NORP246 0.07 46.59 49.80 3.54 43,976
NORP6 0.45 23.58 61.13 14.84 3,558
NORP57 1.03 62.82 30.75 5.40 1,353
NORP100 2.83 63.73 28.14 5.29 11,680
NORP167 0.17 62.62 31.86 5.35 21,150
aFour-gamete tests for NORP6, NORP57, NORP100, and NORP167 were only computed for one time point.
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FIG 3 Linkage disequilibrium of r2 for linked SNVs pairs for NORP147 (A), NORP83 (B), NORP246 (C), and
NORP57 (D). Each circle is the mean r2 for pairs of linked SNVs at that distance range (e.g., 1–10 bp,
11–20 bp, etc.), with the area proportional to the number of linked SNVs in the mean. Linked SNVs are
denoted by their predicted mutation type (nonsynonymous [N] and synonymous [S]).
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to understand the putative functions of the genes that had variable copy numbers
over time.

For the NORP169 population, none of the seven variable genes had KEGG annota-
tions, but several of the functional assignments from GenBank implicated transcrip-
tional regulation possibly related to plasmid replication (Fig. 4A). Four of the genes
were colocalized within the MAG (NORP169 Gene IDs 1205 to 1208) and shifted from
,1� copies per genome in TP1 and TP6 to ;4� copies per genome in TP2. This small
shift corresponded with an increase in strain Str1 and may reflect an extrachromoso-
mal element.

In NORP83, 13 of the 23 variable genes (57%) had no KEGG annotation. We
observed shifts in gene abundance likely associated with the gradual loss of strain Str4
and the introduction of strain Str2 (Fig. 2B and C and Fig. 4B). Two sets of genes
(NORP83 Gene IDs 2184 to 2186 and 2476 to 2477) decreased from;2� copies per ge-
nome in TP1 to ,1� copies in TP3 and were annotated as part of a type IV secretion
system (IDs 2184 to 2186) and chromosome partitioning (ID 2477), which may indicate
a role in horizontal gene transfer (37). Conversely, two sets of genes were absent in
TP1 (IDs 1472 to 1473, a putative sodium:proton antiporter and serine hydrolase; IDs
1719 to 1720, sugar permease) and had .1� copies per genome in TP3 (Fig. 4B). A set
of genes (IDs 1027 to 1029) present at,0.5� copies per genome in TP1 and annotated
as putative transposases increased in gene copy in TP3 (5 to 9� copies per genome)
before dropping to a lower, but still elevated level compared to TP1 in TP4 and TP6 (2
to 6� copies per genome; Fig. 4B). These patterns of gene frequency suggest that ei-
ther these transposases were introduced into the North Pond NORP83 population with
the arrival of strain Str2, or these transposases were introduced into other strains,
resulting in the observed increase in copy number.

The NORP163 population had 45 putative genes that changed in gene copy num-
ber over time (Fig. 4C). While 29 of the variable genes (64%) had no KEGG annotations,
12 of these genes were putative transposases, with several exceeding .4� copies per
genome in all of the time points (Fig. 4C). There were five genes that were absent in
TP0-TP2 and had .0� copies per genome in TP7 and TP8 that were annotated as

FIG 4 Hierarchically clustered heat map of gene frequencies for genes $1� change in coverage over the time points of interest for NORP169 (A), NORP83
(B), NORP163 (C), and NORP246 (D). Scaled range from 0 to 5� copies. Values that exceed 5� are denoted as purple in color. Maximum value of gene
frequency for NORP246 (D) is 21.7� copies. Data are available in Data set S6 at https://doi.org/10.6084/m9.figshare.17698631.
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ribosomal proteins (IDs 167 and 2068), hypothetical proteins (IDs 922 and 1712), and a
sulfite reductase (ID 1714). A larger set of genes changed from ,1� copies per ge-
nome to .1� copies from TP0 to TP8 (Fig. 4C). Colocalized genes of this larger set had
functions related to core carbon metabolism (Gene IDs 1083 to 1084), heavy metal
sensing and transcriptional response (IDs 1589 to 1590), and osmolyte transport (IDs
1622 to 1623). These genes that increased in copy number represent putative func-
tions associated with environmental sensing and response through regulation and
substrate transport.

Shifts in gene abundance for the population represented by NORP246 were highly
dynamic over time and accompanied by a change in strain abundance, most notably
the increase of strain Str2 over time (Fig. 2A and Fig. 4D). Forty-seven putative genes
changed substantially in frequency over three time points in the NORP246 population
(Fig. 4D). These genes can be divided into three broad groups: (i) present in TP1 and
absent in TP3 and TP4, (ii) absent in TP1 and present in TP3 and TP4, and (iii) absent in
TP1 and present in high coverage in TP3 and TP4. These most likely reflect genes that
were either present or absent in strain Str2. The 13 putative genes in group one were
present in TP1 (;1� copies per genome) and absent in TP3 and TP4, likely represent-
ing genes that were absent in strain Str2. These were predominantly annotated as hy-
pothetical proteins with some conserved domains (n = 7; Fig. 4D). Three of the putative
genes had roles in transport: xanthine permease (ID 1682), sodium/glutamate sym-
porter (ID 833), and cobalt ATP binding cassette-type permease (ID 2292). Two colocal-
ized genes in this group were annotated as a transposase and reverse transcriptase
(IDs 3549 to 3550). Conversely, the 23 putative genes in group two were absent in TP1
(,1� copies per genome) and present in TP3 and TP4 (1 to 2� copies per genome),
likely reflecting genes that were present in strain Str2 and absent in strains Str1 and
Str3. These were predominantly annotated as hypothetical proteins with conserved
domains (n = 18; Fig. 4D). Genes in group three, which were absent in TP1 and present
in high coverage in TP3 and TP4 (15 to 20� copies per genome), likely representing
genes in high abundance in strain Str2, were colocalized (IDs 2848 to 2853) and lack
annotations, except for gene ID 2851 with homology to proteins in GenBank annotated
as DNA replication protein (Fig. 4D). This segment appeared to contain a fragment of
DNA that in TP3 and TP4 could be independently replicating relative to the NORP246
genome, possibly a plasmid or similar extrachromosomal element. The lack of annota-
tions makes it impossible to determine the exact roles of these genes within the TP3
and TP4 populations, but it is possible that selection favored the functional attributes
of strain Str2 over that of strains Str1 and Str3.

There were three general trends in the types of genes that had gene copy variation:
(i) genes lacking KEGG annotations, for which function remains unknown; (ii) genes
annotated as and associated with extrachromosomal replication (e.g., plasmids, inte-
grases, etc.) and horizontal gene transfer; and (iii) genes annotated as transporters.
While variation in gene copy numbers over time for genes with functional annotations
were identified, we cannot state with certainty that these genes provide a selective
advantage for a particular variant, but some functions could provide specialization at
the intraspecific level. For example, transporters play an important role in substrate
availability and acquisition. The correlation between changes in gene frequency and
the introduction/removal of a strain from the North Pond populations reinforces the
role of dispersal as the likely mechanism for introducing genomic variation between
strains of the same population. These populations may compete for and/or maintain
partially overlapping ecological niches, such that changes in gene content may reflect
the generation of “ecotypes” among the cooccurring strains. In general, the introduc-
tion of new strains did not correspond to an increase in total population abundance,
perhaps reinforcing the idea that the intraspecific populations shared an ecological
niche rather than directly competing for it (38). NORP83, NORP163, and NORP246 had
multiple transposases that shifted in copy number over time. An increase in transpo-
sase activity has previously been identified as a signature of genetic drift (39). In this
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instance, we observed an increase in the number of reads mapping to genes identified
as transposes, although it is unclear whether this represented the spreading of trans-
posases to different strains or an increase in transposase copy number within a strain.
Other genes that changed in abundance, such as putative plasmids and the type IV
secretion system, represent “selfish gene” elements that can propagate between
strains during mixing and recombination events. Potentially in a system like North
Pond, where growth is slow and infrequent, the actions and dispersal of self propagat-
ing elements may play an important role in gene transfer events as they occur outside
canonical windows of genomic replication.

Signatures of gene-specific sweeps. While differences in gene content may result
in the evolution of overlapping ecotypes or eventually to sympatric speciation, the
higher rates of recombination in some of the North Pond populations should produce
evidence of gene-specific sweeps. Genomic regions containing gene-specific sweeps
are characterized by low SNV density. Likely due to the increased cutoff values used to
determine the location of SNVs, compared to Crits-Christoph et al. (24), we did not
observe a correlation between nucleotide diversity and gene coverage or purifying
selection. As such, we used nucleotide diversity from the six MAG populations present
over multiple time points as a proxy for potential gene sweep events based on a statis-
tically significant decrease in nucleotide diversity for individual genes compared to the
genomic mean in all time points (Table 3; see data set S7 to S9 at https://doi.org/10
.6084/m9.figshare.17698631).

Four of the MAG populations had a small percentage of putative coding sequences
(0% to 2%) that could represent gene-sweep events (Table 3). Both NORP83 (2%) and
NORP147 (0%) were previously identified as having low predicted rates of recombina-
tion. The low number of putative gene sweeps is likely a direct result of low recombina-
tion rates, as low rates of recombination would increase gene linkage and thus prevent
individual genes from sweeping through the population. However, both NORP139 (2%)
and NORP246 (1%) had small percentages of their respective coding sequences that
may have represented gene-specific sweeps, but estimates of recombination rates for
these populations were higher compared to NORP83, NORP147, and NORP169.
Conversely, NORP163 (9%) and NORP169 (8%) had a larger percentage of genes involved
in putative gene-sweep events, although NORP163 was identified as having a relatively
low recombination rate. The contradiction between a low expected recombination rate
and a larger number of putative gene sweeps is likely the result of how the four-gamete
test and inStrain recombination rates are calculated. Both approaches use linked biallelic
SNVs to estimate recombination rates, but recent gene sweeps, especially sweeps
through multiple strains, would not have many SNVs. With the exception of NORP139,
most of the putative gene sweeps (55% to 74%) did not produce a dN/dS value from the
Gretel approach analyzing all potential haplotypes and isoforms (Table 3). A smaller per-
centage of putative gene sweeps were attributed to coding regions under purifying
selection (7% to 23%; genedN/dS , mean genomedN/dS) and relaxed selection (6% to 38%;
dN/dS . 1) (Table 3). While this might suggest that most genes are not under selection,
this methodology filtered out putative coding regions without multiple haplotypes/

TABLE 3 Number of genes with decreased nucleotide diversity and regions detected with variable FSTa

Genome
No. of
CDS

No. of low
nucleotide
diversity CDS

Low dN/dS (<mean
genome value)a dN/dS> 1b No dN/dSb

Longest
consecutive
low nucleotide
diversity CDS

No. of elevated
FST regions (>1
std dev)

No. of elevated
FST regions (>2
std dev)

NORP83 2,657 60 (2%) 4 (7%) 9 (15%) 43 (72%) 4 8 0
NORP139 1,538 32 (2%) 6 (19%) 12 (38%) 10 (31%) 1 0 0
NORP147 2,650 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 0
NORP163 2,182 190 (9%) 37 (19%) 11 (6%) 117 (62%) 5 14 1
NORP169 2,842 238 (8%) 19 (8%) 19 (8%) 175 (74%) 3 3 0
NORP246 3,851 22 (1%) 5 (23%) 3 (14%) 12 (55%) 2 0 0
aPercent calculated as no. of low nucleotide diversity CDS/total CDS.
bPercent calculated as fraction of CDS with low nucleotide diversity.
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isoforms, lacking mutations (dN = dS = 0), and with short timescales since divergence
(dS , 0.01). These data could support the interpretation that the identified putative
gene sweeps are recent and have yet to accumulate mutations or been acted upon by
selection. Given the inferred slow growth rates among the North Pond microbial com-
munity, longer periods of time may be required to observe such mutations and selection
in a population.

We also searched for evidence of genetic differentiation among subpopulations using
the pairwise fixation index FST by identifying genomic regions of 51 genes that had vari-
able allele frequencies across populations (see Data set S10 at https://doi.org/10.6084/
m9.figshare.17698631). Generally, this metric followed the same pattern observed using
nucleotide diversity. NORP163 and NORP169 had several regions with elevated FST when
considering a deviation greater than one standard deviation from the mean FST value.
Despite its low estimated recombination rate, NORP83 had the second highest number
of regions with increased FST (n = 8). For all three genomes, none of the elevated FST
regions shared gene content with the putative gene-sweep regions identified with nu-
cleotide diversity. However, increasing the required deviation to greater than two stand-
ard deviations from the mean reduced the number of differentiated regions to a single
region in the NORP163 population. Due to the constraints placed on calculating the FST
metric, which requires genes in two time points to have corresponding biallelic SNVs,
many regions were likely excluded from this FST analysis. Additionally, the FST calculations
required at least five genes in a variable region, although results from the nucleotide di-
versity metric demonstrated that the longest stretch in all genomes of decreased diver-
sity was five sequential genes (Table 3). Furthermore, the nucleotide diversity metric
could be calculated for all genes and the corresponding reads for all time points that
met the inStrain cutoffs. Very few genomic regions had significantly elevated FST results,
especially when filtered using a more stringent cutoff, supporting that even though
some putative gene-specific sweeps were detected in the populations, the observed low
recombination rates likely limit the total number of events between strains.

Collectively, for all six of these populations across all time points, there were several
KEGG functional BRITE categories that were over represented within the identified pu-
tative gene-sweep regions compared to the genomic averages, including tRNA biogen-
esis (BR03016), Ribosome (BR03011), Ribosome biogenesis (BR03009), Transcription factors
(BR03000), and Chaperones and folding catalysts (BR03110) (see Data set S11 at https://doi
.org/10.6084/m9.figshare.17698631). The low number of SNVs in these regions may arise
from the fact that these are often highly conserved core genes, which is consistent with
previous studies (40). However, on average, all of these categories, except Transcription
factors, also had increased mean dN/dS values in the putative gene-sweep regions (0.67 to
1.69) compared to the genomic average (0.40 to 0.48). Although the number of putative
gene-sweep regions only reflects a small percentage of the total genes in the six MAGs, it
is interesting that several core functional categories have comparatively relaxed selection.
This could imply that the accumulation of mutations within core functional genes does
not impart a fitness cost, which could again be a result of the slow growth conditions
experienced by these populations. From the perspective of all six populations, the system
dynamics appear to have been molded by dispersal of strains across the aquifer, and the
low to moderate rates of homologous recombination may have facilitated species cohe-
sion and gene transfer among closely related populations.

Conclusion. The MAGs described here represent subseafloor microbial populations
that exhibited substantial changes over the ;825-day sampling period. Thus, these data
sets provide evidence that the marine crustal aquifer hosts a dynamic habitat in which mi-
crobial populations grow and decay and can be dispersed over monthly timescales. While
rapid allele frequency shifts can be linked to different types of population interactions, such
as sweeps, dispersal, and clonal expansion, dispersal appears to play an important role in
structuring the most abundant populations in the crustal fluid samples. The shifts in allele
frequencies and nucleotide diversity suggest that stochastic events, such as dispersal and
the mixing of populations throughout the aquifer, also mold the evolutionary trajectories
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of microbial populations in this habitat and that selection and drift occur on timescales
that were not captured as part of this study (41). Though classically structured as the intro-
duction or removal of mutations through selection and drift, evolution, broadly defined,
reflects changes in allele frequency within a population. Thus, dispersal can introduce
extant populations from elsewhere in the environment and the interaction of these newly
introduced alleles with the environment reflects an evolutionary response. As such, we are
able to observe microbial evolution in action in the fluids moving through the oceanic
crust. The observed population shifts occur in the span of months, reflecting the highly
dynamic nature of the system, both biologically and physically. The accumulation of extrac-
hromosomal insertions, such as transposable elements and plasmids, suggests that relaxed
selection pressures and slow generation times can impact these populations in a manner
distinct from dispersal. In summary, the subseafloor aquifer of North Pond represents a
highly dynamic habitat where evolution may be governed largely by the stochastic forces
of dispersal.

MATERIALS ANDMETHODS
Sample collection and sequencing. As has been described elsewhere (6, 19, 22), North Pond water

samples were collected from two CORKs at holes U1382A and U1383C in 2012 and 2014. For sample time
points (TP) during expeditions (TP0 in April 2012 and TP9 in April 2014), the Mobile Pumping System
(MPS) attached to the ROV Jason II was used to collect samples through umbilical lines connecting the
CORK platform to fluids in the aquifer. For samples collected between expeditions (TP1 to TP8), the bat-
tery-powered GEOMicrobeSled (42, 43) deployed on the CORK collected samples approximately every 2
months. In all instances, lines were purged to remove stagnant water prior to sampling and all samples
were fixed with RNALater in situ. A complete set (n = 8) of in situ samples were collected from U1382A and
provided the necessary samples and resolution for downstream analysis (as described below). Previously
described in Tully et al. (6), DNA was extracted from filters using a phenol chloroform method (44) and
paired-end sequencing was performed on an Illumina HiSeq 1000 at the Marine Biological Laboratory.
Raw sequences were quality controlled using Cutadapt (45) v1.7.1 (parameters: -e 0.08 --discard-trimmed
--overlap = 3) and Trimmomatic (46) v0.33 (parameters: PE SLIDINGWINDOW:10:28 MINLEN:75).

Metagenome-assembled genomes and manual curation. To build upon the set of MAGs gener-
ated in Tully et al. (6), the quality controlled paired-end reads were assembled using three different
approaches to maximize recovery of MAGs that had not previously been assembled into MAGs (Table S1
and S2 in the supplemental material). The MAGs included in this specific study had a minimum comple-
tion of 58.25% and a maximum redundancy of 4.42%. A detailed methodology has been provided in the
supplemental material, and a comprehensive assessment of the final set of MAGs can be found in data
set S1 (see data set S1 at https://doi.org/10.6084/m9.figshare.17698631).

SNV identification and analysis. anvi’o (47, 48) v5.0 contig databases were generated for all MAGs.
FASTA files of the contigs of each MAG were converted to an anvi’o database (anvi-gen-contigs-database
--skip-mindful-splitting). Bowtie2 (49) v2.3.4.1 (parameters: --no-unal) was used to create recruitment pro-
files for each MAG in each sample. The output SAM format file was converted to a sorted BAM format file
using samtools (50) v1.9 and reads with ,95% sequence identity over 75% of the alignment were filtered
from the recruitment profile using BamM v1.7.3 (parameters: --percentage_id 0.95 --percentage_aln 0.75;
https://github.com/Ecogenomics/BamM). Recruitment profiles were merged with anvi-merge. During the
anvi-profile step, the flag --profile-SCVs was set to include identification of single nucleotide variants (SNVs)
and single codon variants (SCVs). Each individual MAG anvi’o database had the collection value ‘DEFAULT’
and bin value ‘EVERYTHING’ added using anvi-script-add-default-collection. Using those collection and bin
values, anvi-gen-variability-profile (default parameters; --engine AA --include-contig-names --engine CDN)
to extract SNV, single amino acid variants (SAAVs), and SCVs, from the profiles of each MAG in each North
Pond sample (51). The SCV and SAAV values were used to calculate pN/pS ratios using anvi-script-calculate-
pn-ps-ratio (anvi’o v6.2). The sorted, filtered BAM format recruitment profiles described above were used to
determine read counts for each contig using featureCounts (52) v1.5.3 (default parameters) as implemented
within Binsanity-profile (53) v0.3.3 (default parameters). Read counts were converted to the normalized unit
reads per kilobase pair MAG per Megabase pair of metagenomic sample (RPKM). Read counts were also
used to determine the relative fraction of each MAG in each metagenomic sample.

Hole U1382A provided a high-resolution sample data set (10 time points over ;825 days), and
MAGs detected in these samples were selected for downstream analysis based on two criteria from the
time series: (i) sufficient coverage ($5 RPKM) in $3 time points or (ii) high coverage ($30 RPKM) in at
least one time point. Only time points that had $5 RPKM were considered for SNV calculations. This cri-
terion was set to ensure that most base pairs in each MAG had at least 20� read coverage, which was
the minimum coverage value to determine SNVs in all downstream analyses (see below).

As has been reported previously (29, 54, 55), MAGs tend to represent a cohesive population repre-
sented by a .95% nucleotide identity boundary. To confirm that a majority of the signal for each popu-
lation came from closely related organisms, RPKM values were recalculated and compared using
recruited reads filtered to 99% identity over 75% of the length of the alignment using BamM (parame-
ters: --percentage_id 0.99 --percentage_aln 0.75). Additionally, results from inStrain (56) were used to
track what fraction of reads recruited at 95 to 100% identity (see below).
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Two of the MAGs (NORP143 and NORP246) were taxonomically assigned to the genus Shewanella
and shared 98.2% ANI, as determined with FastANI (54). For consideration of this analysis these MAGs
were deemed to represent the same species-level population and NORP143 (67.24% complete, 9.87% re-
dundancy) was removed from downstream analysis while NORP246 was retained (82.57% complete,
2.28% redundancy; Table 1). The features identified in NORP246 were confirmed by creating a new
anvi’o database with recruited reads filtered to 99% identity over 75% of the length of the alignment (as
above). To ensure consistency, analyses using anvi’o calculated values below were based on recruited
reads filtered to 95% identity over at least 75% of the length of the alignment.

Functional annotation and taxonomic assignment. Protein sequences as determined within anvi’o
were submitted to the GhostKOALA KEGG annotation and mapping service (57) (submitted October 23, 2018;
parameters: genus_prokaryotes1 family_eukaryotes). KEGG annotations were added to the anvi’o contig data-
bases for each MAG using the Python script KEGG-to-anvio (https://github.com/edgraham/GhostKoalaParser)
and anvi-import-functions (http://merenlab.org/2018/01/17/importing-ghostkoala-annotations/).

GTDB-Tk (58) v1.3.0 (classify_wf default parameters) using database R95 was used to determine a
taxonomic assignment for each MAG.

Data transformations for analysis. The SNV occurrence table generated by anvi’o was filtered by
retaining all entries with .0 entropy value, SNV positions $20� coverage in the time point(s) of inter-
est, and if the departure from consensus was$10%. Putative SNVs at each time point were converted to
single nucleotide variants per kilobase pair (SNVs kbp21) (23), a measure of polymorphisms within the
population, based on the full length of the MAG. Time points for which a MAG was present at ,5 RPKM
were not used to calculate SNVs kbp21 or considered in further analysis.

We used anvi’o to obtain metrics of microbial population dynamics based on MAGs. anvi’o is a
widely used platform for microbial genomics and provides a baseline to determine polymorphisms in
the underlying metagenomic reads. The criteria detailed here provide a conservative method to com-
pare features such a SNV frequency, major allele frequency, and gene coverage. For data processed with
anvi’o, major allele frequency was determined by counting the frequency of nucleotides in the aligned
reads, identifying the consensus allele, and dividing the number of occurrences of that allele by the total
coverage for that site (i.e., the nucleotide in the reference MAG sequence was not considered in this cal-
culation). For each MAG, mean major allele frequency was determined by averaging all major allele fre-
quencies for each SNV across the entire MAG. For comparing time points, if a SNV was detected in one
time point, but not another (and coverage $20�), the positions for which no SNV was recorded were
assumed to be fixed at the consensus allele. Hierarchical clustering was performed and plotted using
seaborn (https://zenodo.org/record/3767070#.Ys1u8XbMI6Y) with the default clustermap settings (aver-
age distance linkage method and Euclidean distance metric).

Strain identification and abundance. DESMAN (59) was used to identify strains of MAGs based on
SNV proportions in core genes. DESMAN offers insight into the estimated complexity of the populations
captured at a time point for a particular MAG. This analysis calculates the ratio of alleles at each time
point in a set of core genes in order to identify discrete haplotypes (referred to throughout as “strains”)
and to define an estimate of relative strain contribution to the total population. This disentangles the
bulk signal provided by the allele frequencies and offers a hypothesis as to how and why specific alleles
are changing. We used anvi’o to first identify clusters of orthologous genes (COGs) in the MAGs, as well
as to identify SNV variants in a set of 36 universal single-copy COGs as defined by Alneberg et al. (60).
The DESMAN haplotype identifier was computed five times with a varying number of haplotypes (2 to
8), and the posterior mean deviance was plotted to select the optimal haplotype number and best repli-
cate run. Results from Gretel (61) were used to support the optimal haplotype number for each MAG
when running DESMAN (see below). Only time points with sufficient coverage (as described above)
were included in depictions of haplotype abundance across samples.

Recombination. We used both mcorr (31) and inStrain (56) to compile further metrics of population
dynamics and to assess recombination rates. The software package mcorr was used to determine the recom-
bination rate for the populations represented by the MAGs. mcorr utilizes a correlation matrix to link recom-
bination events at the 300-bp scale and fits these events to a model in order to estimate recombination and
mutation rates. The correlation matrix requires polymorphisms in close proximity to correlate in an expected
manner, which can be confounded as the complexity of the underlying subpopulation increases and rate of
recombination increases between subpopulations. Additionally, should the population in question not
adhere to the model trained from laboratory experiments, estimates of recombination and mutation may
not be accurate or recoverable. An mcorr correlation profile for each time point was constructed using fil-
tered recruitment profiles generated with the script filter_reads.py (parameters: -m 0.96 -q 2 -l 1500; https://
github.com/alexcritschristoph/soil_popgen/blob/de1e09dd8416131a6b5feba74f0c3a5747d38da1/inStrain
_lite/inStrain_lite/filter_reads.py) and a GFF formatted gene prediction file generated by Prodigal (62)
v2.6.3 (parameters: -p m -m) using mcorr-bam (default parameters). The correlation profiles were fit to
the mcorr model using mcorr-fit (default parameters). The correlation profiles and calculated fit were
assessed for clear evidence of monotonic decay and normalized distribution of residuals. The esti-
mated ratio of recombination-to-mutation (gamma/mu [g/m]) was incorporated into further analysis if
the bootstrapping mean was ,2� the estimated value (24). Values of gamma/mu that failed this cut-
off were interpreted as evidence of recombination among multiple haplotypes that could not be
resolved using the correlation profile approach.

In contrast to mcorr, the inStrain profile links polymorphisms over the length of the metagenomic
read. Thus, complex populations with extensive recombination, which may have been missed through
the use of the mcorr correlation matrix, could be resolved but limited by the length of the read. Along with
the accompanying genome statistics, inStrain provides highly precise measures of the metapopulation.
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inStrain was used to profile the underlying diversity on a genome-wide basis for each MAG and on a gene-
by-gene basis using Prodigal predicted ORFs from each time point (inStrain profile; parameters: -l 0.95
--min_mapq 1 -c 20 -f 0.1). Parameter settings, including read percent identity (95%), coverage (20�), and
minimum allele frequency (10%), were selected to ensure that SNV detection by inStrain and anvi’o were
conducted with the same level of stringency. inStrain includes the ability to filter reads that mapped to multi-
ple locations during recruitment and these reads were removed, if present. Output from inStrain was
assessed for the presence of linkage disequilibrium (r2), the distribution of read recruitment identity, per
gene and genome average nucleotide diversity (p ), which provides a probability for two reads having the
same nucleotide at a particular position, and estimate of replication rate (56). Linkage decay, a signal of
recombination, was observed by plotting r2 against the distance between linked SNVs; where distance
between linked SNVs were grouped into 10-bp ranges and separated by the type of mutation within the
coding region (synonymous-synonymous [S-S], synonymous-nonsynonymous [S-N], and nonsynonymous-
nonsynonymous [N-N]). Additionally, the four-gamete test, another signal of recombination, was performed
for all biallelic (AB and ab haplotypes) linked SNV locations (11). Under the infinite-site model, the presence
of all four haplotypes (AB, ab, Ab, aB) can only be explained by at least one recombination event (63, 64).
The frequency of the occurrence of the number of haplotypes (one, two, three, or four haplotypes present)
between two sites was calculated. Additionally, to identify putative genes that had undergone a selective
sweep by detecting genes with statistically significantly lower nucleotide diversity, the mean MAG nucleotide
diversity was compared to the gene mean for all time point of interest with the Welch’s t test. A correspond-
ing dN/dS value was calculated, when applicable, as computed by Gretel (see below).

The SNV and linkage output from inStrain was used to compute FST, a measure of allele frequency
differences between two populations. For all linked biallelic sites within putative coding regions that
had a complete start and stop codon, a moving Hudson FST calculation (65, 66) was performed as imple-
mented in the scikit-allel package v1.3.3 (https://scikit-allel.readthedocs.io/) consistent with Crits-
Christoph et al. (24). Genes with coverage outside of two standard deviations of the genome mean were
excluded. A pairwise calculation was performed between all time points of interest and a genome mean
was reported. All remaining putative coding sequences were screened in a five gene window for ele-
vated an FST signal that exceeds either one or two standard deviations from the genome mean.

Gene frequency. For each MAG, gene coverage values were exported from the anvi’o databases
using anvi-export-gene-coverage-and-detection. Gene frequency in a sample was calculated by dividing
each gene coverage value by the median coverage value of all genes. Genes of interest were identified
based on changes in gene frequency such that the maximum frequency value minus the minimum fre-
quency value in the time points of interest was $1. Genes identified in this manner lacking a KEGG
annotation were compared against GenBank nr (67) using BLASTP (68) with an e-value cutoff of 1025, fo-
cusing only on the top two hits. Hierarchical clustering was performed and plotted using seaborn (as
above).

Gene variants. The software package Gretel (61) was used to reconstruct haplotypes on a gene-by-
gene basis (in contrast to DESMAN, which recovers haplotypes or strains for whole genomes based on
SNVs in core genes). Gretel greedily uses the polymorphism patterns of the recruited reads to recon-
struct all possible haplotypes for the genes within a MAG. This approach can lead to chimeric recon-
structed genes, as clearly demonstrated by the presence of haplotypes within internal stop codons but
also offers the full potential space of haplotypes for a gene within a time point. We simplified that
potentially inflated value by converting the haplotypes to isoforms; this constrained estimate and
describes a reduced space of environmental proteins. The combined mean dN/dS for each gene
extended our ability to assess selection within the population. The filtered recruitment profiles for each
MAG and time of interest was used to construct a variant call format (VCF) file using gretel-snpper
(default parameters), compressed with bgzip (default parameters), and indexed with tabix (default pa-
rameters). Gene positions on each contig were determined from the Prodigal gene predictions and used
as inputs for the analysis by gretel (default parameters). If a gene was determined to be in the reverse
direction, putative haplotypes were reverse complemented and all correctly oriented genes were trans-
lated to proteins using seqmagick v0.8.4 (https://fhcrc.github.io/seqmagick/). Haplotypes that translated
to isoforms with internal stop codons were excluded from further analysis. Haplotypes and correspond-
ing isoforms for each putative gene from all time points of interest were combined. CD-HIT (69) was
used to cluster haplotypes and isoforms with 100% identity (parameters: -c 1 -d 0 -g 1). The combined
isoforms were aligned using MUSCLE v3.8.31 (70) (default parameters) and the alignments were used as
inputs to PAL2NAL (71) (default parameters) to create a codon alignment of the corresponding haplo-
types. dN, dS, and dN/dS was calculated (72) for all genes with detected haplotypes using PAML (73)
(See example control file at https://github.com/bjtully/northpond_evolution/tree/main/dNdS-calc). The
output was filtered to include only dN . 0, 0.01 , dS , 1, and dN/dS , 5. dN/dS and dS for all pairwise
haplotype comparisons were averaged. The distribution of the number of isoforms predicted for each
gene was used to inform the selection of target strains in the DESMAN analysis.

Data availability. Data for this project can be found deposited at DDBJ/ENA/GenBank under the
BioProject accession no. PRJNA391950. Raw sequence reads are available through the Short Read Archive
with the accession no. SRX3143886-SRX3143902. Raw sequence reads from Meyer et al. (22) constituting
the metagenomic samples from 2012, are available under the BioProject accession no. PRJNA280201. Files
used to perform this research are available through figshare, including the contigs, anvi’o protein calls,
Prodigal protein calls, anvi’o database profiles for the MAGs, plus an additional 11 supplemental data
files (https://doi.org/10.6084/m9.figshare.17698631), and the filtered BAM files used in this analysis
(https://doi.org/10.6084/m9.figshare.17701254). As detailed in Data set S1, all new/updated MAGs
have been submitted to NCBI under the BioProject accession no. PRJNA391950. Scripts created to
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process data, perform analyses, and create plots have been made accessible through GitHub (https://
github.com/bjtully/northpond_evolution).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TEXT S1, PDF file, 0.3 MB.
FIG S1, PDF file, 2.3 MB.
FIG S2, PDF file, 0.1 MB.
TABLE S1, PDF file, 0.03 MB.
TABLE S2, PDF file, 0.03 MB.
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