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Abstract

Improved computational modeling of protein translation rates, including better prediction of

where translational slowdowns along an mRNA sequence may occur, is critical for under-

standing co-translational folding. Because codons within a synonymous codon group are

translated at different rates, many computational translation models rely on analyzing syn-

onymous codons. Some models rely on genome-wide codon usage bias (CUB), believing

that globally rare and common codons are the most informative of slow and fast translation,

respectively. Others use the CUB observed only in highly expressed genes, which should

be under selective pressure to be translated efficiently (and whose CUB may therefore be

more indicative of translation rates). No prior work has analyzed these models for their ability

to predict translational slowdowns. Here, we evaluate five models for their association with

slowly translated positions as denoted by two independent ribosome footprint (RFP) count

experiments from S. cerevisiae, because RFP data is often considered as a “ground truth”

for translation rates across mRNA sequences. We show that all five considered models

strongly associate with the RFP data and therefore have potential for estimating transla-

tional slowdowns. However, we also show that there is a weak correlation between RFP

counts for the same genes originating from independent experiments, even when their

experimental conditions are similar. This raises concerns about the efficacy of using current

RFP experimental data for estimating translation rates and highlights a potential advantage

of using computational models to understand translation rates instead.

Introduction

A better understanding of the dynamics of protein translation (i.e., translation rates of ribo-

somes at specific codon positions along mRNA sequences) has many biological applications,

such as enabling better understanding of co-translational protein folding and aiding in gene
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design for heterologous expression. Ribosome footprinting (RFP, also called ribosome profil-

ing) is an experimental process often used to estimate ribosome tempo, i.e., the regional

protein translation rate differences across a transcript [1, 2]. Briefly, cells are frozen, homoge-

nized, and the ribosomes purified. The mRNA regions not covered by ribosomes are broken

down with an enzyme, and the millions of remaining short fragments of ribosome-protected

mRNA are then sequenced. The ribosome’s A-site, where the amino acid-tRNA molecule

binds to its corresponding codon, can then be estimated from alignments of these sequences

to a reference; relatively higher estimates of ribosome occupancy suggest a slower rate of

translation.

A well studied feature of non-uniform translation rates, and therefore of higher variability

in RFP-inferred ribosome occupancy, is established codon preferences within most species

(“codon usage bias”, or CUB). Specifically, of the 20 standard amino acids, 18 have multiple

codons that code for them. A group of codons that all code for the same amino acid are

referred to as synonymous codons, and individual synonymous codons within genes have been

shown to be translated at different rates [3–5]. Gene expression using mRNAs with only syn-

onymous codon substitutions has been shown to alter protein folding mechanisms and the

final protein structure formed [6–8]. A common notion in the literature is that “rare” codons

(i.e., relatively infrequently used codons) are translated more slowly than other codons. There

is debate, however, about when to consider a synonymous codon as rare and therefore slow.

For example, some codon usage models such as %MinMax [9, 10] rely on genome-wide

(“ORFeome”) CUB. Other models have claimed that codon usage observed in highly expressed

genes should be the best indicator of a given codon’s translation speed, as highly expressed

genes are likely under selective pressure for efficient translation [11, 12].

Codon preferences under these two categories of model bias can be drastically different.

Take, for example, codons that code for the amino acid histidine (‘GAC’ and ‘GAT’). Under

ORFeome codon bias, ‘GAC’ is used to code for histidine about 65% of the time in S. cerevisiae.
However, under the CAI model [12], which uses a pre-defined set of highly expressed genes to

determine codon usage information, this preference is flipped—the codon ‘GAT’ is preferen-

tially used about 64% of the time. This example of codon preference swapping based on gene

expression level is just one of many examples of this phenomenon in S. cerevisiae.
Two recent studies have shown that rare codons (using different definitions for “rare”) tend

to occur at similar locations in orthologous genes found in a diverse collection of species ([13]

used ORFeome CUB; [14] used CUB from highly expressed genes). These examples of rare

codon co-occurrence imply a functional role for more slowly translated codons. To date, how-

ever, no prior effort has evaluated CUB models with respect to their ability to estimate locally

slow translation. In this study we assess five different computational models for estimating

translation rates (and therefore translational slowdowns) relative to experimental data (i.e.,

RFP data) that does the same. While each model is based on a distinct set of assumptions (see

Methods), all result in a per-codon score where lower values imply slower translation than

higher values. Conversely, in the experimental data, higher footprint counts at a given codon

imply slower translation at said codon.

The contributions of this work are three-fold:

1. Because each considered computational model uses a sliding sequence-window to estimate

translation tempo, we use a proof-of-concept classifier to confirm the window size that

yields the most predictive power relative to RFP experimental data.

2. We evaluate how well each model’s predicted slowly translated codon positions relate to

experimental RFP data to determine which model is best associated with the data.
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3. We compare RFP count distributions to quantify continuity between independent RFP

experiments, and comment on the implications of our results.

Methods

Data processing

In this work we analyze five CUB models using two distinct RFP data sets from S. cerevisiae.
The first data set, collected from [2] (NCBI GEO accession number GSE106572), contains

already preprocessed mRNA reads mapped to their respective positions in the transcriptome.

This accession contains RFP count data for 5,894 S. cerevisiae genes. Next, we map gene IDs

from this prior study to a legacy S. cerevisiaeORFeome file containing 5,984 coding sequences,

used to maintain consistency with other ongoing work (this file can be found in the Supporting
Information). A sequence that matched in name and in length is assumed to be the same origi-

nal sequence; this mapping removes six genes with no name match in our ORFeome file,

and another 47 based on differing lengths. This data set is hereafter referred to as the Tunney

data.

The second RFP data set is obtained from [15] (NCBI Sequence Read Archive

SRR1049521). Unlike the first set, this data contains only the raw mRNA-Seq reads from [15]’s

RFP experiment, which we downloaded as a FASTA file. Per [2], these reads are first pruned to

remove any prefix of the ligated 3’ linker TCGTATGCCGTCTTCTGCTTG from the end of

the reads. Next, reads that align to ncRNA and rRNA are also removed [2]. The remaining

reads are then aligned to the legacy ORFeome file using Bowtie2 [16], with options - -norc (no

reverse-compliment alignments), -a (all valid alignments were reported), and - -gbar 30 (to

prevent gapped alignments). These alignments are further pruned to remove alignments with

more than 2 mismatches. Additionally, only reads of length 28-30nt are considered, as these

allow for the most accurate assignment of A-sites per the supplement in [1]. For reads that

map to a single position in the ORFeome, footprint counts are assigned per [1]’s supplement.

FPKM values for each gene are determined using RSEM [17], which calculates estimated

expression levels based on RNA seq alignments. Genes containing a multimapped read are

assigned a footprint count equal to the FPKM for that gene divided by the sum total of FPKM

values for all genes mapped to by said read. This data set is hereafter referred to as the Wein-

berg data.

The following processing steps are applied to all RFP data examined in this study. Because

footprint counts at either end of a gene can be irregular, counts from the first 20 and last 20

codon positions of each gene are removed from consideration. Additionally, genes must have

more than 200 net footprint counts (i.e., the sum total of the footprint counts in a gene must

be greater than 200), and the number of positions with non-zero counts must be larger than

100. The data is then normalized on a per gene basis, with a gene’s raw RFP counts divided by

the average RFP count in that gene. These last four steps are inspired by [2] to help ensure data

quality and comparability across genes, and remove a total of 1,779 sequences (30%) from con-

sideration for the Tunney data and 1,173 sequences (19%) from the Weinberg data.

We also obtained 17 additional S. cerevisiae RFP data sets from 14 different studies available

from GWIPS-vis [18]. Specific details of the 17 additional RFP data sets can be found in the

Supporting Information. These data sets are chosen as a result of their high degree of similarity

in library construction methods, S. cerevisiae strain used, and growth media. Nine of the 17

data sets contain biological replicates. After downloading, the files are converted from bigWig

format to bedGraph format (which lists a position in the genome and respective footprint

counts) using the bigWigToBedGraph binary utility available at the UCSC Genome Browser
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([19], genome.ucsc.edu). The footprint counts are then mapped to their positions in annotated

genes; genome files and annotations for the 2011 sacCer3 assembly are also available at the

UCSC Genome Browser. This mapping creates a RFP count vector for each gene for each data

set. These RFP count vectors are then subjected to the RFP filtering applied above.

In RFP data sets are not very precise we do a pairwise analysis of all 17 data sets. For each

data set pair, a Pearson correlation coefficient is calculated for each RFP count vector of genes

that appear in both data sets. These per-gene correlations are then averaged for each data set

pair. Unlike the analysis done throughout the rest of this study, the analysis in this section does

notmap the RFP count vectors to the legacy ORFeome file, as coding sequence information is

not needed, only the RFP counts themselves.

In the section Specific codons appear to be “slow” we examine how each of the different

forms of codon usage bias (CUBmeasures) relates to RFP-implied slow codons from 14

GWIPS-vis data sets that use cycloheximide (CHX) to freeze the ribosomes (the remaining

three data sets use a different method). Because this analysis relies on a mapping of RFP counts

to individual codons, the post preprocessing RFP count vectors from the 14 data sets used are

mapped to the legacy ORFeome sequences for consistency with the rest of the study. This extra

mapping step removes no more than six sequences from any of the 14 data sets. Additionally,

this section makes a distinction between CUBmeasures and CUBmodels. In short, CUBmea-
sures are different ways to quantify per-codon CUB preferences. These measures are then used

as input into CUBmodels (that use sliding windows over sets of codons to make predictions

along mRNA sequences about translation rates). There are only four CUBmeasures because

both High-Phi %MinMax and High-Phi CAI (two of our five considered CUBmodels) are

based on ‘High-Phi’ CUBmeasurements.
The models considered in this study (ORFeome %MinMax, High-Phi %MinMax, tAI, tra-

ditional CAI, and High-Phi CAI, defined in the Methods subsection Model Analysis), require

a number of parameters as input. ORFeome codon usage frequencies for S. cerevisiae are

obtained from HIVE-CUT [20]. CAI values are from [12]. tAI values are obtained from [21].

Δη and ΔM values, necessary for calculating codon usage frequencies at varied expression lev-

els per ROC-SEMPPR [11], are from Gilchrist (personal communication). To determine

highly expressed codon usage frequencies (“High-Phi”, for use in High-Phi %MinMax and

High-Phi CAI) per [11], phi was set to 5.623.

Window determination

All computational models analyzed in this work (outlined inModel analysis) utilize a sliding

window over a set number of codons within mRNA sequences. %MinMax, and consequently

the hybrid models we outlined in [22], have historically used a window size of 17 [13], with the

A-site location being centered in the window. 17 was arbitrarily chosen as a compromise

between smaller windows that were relatively noisy, and larger windows that could dilute an

individual codon’s contribution. Another study [2], which aims to predict RFP counts (and

therefore local translation rates), found that a window of (-5, +4) around the A-site (i.e., 5

codons to the left of the A-site, the A-site codon itself, and four codons to the right of the A-

site totalling 10 codons) was best correlated with empirical data in their neural network frame-

work. This window size is in line with biological understanding of translational mechanisms,

as the ribosome spans approximately 10 codons along an mRNA strand during translation

[23].

We check whether another window size would be more appropriate for this analysis. Specif-

ically, logistic regression (a common binary classification algorithm) is used to predict, using a

PLOS ONE Codon usage models’ association with translationally slow codons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232003 April 30, 2020 4 / 15

https://doi.org/10.1371/journal.pone.0232003


variety of input sliding window sizes, whether a given sequence position would have a RFP

count either above or below a cutoff of:

1. The median RFP count in the data.

2. The average RFP count in the data.

3. The 90th percentile RFP count, defined as the RFP count resulting in the highest 10% of

RFP counts belonging to a distinct class.

This process can be thought of as classifying positions as either translationally “fast” or

“slow,” using the above values as the cutoff between these two groups. Because of the ‘exponen-

tial decay’ shape of the RFP data, using the average RFP count as the cutoff for “slow” results in

32% and 37% of the data being labeled as such in the Tunney and Weinberg data, respectively.

Intuitively, using the median and the 90th percentile RFP count results in 50% and 10% of the

data labeled as slow. Each of the three versions of the classifier above are hereafter referred to

as instances of the classifier.

Scikit-learn’s logistic regression classifier [24] is used with an input feature of a one hot

encoded vector in which each position contains the number of times a given codon occurs in

the specified window. Each instance of the model takes in the one hot encoded vector and

makes a prediction of ‘slow’ or ‘not slow’ for each codon position, based on the codons in the

window around it. For each instance of the classifier, the data is randomly divided into five

partitions such that each partition reflects the same ratio of “slow”-to-“fast” labels as the entire

data set. The partitions are kept constant across all tested windows for a given classifier

instance. Each classifier is trained and tested using 5-fold cross validation, and the classes are

balanced during training to avoid overfitting. In our analysis: true positives are sequence posi-

tions that are predicted as slowly translated by the model and are labeled slowly translated by

the RFP count data; true negatives are sequence positions that are both model-predicted and

RFP count labeled as non-slowly translated; false positives are positions that are predicted to

be slowly translated by the model and are not labeled slowly translated by the RFP count data;

and false negatives are positions that are not predicted as slowly translated by the model, but

are labelled slowly translated by the RFP count data. Tested window sizes vary from 1 to 21 for

windows with the A-site positioned at the center. This range of window sizes is chosen to

include a number slightly larger than the codon window historically used by %MinMax. When

centering the A-site for even window sizes, the latter of the two possible middle positions is

chosen to include the best predictive window from [2] (-5, +4) as an option in our analysis.

Model analysis

In this work we analyze five computational models related to codon usage (ORFeome %Min-

Max [9], High-Phi %MinMax [22], High-Phi CAI [22], traditional CAI [12], and tAI [25]) for

their association with RFP-implied translational slowdowns. These models represent a number

of different theories relating codon usage to translation rates in the literature. ORFeome %

MinMax relies on genome-wide codon usage frequencies. tAI uses estimated tRNA levels to

determine translationally fast and slow codons. We previously reported two hybrid expression

bias models, High-Phi %MinMax and High-Phi CAI, based on ROC-SEMPPR high expression

(“High-Phi”) codon usage estimates [11]. We showed that both models correlate equally as

well with empirically measured protein expression in S. cerevisiae [22] as traditional CAI, a

model based on CUB in highly expressed genes which is also considered. While tAI and CAI

have historically been used as global measures (i.e., one CAI or tAI value per gene), here we

implement sliding windows to calculate a local per-codon score, based on the codons in the
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sliding window around said codon. This allows for comparison with the other models and

with the empirical RFP data.

One of our goals is to determine which of our analyzed models shows the strongest signal

relative to RFP-implied translational slowdowns. To achieve this goal, we compare the distri-

bution of RFP counts in two created bins (i.e., a predicted ‘slow’ bin and a predicted ‘non-

slow’ bin) to determine whether the predicted slow bin contains higher overall RFP counts

than the non-slow bin. Specifically, for each model, we analyze each gene in the cleaned data

(see Data processing) by binning footprint counts based on whether a count’s corresponding

codon position is labeled slow or not by said model (a ‘slow’ prediction results from a posi-

tion’s model value being in the bottom 10% of all model values). The resulting two bins are

then examined with a one-tailed Wilcoxon rank-sum test to determine if the count distribu-

tion in the slow bin is statistically significantly higher than in the non-slow bin. If statistical sig-

nificance is found, this implies that the model predicted slowdowns are associated with

translational slowdowns for the analyzed gene. To ensure enough data for the statistical test,

both bins are required to contain at least 30 counts. Because our overall goal is to look for a

data-wide association between experimental RFP counts and the models–and not to find indi-

vidual genes that show significant differences in slow/not slow RFP count distributions–we

rely on Fisher’s method (also called Fisher’s combined probability test) to aggregate the results

of individual Wilcoxon rank-sum tests (one test per gene) and compute a single p-value per

model/data set pair. To best balance data quantity with data quality (RFP data for ‘denser’

genes—genes that have a higher number of average footprint counts per position—are

assumed to be less noisy), we run these tests on three groups of sequences:

1. All sequences that met the criteria set by [2] (see Data Processing) that also contain at least

30 counts in each bin.

2. The most dense 500 sequences in each RFP data set, as defined by the highest average RFP

count per codon position, per [2]. This step should remove some noise found in RFP-count

sparse genes. These sequences are then pruned to only include sequences that contain at

least 30 counts in each bin.

3. The intersection of the sets of sequences used by each model in group 1, to allow for a fair

comparison of p-values for each model. This set consists of 1,753 sequences for the Tunney

data, and 1,914 sequences for the Weinberg data.

Additionally, to test whether any statistically significant signal found by Fisher’s method is

an artifact of our comparison framework, we repeat this analysis on group 3 after randomly

shuffling the RFP counts for each gene 100 times per model, and report the average combined

p-value for each model. Shuffling should decouple any relationships between individual

codons and RFP-inferred occupancy and therefore is an appropriate null model for this

analysis.

Results

Window determination

In agreement with the original analysis of [2], large increases in classifier performance are seen

at window size 10 (from positions -5 to +4) across all instances of the classifier on the same

data. Tunney et al. [2] also noted experimental artifacts in their RFP method that likely

resulted in the codon positions -5 and +3 to be over-weighted. Precision, recall, and F1 for an

alternative (-5, +3) window are plotted in Fig 1 as free standing points at window size 9 for the

Tunney data. In all instances of the classifier, this new window outperforms the (-5, +4)
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window on the Tunney data, but not on the Weinberg data. Peaks in F1 score for the Weinberg

data are seen at window size 10 (-5, +4) in two of the three instances of the classifier. Because

the window (-5, +3) is not as predictive as (-5, +4) on the Weinberg data, we provide further

empirical support for the artifacts noted in [2]. Precision, recall, and F1 scores for each

instance of the classifier are shown in Fig 1.

The use of empirical RFP data to parameterize the models is important since the distinc-

tion between the suggested windows and the traditional window of 17 (-8, +8) is sizeable.

For example, the average Pearson correlation coefficient of ORFeome %MinMax values

calculated for the windows (-5, +4) versus (-8, +8) for each gene is only 0.729, while the dis-

tinction between window size 9 (-5, +3) and window size 10 (-5, +4) is minor—the model

values resulting from these windows have an average Pearson correlation coefficient of

0.943. For the remainder of this analysis we use the window size 10 (-5, +4) with each

model.

Model analysis

On the Tunney data, ORFeome %MinMax, tAI, and High-Phi CAI show a much stronger sig-

nal than High-Phi %MinMax and traditional CAI. However, the Weinberg data indicates a

strong signal for all of the models. Distributions of individual p-values for All Sequence

ORFeome %MinMax and Intersect CAI (the most and least statistically significant tests for the

Tunney data, respectively) are shown in Fig 2. Results from Fisher’s method, which aggregates

the individual gene’s p-values for each model, are shown in Table 1.

One notable result is that even the model that performs worst has a peak in its individual

gene p-values on the left hand side of the graph in Fig 2, indicating a large number of

individual genes that have a detectable, significant difference in translational tempo in line

with model predictions. Additionally, the models are generally distinct in the genes that

show a significant signal between predicted slow and non-slow positions, shown in Fig 3.

That the various models are not finding strong associations between their predictions and

the empirical data implies that they are different enough to warrant the analysis performed

here.

Fig 1. Comparison of precision, recall, and F1 scores for different instances of the classifier. For the Tunney data

(A) clear jumps in performance are shown at window size 10 (from positions -5 to +4) for each classifier. Also shown

are individual points for precision, recall and F1 score for the window (-5, +3). For the Weinberg data (B), the

distinction between (-5, +3) values and (-5, +4) values is not as clear, although the window (-5, +4) does have the best

F1 score on the Average and Median instances.

https://doi.org/10.1371/journal.pone.0232003.g001

PLOS ONE Codon usage models’ association with translationally slow codons

PLOS ONE | https://doi.org/10.1371/journal.pone.0232003 April 30, 2020 7 / 15

https://doi.org/10.1371/journal.pone.0232003.g001
https://doi.org/10.1371/journal.pone.0232003


RFP data sets are not very precise

Our underlying hypothesis is that codon usage not only has a significant association with slow

translation–as shown above–but is also predictable and repeatable. It follows that, for a given

gene in a given species, the translation tempo across the mRNA strand (represented by said

gene’s RFP count vector in the experimental data) would be highly correlated across different

data sets. If this were the case, findings from studies that use RFP data to predict local transla-

tion rates (e.g., [1, 2]) would be largely independent of the data set used. However, we find that

Fig 2. Distribution of p-values for two representative tests on the Tunney data. The test resulting in the most significant

combined p-value (All Sequence ORFeome %MinMax, left) and the test resulting in the least significant combined p-value

(Intersect Traditional CAI, right).

https://doi.org/10.1371/journal.pone.0232003.g002

Table 1. The combined p-values and the number of sequences that passed filtering for each data partition and model pair (see Methods). For the “Random” test, the

reported p-value is the average p-value of 100 iterations of the null model described in the Methods. The “Intersect” partition is the intersection of the genes used for each

model in “All Sequences”.

Tunney Data Weinberg Data

Test Model # of Sequences Combined p-value # of Sequences Combined p-value

All Sequences ORFeome %MinMax 2,614 p = 1 � 10−233 2,889 p< 2 � 10−308

All Sequences High-Phi %MinMax. 2,462 p = 4 � 10−43 2,794 p< 2 � 10−308

All Sequences High-Phi CAI 2,368 p = 5 � 10−88 2,707 p< 2 � 10−308

All Sequences Traditional CAI 2,417 p = 3 � 10−25 2,745 p< 2 � 10−308

All Sequences tAI 2,330 p = 6 � 10−153 2,671 p< 2 � 10−308

Most Dense 500 ORFeome %MinMax 102 p = 6 � 10−30 101 p = 1 � 10−42

Most Dense 500 High-Phi %MinMax 38 p = 2 � 10−34 12 p = 4 � 10−9

Most Dense 500 High-Phi CAI 37 p = 4 � 10−78 7 p = 1 � 10−12

Most Dense 500 Traditional CAI 36 p = 2 � 10−82 9 p = 2 � 10−13

Most Dense 500 tAI 38 p = 2 � 10−57 10 p = 3 � 10−15

Intersect ORFeome %MinMax 1,753 p = 2 � 10−128 1,914 p< 2 � 10−308

Intersect High-Phi %MinMax 1,753 p = 4 � 10−23 1,914 p< 2 � 10−308

Intersect High-Phi CAI 1,753 p = 6 � 10−50 1,914 p< 2 � 10−308

Intersect Traditional CAI 1,753 p = 2 � 10−8 1,914 p< 2 � 10−308

Intersect tAI 1,753 p = 4 � 10−90 1,914 p< 2 � 10−308

Random ORFeome %MinMax 1,753 p = 0.983 1,914 p = 0.732

Random High-Phi %MinMax 1,753 p = 0.970 1,914 p = 0.770

Random High-Phi CAI 1,753 p = 0.986 1,914 p = 0.757

Random Traditional CAI 1,753 p = 0.977 1,914 p = 0.818

Random tAI 1,753 p = 0.985 1,914 p = 0.780

https://doi.org/10.1371/journal.pone.0232003.t001
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RFP count vectors (post data preprocessing—see Methods) from genes assayed in independent

studies are not generally well correlated (Fig 4), even if their experimental conditions are simi-

lar (Fig 5). The average Pearson correlation coefficient between the same gene in our two ini-

tial data sets (Tunney and Weinberg) is only 0.208 (Fig 4).

To further determine whether this problem is pervasive, we analyze 17 additional data sets

downloaded from GWIPS-vis [18]. These 17 data sets are chosen because of the overall simi-

larity of their experimental conditions (see Methods). 14 of the 17 use CHX to freeze the ribo-

somes during translation, while the other three data sets do not. Using the same comparison

criteria as on the Tunney and Weinberg data, the pairwise correlations between each pair of

the additional data sets (over all genes that appear in both data sets in the given pair) are

shown in Fig 5. For the data sets that use CHX to freeze the ribosome (Fig 5A), the average

Pearson correlation coefficient is only 0.1596, despite these data sets sharing similar experi-

mental conditions. For the data sets that do not use CHX to freeze the ribosome (Fig 5B), the

Fig 3. Models are relatively distinct in the genes they determine have significant associations with RFP data. In the Intersect

partition, genes are grouped based on the number of models that predict each gene to have a significantly higher RFP count

distribution in predicted slow positions than in predicted fast positions (p< 0.01).

https://doi.org/10.1371/journal.pone.0232003.g003

Fig 4. Correlation of Weinberg and Tunney data sets. Distribution of Pearson correlation coefficients for RFP count

vectors of individual genes that appear in the Tunney and Weinberg data sets.

https://doi.org/10.1371/journal.pone.0232003.g004
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average Pearson correlation coefficient is 0.1769, despite these data sets sharing similar experi-

mental conditions. The average Pearson correlation coefficient across these two groups, whose

experimental conditions differ, is 0.1644 (Fig 5C). The distributions of correlations from the

three groups of pairwise correlations depicted in Fig 5 show no statistically significant differ-

ences from each other (using a pair-wise Wilcoxon rank-sum test with significance threshold

of 0.05). That is, the different RFP data sets correlate equally poorly no matter whether they

have similar or dissimilar experimental conditions.

It should be noted that we are not the first group to observe a discrepancy between indepen-

dent ribosome profiling experiments (i.e., between RFP data originating from different stud-

ies), although we are the first to compare RFP counts in the ORFeome across independent

data sets; for further analysis on the subject see [26–28].

Specific codons appear to be “slow”

One notable result from our Window Analysis is that the highest precision scores for all

instances of the classifier occur when only the A-site is used (i.e., when the window size is one)

on the Tunney data (Fig 1). Biochemically this makes sense—it is expected that the strongest

influence on translation rate is the A-site codon, as the ribosome’s A-site is where tRNA bind-

ing occurs.

To more comprehensively examine whether specific codons are enriched at the A-sites of

high RFP count positions, we conducted a deeper, per-codon analysis of the 14 independent

GWIPS-vis data sets that use CHX and have similar experimental conditions. For each of these

14 data sets, each non-stop codon’s frequency in the top 10% of normalized RFP counts is

compared to that same codon’s frequency in the bottom 90% of footprint counts. These pro-

portions are compared using Fisher’s exact test with a p-value significance threshold of 8.2 �

10−4 (.05/61).

In total, 10 codons are found to be significantly over-enriched in high RFP count positions

in at least 10 of the data sets (i.e., at least 70% of the 14 data sets analyzed), implying that these

codons are generally translated more slowly. Additionally, another 13 codons are found to be

significantly under-enriched in high RFP count positions in at least 10 of the data sets, imply-

ing that translational slowdowns generally do not occur at these codons. This large number of

codons with significant frequency differences in high RFP count positions further suggests

that individual codons have a substantial effect on translation, consistent with the belief that a

ribosome’s A-site should have the largest effect on translation tempo.

To determine how well codon enrichment in high RFP count positions align with each

model’s individual CUB measure, we assess each model’s underlying CUB measure with

Fig 5. Correlations of 17 RFP data sets. (A) Average correlations between genes for data sets that use CHX to freeze the ribosome

during translation. (B) Average correlations between genes for data sets that do not use CHX to freeze the ribosomes during translation.

(C) Average correlation between genes between data sets that use CHX (y-axis) and data sets that do not (x-axis).

https://doi.org/10.1371/journal.pone.0232003.g005
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respect to the codons that are over- and under-enriched in high RFP count positions. Because

“rare” codons are thought to be translated more slowly, a measure that has low codon usage

frequencies for the over-enriched (i.e., RFP-implied slow) codons is likely a good predictor of

individual codon’s translation rates. Conversely, for under-enriched codons (i.e., RFP-implied

faster codons), a measure that has high codon usage frequencies is likely a good predictor of

codon translation rates. To test this, we subtract the frequency of each enriched codon under

each CUB measure (i.e., ORFeome, High-Phi, traditional CAI, and tAI) with its expected fre-

quency if synonymous codons were used at random (i.e., for a given codon, 1/(numberofsyno-
nyms) in said codon’s synonymous group). Note that High-Phi CUB is the same for both

High-Phi %MinMax and High-Phi CAI—the underlying math is what differentiates the two

models. This results in analyzing fourmeasures of CUB, as opposed to the five differentmodels
that were analyzed in previous sections. For over-enriched codons in high RFP count posi-

tions, a CUB measure predicting these codons well (by having a small estimated frequency for

each) will result in a larger negative number than a CUB measure performing less well. Con-

versely, for under-enriched codons, we would expect a better CUB measure to result in a

larger, positive value. Results for each over-enriched codon, as well as the sum total for each

CUB measure on over-enriched codons, can be seen in Table 2. While all CUB measures have

some association with the enriched codons (due to the majority of codons under each model

bias measure having a negative weight), the presence of a few very commonly used codons in

each form of CUB prevent any of the CUB measures from differentiating themselves at align-

ing with RFP-implied slow codons. However, for significantly under-enriched codons, the

high expression measures of CUB (CAI and High-Phi, scoring 2.412 and 1.963 respectively)

outperformed tAI CUB (1.393) which in turn beat ORFeome CUB (0.317). This differentiation

suggests that existing CUB measures are more adept at predicting which codons are likely to

be translated efficiently, rather than which codons may cause translational slowdowns.

Discussion

In this study, we were able to find broad consistencies across many independent S. cerevisiae
RFP data sets, despite also finding an overall lack of correlation between count vectors of

Table 2. Codons that are significantly over-enriched in high RFP count positions in at least 10 of the 14 data sets considered (% Enriched> 70). These codons are sig-

nificantly enriched at the estimated A-site in the top 10% of normalized footprint counts using a Bonferroni corrected p-value of 8.2 � 10−4 (.05/61). These codons are also

analyzed with respect to each bias measure, such that a larger negative number indicates a stronger correspondence with the model. Note that there are only four bias mea-

sures listed (compared to the five codon usage models analyzed earlier) as the High-Phi %MinMax and High-Phi CAI models use the same underlying CUB measure.

Codon Information Codon Usage Bias Measure

Codon AA % Enriched ORFeome High-Phi CAI tAI

GGA G 0.857 -0.024 -0.240 -0.248 -0.146

GAT D 0.857 0.151 0.020 -0.144 -0.195

CCT P 0.857 0.060 -0.052 -0.206 -0.130

CCG P 0.857 -0.126 -0.245 -0.248 -0.058

CCA P 0.857 0.157 0.522 0.695 0.351

GAC D 0.786 -0.151 -0.020 0.144 0.195

GGT G 0.714 0.205 0.678 0.725 -0.008

GGC G 0.714 -0.053 -0.197 -0.230 0.302

GAG E 0.714 -0.201 -0.386 -0.484 -0.184

ACG T 0.714 -0.112 -0.238 -0.247 -0.160

Total -0.093 -0.159 -0.244 -0.032

https://doi.org/10.1371/journal.pone.0232003.t002
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individual genes across studies. This implies that some biological signal persists through the

noise contained in RFP data sets.

First, when determining the codon window size to consider with our computational codon

usage models, all instances of the classifier find that a window size between eight and 10 (spe-

cifically the windows (-4, +3), (-5, +3), and (-5, +4)) are the most predictive of RFP counts.

While all of these windows are very similar to each other, they are very distinct from the win-

dow size traditionally used to study local translation rate—17 (-8, +8). Future uses of these slid-

ing window codon usage models should rely on a smaller window than has historically been

used; the window (-5, +4) is used in this analysis.

Using the window determined above, we proceed to examine five sliding window models

for local translation rate to determine how well associated they are with RFP counts. Because

of known effects of codon usage on overall protein folding in a cell [29], we are particularly

interested in very low sliding window-based estimates (i.e., values in the bottom 10% for each

model) and their association with high RFP counts, which imply slow translation at these posi-

tions. We calculate per-gene p-values that are then aggregated to determine the overall

strength of signal between a model and RFP count data. Although the five models tested rely

on different types of CUB measures, we find that all had statistically significant signal on both

initial data sets. Interestingly, the three models that perform the best on the Tunney data

(ORFeome %MinMax, High-Phi CAI, and tAI) are all based on different underlying assump-

tions of CUB. This supports the prior findings of [13, 14], who independently uncovered co-

occurrence of rare codons (indicating potential functional roles for these codons) within

orthologous proteins—one using ORFeome CUB and one using highly expressed CUB.

We next obtained a more comprehensive and comparable collection of RFP data consisting

of a total of 17 data sets from highly similar yeast strains, growth media, and experimental con-

ditions (see Methods). Through a pairwise analysis of these data sets, we show that RFP data

between independent experiments are highly variable, even when experimental conditions are

similar. Bioinformaticans, including ourselves, assume larger scale consistency versus the low

actual correlations presented in Figs 4 and 5. However, these results suggest that translation

tempo can differ across experiments, even when experimental conditions are kept largely con-

stant. These results further emphasize the claims of previous studies [26–28] that improvement

is needed in the ribosome profiling method.

Finally, using a subset of the additional 17 data sets that were the most experimentally simi-

lar (14 total), we identify 10 codons that are significantly enriched in the top 10% of RFP

counts in at least 70% of the analyzed data sets (Table 2). An additional 13 codons are found to

be significantly under enriched in the top 10% of normalized RFP counts. These findings sup-

port the strong effect that A-site codon usage has on translation—both slow and non-slow. We

analyze how these significantly over- and under-enriched codons compare to CUB measures

tested in this work. While all of the measures considered show some degree of correspondence,

in agreement with earlier studies ([13, 14]) and our Fischer’s tests shown in Table 1, no form

of CUB stood out when predicting translationally slow codons. However, the same test on sig-

nificantly under-enriched codons showed a much stronger correspondence with CUB from

highly expressed genes (i.e., “High-Phi” and “CAI”).

In Table 2, one of the codons with the worst (most positive) scores across all models is

‘CCA’, which is the most abundant proline (amino acid ‘P’) codon across all models. In fact,

proline is known to substantially slow translation [30, 31]. This observation is consistent with

our results (as three of the four proline codons are over-enriched in high RFP count positions

in both data sets) and suggests that amino acid effects on translation can overshadow individ-

ual codon effects.
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Conclusion

Local translation rate is thought to have significant effects on co-translational folding. One

established proxy for local translation rate is biased codon usage, where rare codons are

assumed to be translated more slowly than common codons. There is some debate, however,

about how to define rare and common. ORFeome CUB defines rare and common codons

by usage rates across all predicted genes for a given organism. On the other hand, highly

expressed CUB defines rare and common codons by usage rates only in highly expressed

genes. Both forms of CUB have support in the literature. Here we test five different computa-

tional codon usage models (in which both types of CUB are represented) for their association

with high RFP count positions in S. cerevisiae. Because the computational models tested in this

study rely on sequence sliding windows, we also use a proof-of-concept classifier to determine

which window is most predictive of RFP count data, and therefore a better proxy for transla-

tion tempo.

We independently confirm that a sequence window of positions (-5, +4) around the A-site

is most predictive of translation rate. We also show that computational codon usage models

from all three tested forms of underlying CUB (ORFeome, highly expressed, and predicted

tRNA concentration) are globally associated with experimentally inferred translational slow-

downs (i.e., high RFP count positions). Additionally, we show that 10 codons are significantly

over-enriched in these high RFP count positions, implying that they are more slowly translated

than other codons. We also found 13 codons that are significantly under-enriched in very high

RFP count positions, and that these codons are better associated with models implementing

CUB from highly expressed genes than genome-wide measures. All models discussed in this

work have been incorporated into a novel experimental approach (based on [10]) to determine

which model performs best at estimating local translation rates in vivo.

Finally, we also support prior concerns about the ability of ribosome footprinting to define

translation rates at a per-codon resolution. Future work in this area, which can be aided by our

computational approach, is needed to determine the biological factors that affect translation

tempo.
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