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Abstract

RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants
(SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked
whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These
leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point
mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by
high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results
with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as
several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the
RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes.
Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1,
LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or
involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression
normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs,
exon-skipping events, and expression perturbations in T-ALL.
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Introduction

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive

malignancy that accounts for approximately 15% of pediatric and

25% of adult ALL cases. Despite improved outcome over the

years, about 25% of children and 50% of adults still fail to respond

to intensive chemotherapy protocols or relapse [1]. Improved

understanding of T-ALL biology through the identification and

characterization of oncogenic lesions is expected to lead to a better

prognostic classification and the development of new targeted

therapeutic strategies.

T-ALL is caused by the accumulation of multiple oncogenic

mutations that have been identified through characterization of

chromosomal aberrations and candidate gene sequencing [2].

Chromosomal translocations in T-ALL frequently involve the T-

cell receptor (TCR) loci, whereby TCR regulatory elements become

juxtaposed to genes that are normally not expressed in T-cells

[3,4]. In this way, a specific set of recurrently over-expressed

transcription factors (TFs) have been documented, including

TLX1, TLX3, TAL1, LMO1, HOXA, and NKX family members

[5]. T-ALL samples expressing each of these transcription factors

show a distinctive gene expression signature and as such these

transcription factors define distinct molecular subtypes in T-ALL

[6]. Chromosomal rearrangements can also lead to large

chromosomal deletions and amplifications; to focal gene deletions

or amplifications, such as CDKN2A deletion and MYB duplication

[7,8]; and to in-frame fusion genes encoding chimeric proteins

with oncogenic properties such as the constitutively active
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NUP214-ABL1 fusion kinase [9]. In addition, point mutations and

small insertions/deletions (INDELs) have also been described

leading to oncogenic events, such as mutations activating

NOTCH1 that occur in more than 60% of T-ALL cases [10], or

mutations in cytokine receptors and tyrosine kinases such as IL7R

and JAK3 [11–17]. The latter may lead to new opportunities for

molecularly tailored therapies with kinase inhibitors [12,16,18,19].

With the advent of next generation sequencing (NGS)

technologies, our sequencing capacity has significantly improved

in the past five years. It is now possible to apply targeted re-

sequencing, exome sequencing (Exome-seq), whole genome

sequencing (WGS), whole transcriptome sequencing (RNA-seq)

or a combination of these, to investigate individual genomes,

especially those related to disease [20]. Also for T-ALL, these NGS

approaches have recently proven their value in the discovery of

novel driver genes [13,14,17,21]. We previously identified a

spectrum of new oncogenic driver genes using Exome-seq on 67

T-ALLs, and described clear differences between pediatric and

adult patients [17]. In particular, we identified CNOT3 as a tumor

suppressor mutated in 8% of adult T-ALL cases and mutations

affecting the ribosomal proteins RPL5 and RPL10 in 10% of

pediatric T-ALLs [17]. Similarly, whole genome sequencing of

early T-cell precursor ALL cases led to the identification of

mutations in several new oncogenes and tumor suppressor genes

affecting cytokine signaling, T-cell development and histone-

modifying genes [2,13]. However, the potential of RNA-seq for

the discovery of driver genes in T-ALL remains unexplored.

In the present study, we applied paired-end RNA-seq on 49 T-

ALL samples (31 patients, 18 cell lines) to gain insights in the

transcriptome landscape of T-ALL. First, we show that identifi-

cation of somatic single nucleotide variants (SNV) and recurrently

mutated driver genes is feasible on RNA-seq data, even without

matched normal samples (e.g., germlines or remission DNA). We

identify STAT5B, H3F3A, and PTK2B as candidate cancer genes

in T-ALL. This becomes possible when (1) optimal read mapping

and SNV calling procedures are applied; and (2) functional

annotation, gene expression, or additional sequencing data from

other cohorts is used to prioritize the true driver genes. Next, we

optimized gene expression measurements using multiple normal-

ization strategies, and showed that classical gene expression studies

(e.g., clustering) are feasible on normalized RNA-seq data. We also

detected new fusion genes (SSBP2-FER and TPM3-JAK2) and used

gene expression data to determine the consequence of observed

chromosomal rearrangements on the over-expression of key driver

genes. Finally, we searched for significant alternative transcript

events (ATE) but besides one coherent exon-skipping event in

SUZ12, we found relatively few candidate ATEs in T-ALL. In

conclusion, through a combination of the analysis of gene

expression levels, fusion transcripts, SNVs, and INDELs, we could

identify known and new driver alterations in T-ALLs and novel

potential targets for therapy.

Results

Correct SNV and INDEL calling on RNA-seq data depends
on accurate read mapping

We performed paired-end RNA-seq on 31 T-ALL patients, 18

T-ALL cell lines, and 1 normal thymus sample. We obtained on

average ,110 million reads per sample, leading to an average

coverage of ,886(Table S1.A). To assess the quality of detecting

SNVs from the RNA-seq data, we compared the RNA-seq to

Exome-seq data. For 16/18 of the cell lines and for 20/31 patient

samples we had exome data available (previously generated [17] or

obtained for this study, Table S2). For the exome data analysis,

we followed the pipeline of mapping, SNV and somatic mutation

detection that we validated previously [17] (using BWA, GATK,

SomaticSniper, and Variant Effect Predictor (VEP)) [22–25]. For

the RNA-seq data we used TopHat2 [26] for mapping, SAMTools

[27] for SNV detection, and VEP [25] for variant annotation

(Figure 1.A).

By comparing positions that had a coverage of at least 206 in

both RNA-seq and Exome-seq, combined with Sanger re-

sequencing of a subset of positions, we found that the accuracy

of SNV calling in RNA-seq strongly depends on the read

mapping, corroborating earlier observations [28,29] (Figure
S1). We found that mapping RNA-seq reads to the genome (as

used by TopHat version 1.3.3) is prone to errors when dealing

with paralogous genes, as observed by the prediction of false

positive SNVs in KIF4A and GLUD1 due to erroneous mapping to

KIF4B and GLUD2 (both pseudogenes with no introns) (Figure
S1). However, these errors were resolved by mapping to the

transcriptome. In the case of the RPMI8402 cell line, 877 SNVs

were found by mapping to the genome, while this number was

reduced to 283 SNVs when mapping to the transcriptome.

Mapping to the transcriptome did not only reduce the number of

RNA-seq exclusive calls but also increased the overlap with the

Exome-seq calls (Figure 2, Figure S2).

However, transcriptome mapping also has limitations as it relies

on current gene and isoform annotation. We observed that a

combination of transcriptome and genome mapping provides the

best solution. It is important that all reads are mapped twice to the

genome, independently of each other; once as entire read and

once as split read. This has become possible in TopHat2 by setting

the option ‘‘read-realign-edit-dist’’ to zero. Our analysis reveals that

this mapping approach results in the best overlap of SNVs

compared to exomes (Figure 2, Figure S3). This mapping

strategy not only improves the alignment accuracy by preventing

misalignment to pseudogenes, but also leads to identification of the

most likely isoform structure of a gene by mapping the reads

Author Summary

The quest for somatic mutations underlying oncogenic
processes is a central theme in today’s cancer research.
High-throughput genomics approaches including ampli-
con re-sequencing, exome re-sequencing, full genome re-
sequencing, and SNP arrays have contributed to catalogu-
ing driver genes across cancer types. Thus far transcrip-
tome sequencing by RNA-seq has been mainly used for
the detection of fusion genes, while few studies have
assessed its value for the combined detection of SNPs,
INDELs, fusions, gene expression changes, and alternative
transcript events. Here we apply RNA-seq to 49 T-ALL
samples and perform a critical assessment of the bioinfor-
matics pipelines and filters to identify each type of
aberration. By comparing to exome re-sequencing, and
by exploiting the catalogues of known cancer drivers, we
identified many known and several novel driver genes in T-
ALL. We also determined an optimal normalization
strategy to obtain accurate gene expression levels and
used these to identify over-expressed transcription factors
that characterize different T-ALL subtypes. Finally, by PCR,
cloning, and in vitro cellular assays we uncover new fusion
genes that have consequences at the level of gene
expression, oncogenic chimaeras, and tumor suppressor
inactivation. In conclusion, we present the first RNA-seq
data set across T-ALL patients and identify new driver
events.

T-ALL Transcriptome Variation
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independently both to the transcriptome and to the genome and

then selecting the best possible alignment.

Using the optimized mapping and filtering strategy we identified

436,974 SNVs across 49 samples. By using samples for which both

the exome and the transcriptome were sequenced several aspects

of SNV detection in RNA-seq data can be evaluated, such as

sensitivity, specificity, and allelic imbalance. Regarding sensitivity,

we found that on average, 32% of the SNVs that are called in

Exome-seq were also called by the RNA-seq (Table S3). Similar

ratios were observed when comparing validated somatic SNVs

from Exome-seq/WGS to RNA-seq SNVs: 36% in a triple

negative breast cancer study [30], and 41% in a lymphoma study

[31]. We observed that the sensitivity varies considerably between

samples, and strongly correlates with the average depth of

coverage of the sample (Figure S4). Regarding specificity, we

found that the remaining RNA-seq-only and Exome-seq-only

SNVs (for positions where both have at least 206 coverage) are

found mainly with a low variant allele frequency (VAF) and are

therefore likely due to arbitrary VAF and coverage thresholds. For

example, on the RPMI8402 and TLE79 samples, many RNA-seq-

only SNVs (9/18 and 61/88 respectively) have a VAF below 40%.

Regarding allelic imbalance, we found that of all heterozygous

Exome SNVs with more than 206coverage, the majority (2,914/

4,043 or 72%) were also heterozygous SNVs in RNA-seq. Of the

remaining SNVs, many (988/4,043) are homozygous reference in

the RNA-seq (i.e., not detected). A small fraction we can almost

certainly attribute to allelic imbalance, namely the 141/4,043

SNVs (3.5%) that are homozygous variant in the RNA-seq,

indicating that for those only the variant allele is expressed (or the

gene is only expressed in cancer cells that harbor the variant).

Next we asked whether small insertions and deletions (INDELs)

can be detected from RNA-seq data. As with the SNVs, we used

the Exome-seq data for assessing the quality of our INDEL

detection strategy. On average, 47.5% of the INDELs that were

detected by RNA-seq were also found in the Exome-seq

(unfiltered) INDEL calls. However, only 4% of the Exome-seq

INDELs (for which the region containing INDEL is covered by at

least 3 reads in RNAseq data) were found back in the RNA-seq

calls (Table S3). To investigate this sensitivity issue, we evaluated

ten validated INDELs that we previously identified with Exome-

Seq [17](Table S4). Three of the ten INDELs were also identified

in the RNA-seq data using the default SAMTools parameters (see

Materials and Methods). Of the seven missed INDELS, two are

found in a gene that is not expressed; another two are clearly

present in the RNA-seq data when inspected manually with IGV,

but did not reach the default threshold (see Materials and

Methods); and the last three are effectively discordant between

RNA-seq and Exome-seq, as they show only reads with reference

sequence (Figure S5). Re-mapping of the reads with BWA [22]

on the transcriptome followed by BLAT [32] on the genome

improved the INDEL identification, now revealing the KDM6A

INDEL in TLE87 and PTEN INDEL in TLE92, which were

previously missed (Figure S6.A–B). It is notable that the

combination of TopHat2 (to transcriptome only) and BLAT does

not correctly detect these two INDELS (Figure S6.C–D). We

conclude that INDEL detection on RNA-seq data is feasible, yet

technically challenging and that the fraction of INDELs compared

to SNVs is moderate (see also the next Section and Figure 3).

Leveraging diagnosis-only RNA-seq data with the T-ALL
body of knowledge to identify mutated cancer genes

Our next aim was to select candidate driver genes using the

collected SNVs and INDELS. To remove germline variants we

initially removed all SNPs present in dbSNP [33], 1000genomes

[34], the Complete Genomics genomes [35], and those detected in

our own exome data from normal samples (39 from our earlier

work [17] and 6 from this study). We, however, retained those

Figure 1. RNA-seq data analysis pipelines for (A) variant calling and filtering to detect point mutations, (B) fusion detection and
annotation, (C) gene expression analysis.
doi:10.1371/journal.pgen.1003997.g001

T-ALL Transcriptome Variation

PLOS Genetics | www.plosgenetics.org 3 December 2013 | Volume 9 | Issue 12 | e1003997



variants also present in the COSMIC [36] database, since SNP

databases are known to contain also some disease-specific SNVs.

Some examples of SNVs that are likely driver mutations, but that

are also present in polymorphism databases are: JAK3 A572V in

R7, and FBXW7 R425C in TUG1. With this filtering, we

obtained a final list of 10,403 protein-altering SNVs and 430

protein-altering INDELs, with a median of 63 SNVs and 4

INDELS per sample (Table S1.B). Cell lines harbored signifi-

cantly more mutations than patient samples (Mann-Whitney test

p-value = 1.095E-05), as previously also observed by Exome-seq

[17].

As a first approach to identify candidate T-ALL driver genes,

we selected all genes that contained a protein-altering mutation in

at least two of the 31 patient samples (for recurrence we did not

take cell lines into account). This process resulted in the selection

of 213 genes (Table S5). We found that this list is strongly

enriched for genes related to T-ALL and to cancer in general, with

‘‘precursor T-cell lymphoblastic leukemia-lymphoma’’ as the most

Figure 2. Comparison between RNA-seq and exome-seq. Variant Allele Frequency plots for evaluating two RNA-seq mapping strategies for
two example samples, namely the RPMI8402 cell line (A, B) and the TLE79 patient sample (C, D). On the left are the results of mapping with TopHat
1.3.3. (A,C), while on the right are the results of mapping with TopHat 2.0.5 with forced re-mapping of all reads to the genome. The SNVs that have at
least 20 reads in exome-seq and RNA-seq are plotted. Red and green dots represent the SNVs that are detected only in RNA-seq and only in exome-
seq, respectively, while black dots represent the SNVs that are called in both. Venn diagrams are produced from the points represented in the graphs.
doi:10.1371/journal.pgen.1003997.g002

T-ALL Transcriptome Variation
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Figure 3. Point mutations and gene fusions organized into functional categories. Protein altering mutations and INDELs, alternative
splicing events and validated fusions are shown. Red boxes indicate protein-altering mutations (i.e. nonsense, missense and splice site mutations);
purple boxes indicate frame-shift INDELs whereas blue, green and orange boxes represent fusion events resulting in over-expression of the partner
gene, inactivation of the partner gene or generation of a chimeric protein, respectively, and finally black boxes indicating alternative splicing events.
doi:10.1371/journal.pgen.1003997.g003
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highly enriched function (p-value = 1.35E-11 by Ingenuity Path-

way Analysis) (Table S6). The list of 213 candidates contained

many known T-ALL driver genes (Figure 3), such as NOTCH1,

BCL11B, FBXW7, IL7R, JAK1 and JAK3; and it also contained the

drivers CNOT3 and RPL10, recently identified in our exome re-

sequencing study [17]; and CTCF, which was recently reported to

be recurrently mutated in ETP-ALL [13]. In addition, the

candidate list contained two established cancer driver genes

involved in other cancer types, but not yet reported to be mutated

in T-ALL, namely H3F3A and CIC. These genes were reported

recently by Vogelstein [37] to be true cancer drivers. We identified

two patient samples (TLE76 and TUG6) with H3F3A mutations

both on the K28 residue that is a mutational hotspot in

glioblastoma [38]. This mutation was confirmed somatic in the

TUG6 sample. Sequencing of this hotspot in additional T-ALL

samples indicated a low frequency of H3F3A K28 mutation in T-

ALL (detected in 3 of 102 cases).

Next we asked if we could identify additional genes in the

candidate list that could be linked to T-ALL. We wanted to utilize

the genes that are known to be involved in T-ALL as a guide for

identifying additional candidates. To this end we used our gene

prioritization approach ENDEAVOUR [39], which scores candi-

date genes based on a set of training genes. It builds a profile based

on the training genes (integrating information on protein-protein

interactions, genetic interactions, gene expression, text-mining,

sequence homology, Gene Ontology, and protein domains) and

then prioritizes the candidate genes for their similarity to the

derived profile. As training set we used all known drivers, and as

test set we used all the 213 candidates with at least two patient

mutations (excluding the genes that are in the training set). We

reasoned that this would reveal the genes with strong similarity to

the known drivers and such genes would be good candidate

drivers. We found 45 significantly ranked genes with two

interesting genes at the top of the ranking, namely PTK2B and

STAT5B that are involved in JAK/STAT signaling (Table S7).

Furthermore, the list contained genes for which we had identified

single T-ALL cases with a somatic mutation in our previous exome

study: ANKRD11, CTCF, DOCK2, H3F3A, and HADHA. We did

not select these genes before in our Exome-seq cohort [17] because

they were only mutated in one of the 39 samples we analyzed.

Now, with the RNA-seq cohort, we thus found additional samples

with mutations in these genes.

Optimized gene expression measurements and batch
effect removal from RNA-seq data identify co-expression
modules and T-ALL subtypes

T-ALL is characterized by the overexpression of transcription

factors (TFs), such as TLX1, TLX3, TAL1, and the HOXA family

members [6]. Therefore, identifying and analyzing expression

perturbations in a T-ALL cohort is highly relevant. To obtain

accurate gene expression levels from the mapped RNA-seq reads,

we followed the procedure outlined in Figure 1.B, including read

aggregation, GC-normalization, length normalization, and be-

tween-sample normalization (see Materials and Methods). In

addition, we removed a batch effect that was clearly present in the

data set using a Generalized Linear Model (GLM, see Materials

and Methods) (Figure S7). It is notable that transcript-based

expression analysis conducted with cufflinks revealed the same

batch effect linked to the origin of the sample, thereby confirming

a technical bias in the data set (Figure S7.B, see Materials and

Methods).

We next looked at the expression values of TLX1, TLX3, TAL1,

and other important TFs in T-ALL. Clustering of TLX1, TLX3,

and TAL1 expressing samples confirmed that the correct samples

(based on karyotyping and molecular analysis) showed over-

expression of the respective TF (Figure 4.A). Indeed, 8 samples

that harbored a STIL-TAL1 rearrangement showed high TAL1

expression (Figure 4.D). Note that also other samples with high

TAL1 expression were detected. This fits with a previously

reported observation of TAL1 over-expression in the absence of

a translocation in T-ALL [6,40].

To assess the accuracy of our expression values obtained after

normalization, batch effect removal and clustering, we tested

whether previously published gene signatures associated with

TAL1, TLX (TLX1 and TLX3) and LYL1 can be detected also in

our data set [41]. We used 13 gene signatures obtained by Soulier

et al using a microarray study on 92 primary T-ALL samples [41].

Gene set enrichment analysis shows that our TAL1 expressing

cases are significantly associated with TAL1 signatures, whereas

our TLX over-expressing cases are associated with the TLX

signature [7,8] and the LYL1 cases with the LYL1 signature

[10,11]. This analysis confirms that the obtained expression data

represent meaningful values and sample clustering produces gene

lists that are biologically meaningful (Figure 4.B).

We next used the gene expression information as a guide to

assist in the detection of relevant mutations. We found that the

expression profile of PTK2B, a candidate driver identified above

by ENDEAVOUR, significantly correlated with the JAK3

expression profile (PTM, with p-value threshold at 1E-05, see

Materials and Methods) (Figure 4.C). Indeed, PTK2B was

previously implicated in IL-2 mediated signaling and JAK/STAT

signaling, and was shown to physically interact with JAK3 [42].

These data warrant further investigation of PTK2B as an

important tyrosine kinase in T-ALL case with activated JAK/

STAT signaling.

T-ALL presents robust transcript isoform usage
To our knowledge, only very few cancer specific alternative

transcript events (ATE) have been described for any cancer type

[43–45], and no ATE is reported for T-ALL. In contrast to SNVs,

INDELS, copy number variations, and fusions, which are all

curated and present in large numbers in public cancer mutation

databases (e.g., COSMIC [36], CENSUS [46]), we could not find

driver ATEs in those databases (although splice sites represent an

important class of cancer mutations). If ATEs represent an

important, yet underestimated, type of somatic variation in cancer,

we would expect at least some of the known cancer driver genes to

present a significant ATE. We thus asked whether novel variations

could be found in these genes in the form of ATEs. To this end, we

applied cufflinks and cuffdiff (see Materials and Methods) and found

significant ATEs in 12 of the 47 known driver genes (BCL11B,

FLT3, IL7R, LCK, MYB, NKX2-1, SFTA3, RPL10, RUNX1,

SETD2, SUZ12, and TAL1) (Table S8). However, when we

manually inspected these events in IGV, we found only two

interesting cases. One case represents an unambiguous skipping of

exon 7 in SUZ12, occurring in several patient samples, but most

significant (cuffdiff p-value = 5.10E-05) in the R5 patient sample,

and absent in the Thymus (Figure 4.E), and a potential, but less

clear, skipping of exon 8 in LCK in three samples (Figure S8).

Exon 7 of SUZ12 is a canonical exon (present in all known

isoforms) according to RefSeq, Ensembl, and UCSC annotation.

The ATE we observe is a heterozygous event with the wild-type

junction supported by 90 reads and the novel junction supported

by 71 reads. RT-PCR clearly confirmed the exon-skipping event

in R5 and to a minor extent in other samples, while being absent

in the thymus (Figure 4.F). The functional consequences of these

splice variants remain to be determined, but the fact that these

variants are both in-frame suggests that these proteins could be

T-ALL Transcriptome Variation
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functional protein isoforms (Figure S8 and S9). Overall,

relatively few significant ATEs are detected, and no obvious

ATEs are found with consequences on the protein structure,

therefore T-ALL presents robust isoform usage at the current

resolution of sequencing and analysis.

Detection and validation of known and novel fusion
transcripts

Most of the T-ALL cases harbor chromosomal rearrangements

that lead to the generation of fusion genes or ectopic expression of

genes due to juxtaposition to strong promoters or regulatory

sequences. Chromosomal translocations involving the TCR genes

are largely underestimated by karyotyping and the TCR partner

genes remained unidentified in several cases [4,47]. On the other

hand, a multitude of mechanisms other than translocations could

cause ectopic expression of oncogenes [48]. To detect fusion

transcripts, we used the defuse algorithm on our entire dataset

[49]. Briefly, this method identifies candidate gene fusions by

discordant alignments produced by spanning reads (each read in

the read pair aligns to a different gene) and by split reads (reads

that harbor a fusion boundary). The total number of predicted

fusions initially was 1,160 and 1,265 in patient and cell line

samples, respectively. Also in normal thymus RNA, 60 fusion

transcripts were detected. Next, we implemented additional filters,

considering only predictions supported by 8 or more spanning

reads and 5 or more split reads. Furthermore, we removed fusions

involving ribosomal genes, mitochondrial genes and fusions

between adjacent genes, as these could be caused by read-through

or trans-splicing [50,51] (Figure 1.C).

After applying these filters, we obtained an average of 5.5 fusion

events per patient sample and 11.1 per cell line (Table S1.C). In

total, 397 candidate genes are involved as potential partner in a

gene fusion (Table S9). Details on the fusion breakpoints and

validation of the novel candidate fusion transcripts are reported in

Tables S9 and S12 (see also Materials and Methods: RT-PCR and

Sanger Sequencing).

First, to determine the relevance of these predicted fusion

transcripts we looked at functional enrichment of these genes. 278

of 397 genes correspond to functionally annotated protein-coding

genes according to DAVID functional enrichment [52,53].

Furthermore, this set is strongly enriched for cancer-related genes,

and more specifically for genes involved in Acute Myeloid

Leukemia (p-value = 4.48E-10) and T-ALL (p-value = 4.47E-05),

including TP53, STAT5B, NOTCH1, IL7R, IKZF1, CDKN2A,

MLLT10, ETV6, and ABL1.

Second, we specifically analyzed the 27 in-frame fusions,

predicted to encode chimeric proteins (Table S10). This list

contained known oncogenic fusion genes, including NUP214-ABL1

(n = 2), MLL-FOXO4 (n = 1), PICALM-MLLT10 (n = 1), ETV6-

NCOA2 (n = 1) and SET-NUP214 (n = 1). In addition, we identified

3 novel chimeric transcripts in T-ALL, namely NUP98-PSIP1

(n = 1), TPM3-JAK2 (n = 1) and SSBP2-FER (n = 1) and a novel

DDX3X-MLLT10 fusion transcript (n = 1) recently described in a

pediatric T-ALL patient [54]. Conventional cytogenetic analysis

confirmed the presence of a t(X;10) in the case with the DDX3X-

MLLT10 fusion, whereas it failed to detect the chromosomal

rearrangements for the TPM3-JAK2, NUP98-PSIP1 and SSBP2-

FER fusions, demonstrating the power of RNA-seq to identify

cryptic fusion genes and to provide genetic information even in

patients with uninformative cytogenetics. Reassuringly, RT-PCR

and Sanger sequencing confirmed the presence of these fusion

transcripts (Table S12).

The TPM3-JAK2 and SSBP2-FER fusions encode typical

tyrosine-kinase fusions that join the tyrosine-kinase domain of

JAK2 or FER to the dimerization units of TPM3 or SSBP2,

respectively (Figure 5.A). To assess whether the TPM3-JAK2 and

SSBP2-FER fusions encode oncogenic proteins, we tested their

transforming properties in the IL-3–dependent Ba/F3 cell line

[55]. Both TPM3-JAK2 and SSBP2-FER transformed Ba/F3 cells

to IL-3–independent growth, with even faster kinetics than the

JAK1 A634D mutant, which is a known transforming kinase [18]

(Figure 5.B). Western blot analysis confirmed the constitutive

auto-phosphorylation of the JAK2 and FER fusion proteins, as well

as the downstream STAT proteins (Figure 5.C). Ba/F3 cells

transformed by the TPM3-JAK2 fusion were sensitive to a JAK

kinase inhibitor, documenting the potential application of JAK2

kinase inhibitors for the treatment of T-ALL cases with JAK2

fusion genes. No specific FER inhibitors were available to test their

activity. Both TPM3-JAK2 and SSBP2-FER fusion were screened

in 50 additional T-ALL samples, but no additional case with these

fusions was found.

Third, we also analyzed the identified fusions that did not seem

to encode chimeric proteins (out-of-frame fusions), and which were

the majority of fusions detected in T-ALL. These fusion events can

be used as surrogate markers for the identification of chromosomal

rearrangements, providing accurate information on the precise

chromosomal breakpoints. In combination with the gene expres-

sion data obtained by RNA-seq, these data can identify genes that

are located close to such potential breakpoints and for which the

expression is significantly up- or down-regulated. As expected, we

identified the STIL-TAL1 fusion in several T-ALL cases (n = 8).

We also identified and validated 6 fusion events involving TCR

genes. In 4 of these cases, the TCR gene was found to be fused to

the potential oncogene (NOTCH1, IL7R, PLAG1, and TLX1). In

the two other cases (R4, TLE90), the TCR gene was fused to RIC3

or SFTA3, resulting in the ectopic expression of LMO1 and NKX2-

1, respectively, as indicated by RNA-seq gene expression data

(Figure 5.D and E). Similarly, we could better characterize the

t(10;14) in ALL-SIL cell line that expresses TLX1 at high level.

In addition to the TCR gene rearrangements, also other fusions

were associated with overexpression. We detected out-of-frame

fusion transcripts that joined exon 4 of CDK6 to exon 2 of

Figure 4. Validation and discovery using gene expression data, and SUZ12 ATE. (A) Classification of the samples using the TFs that are
known to be overexpressed in T-ALL. Using the expression patterns of TAL1, TLX1, TLX3, NKX2-5, LYL1 and LMO2 we could discriminate the samples in
to six distinct clusters. The heatmap is plotted with the normalized log2(count) values. Gene set enrichment analysis curves are displayed for (B)
enrichment of TAL1 associated clusters 2, 6 and 3 in TAL1 based ranking, (C) enrichment of TLX associated clusters 7 and 8 in TLX based ranking, and
(D) enrichment of LYL1 associated clusters 10 and 11 in LYL1 based ranking of the genes. (E) Expression of JAK3 and PTK2B across samples is
significantly correlated (with PTM p-value = 1E-05). (F) Normalized expression values of TAL1 and TLX1 with translocations affecting these genes
indicated. The samples with a translocation have elevated expression of the affected gene, showing the driver potential of the fusion event. There are
additional samples with high expression of TLX1 and TAL1 without the indicated fusions, pointing to other mechanisms of activating these genes. (G)
Predicted SUZ12 transcript aligned with the known SUZ12 isoforms. Dotted red box indicates the location of the exon-skipping event. (H) The sashimi
plot shows the junction (in black) supporting the exon-skipping event in patient sample R5 with respect to Thymus. (I) Agarose gel electrophoresis of
the RT-PCR products for validation of SUZ12 exon skipping event. The two isoforms are clearly detected in R5 and to a minor extent in the other T-ALL
samples while Thymus shows only the canonical transcript.
doi:10.1371/journal.pgen.1003997.g004
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Figure 5. SSBP2-FER and TPM3-JAK2 fusions transform lymphoid cells and show constitutive activity. (A) Schematic representations of
the predicted SSBP2-FER and TPM3-JAK2 fusion joining the dimerization units of SSBP2 (LisH domain) or TPM3 (coiled-coil domains) to the TK domain
of FER or JAK2, respectively. (B) Proliferation curve of mouse Ba/F3 cells in the absence of the cytokine interleukin 3 (IL3) (upper graph) and in the
presence of ruxolitinib (lower graph). In the absence of IL3, cells expressing empty vector died whereas cells expressing the SSBP2-FER or TPM3-JAK2
fusion protein were transformed and could proliferate. Ba/F3 cells expressing the oncogenic JAK1 A634D mutant were used as positive control for
transformation [18]. The graph shows mean +/2 st. dev. The lower graph illustrates the effects of the JAK kinase inhibitor ruxolitinib on Ba/F3 cell
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HOXA11-AS and exon 5 of CDK6 to sequences downstream of

EVX1. In the same patient we also detected a fusion joining

DPY19L1 on chromosome 7p14 to HOXA11 on chromosome

7p15. The gene expression analysis documented high expression

of genes of the HOXA cluster (i.e. HOXA9, -A5, -A13, -A10, -A11).

Moreover, other fusions identified in this study, such as CLINT1-

MEF2C, HNRP-ZNF219 (n = 2), ZEB1-BMI1 and AHI1-MYB

(n = 2) were also associated with transcriptional activation of

MEF2C, ZNF219, BMI1 and MYB as confirmed by the expression

data (Table S9 and S12, and Figure S10). Increased MYB

expression in T-ALL was previously observed as a consequence of

MYB duplication (including in the BE-13 cell line), which may also

explain the detected AHI1-MYB fusion [8,56].

Finally, we also found out-of-frame fusion transcripts leading to

the potential inactivation of tumor suppressor genes, such as

TP53-TBC1D3F (ALLSIL cell line), PTEN-RNLS (LOUCY cell

line), IKZF1-ABCA13 and CDKN2A-miR31HG (R6 case), indicating

a third class of fusion events (Figure S10). FISH analysis

performed in the R6 case confirmed the p15/p16 deletion. As

the genes are in close proximity, the IKZF1-ABCA13 was

presumably generated by deletion although no material was

available to confirm this hypothesis.

Discussion

The landscape of genomic variation underlying T-ALL has

recently been investigated by sequencing candidate genes [14,21],

whole exomes [17] and whole genomes [13]. The results of these

studies, combined with a large body of gene-by-gene evidence

collected over the last decade, provide a growing comprehension

of the T-ALL genome. The T-ALL genome is mainly character-

ized by the over-expression of TF, such as TLX1/3 and TAL1, in

combination with gain-of-function NOTCH1 mutations, and with

additional mutations in chromatin modifiers, cellular signaling

factors such as those involved in the JAK-STAT signaling pathway

[57], tumor suppressor genes (TP53, PTEN, WT1), or in other

genes such as ribosomal genes [17]. Since the majority of observed

mutations are point mutations and gene fusions (much more than

copy number variations [13]) we reasoned that RNA-seq would be

effective to identify many of these mutations, certainly those

associated with (over-)expressed oncogenes. Indeed, exome

sequencing allows identifying point mutations but not gene

fusions; and low coverage whole-genome sequencing allows

identifying structural variation (gene fusions) but not point

mutations. In this study we present RNA-seq analyses on a

heterogeneous group of 31 T-ALL samples and 18 T-ALL cell-

lines and demonstrate that RNA-Seq is indeed a very powerful

approach to detect gene mutations and fusions as well as

expression perturbations.

Our first challenge with regards to the accurate identification of

point mutations was finding the optimal analysis pipeline – from

read mapping to SNV calling and filtering – to avoid too many

false positive SNVs. By exploiting whole-exome sequencing data

for a subset of our samples we obtained a recovery ratio of 32%

when compared to the exome derived SNVs; a ratio that is

comparable with previous RNA-seq studies [30,31]. However, this

concordance could only be achieved by using the optimal read

mapping methods and parameters: (1) use of a recent version of

TopHat2 (v. 2.0.5. or higher) and (2) forcing this aligner to map all

reads twice to the genome (once directly and once using split reads)

and once to the transcriptome. Indeed, the computational task of

sequence read mapping is more challenging for RNA-seq data

because a large fraction of the obtained reads need to be split to

allow reads that overlap exon-exon boundaries in the cDNA to be

mapped to the genome. In this way, RNA-seq is more prone to the

identification of false SNVs due to the erroneous mapping of

reads, for example to highly similar non-spliced pseudogenes. For

example, in the RPMI8402 cell line, 603 RNA-seq exclusive SNVs

were found with the genome mapping strategy, while only 35

when using combined mapping strategy.

Among the previously published large scale RNA-seq cancer

studies, only a handful performed variant calling on the RNA-seq

data [30,31,58,59]. A combined mapping strategy was followed in

all cases either by mapping the reads to a customized genome

reference file (by the addition of exon junction segments) or

mapping the reads twice (once to the genome and once to the

transcriptome). Variant calling pipelines also showed diversity:

Morin et al and Shah et al used SNVMix [60] for variant calling,

while Seo et al and Berger et al implemented filters based on

alignment on the non-reference bases. To our knowledge there is

no extensive benchmarking study evaluating aligners and variant

callers for RNA-seq data, but a review paper by Quinn et al

compared the performance of two variant callers (GATK [23] and

SAMTools [27]) with the optional duplicate removal step (pre and

post alignment), and concluded that post-alignment duplicate

removal and variant calling with SAMTools achieved the best

performance in terms of sensitivity and specificity [61]. We have

also followed the same strategy in our study and we could achieve

a comparable recovery ratio of 32% when compared to Exome-

seq calls.

A second challenge in identifying point mutations was the

prioritization of candidate driver mutations versus passenger

mutations. Due to the lack of matched germline RNA for each

patient as control, we used a large cohort of local normal exome

datasets, in combination with the commonly used variants from

dbSNP and 1000genomes, to distinguish SNPs from candidate

somatic mutations. This strategy has been successfully used before

on transcriptome sequencing studies [62]. Identifying candidate

cancer genes by gene mutation frequency is a frequently used

approach [13,30,58]. Remarkably, by simply selecting all genes

having a candidate somatic mutation in at least two samples (213

genes in total), we already achieved a highly significant enrichment

for T-ALL related genes, such as NOTCH1, BCL11B, FBXW7,

DNM2, JAK3, JAK1, and IL7R. Among the remaining candidates

we searched for additional evidence and we propose seven

additional candidate drivers because they are either ‘‘functionally

similar’’ to the previously known drivers, or because they were

mutated somatically at least once in another T-ALL cohort [17],

or both. Six of these genes, namely CIC, H3F3A, PTK2B, STAT5B,

ANKRD1 and HADHA have already been implicated in other

cancers [63–70] while DOCK2 has no association with cancer yet.

proliferation after 24 hours of treatment. The graph represents mean +/2 st. dev. of triplicate measurements. (C) Western blot analysis of Ba/F3 cells
transformed by the indicated kinases. The 2 upper panels show phosphorylation of the JAK and FER kinases, the panels below illustrate
phosphorylation of downstream targets STAT5, STAT3, SRC and ERK1/2. (D) TCR gene fusions result in overexpression of a flanking gene in RIC3-TRBC2
and SFTA3-TRDC fusions. The barplot is drawn for relative (to Thymus) expression values for the upstream and downstream flanking genes around
RIC3 and SFTA3 for R4 and TLE90 samples, respectively. In both cases, the nearest downstream neighbor shows increased expression. (E) The
heatmap illustrates the expression patterns of RIC3 and SFTA3, together with their immediately upstream and downstream flanking genes in the
genome, showing strong over-expression (red) of LMO1 near the RIC3 fusion, and of NKX2-1 near the SFTA3 fusion.
doi:10.1371/journal.pgen.1003997.g005
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We found a remarkable clustering of molecular functions

among the identified T-ALL driver genes, with enrichment for

functions related to the regulation of gene expression. TFs and

their co-factors play a central role in transcriptional regulation and

these proteins are often mutated in T-ALL. Also, many of these

play important roles in the normal T-cell developmental gene

regulatory network [71], such as NOTCH1, TLX1, TLX3, TAL1,

BCL11B, CTCF, FOXO4, MYB, and others. Upstream of these

activated TFs, multiple kinases and other signaling factors control

their activity, and these regulators are also often mutated in T-

ALL (for example, JAK1, JAK3, and IL7R). Finally, chromatin

modifiers and methylation factors are recurrently mutated and

these can have both generally pervasive but also specific effects on

the expression of oncogenes, such as MYC [72]. When multiple

driver mutations are serially acquired, their combined effect will

result in oncogenic expression profiles, whereby genes supporting a

growth advantage increase and genes negatively affecting growth

advantage (e.g., apoptosis, senescence) decrease in expression. It

will be an interesting future challenge to draw the connections

between the observed DNA mutations, the oncogenic program,

and the final gene expression changes that we and others observe

in T-ALL samples. Finally, it is likely that non-coding mutations,

such as those in promoters, enhancers, microRNAs, and lncRNAs,

add to the cancer-related gene regulatory network changes

underlying leukemogenesis.

As mentioned above, only mutations in genes that are actively

transcribed are detected, and this likely adds to the specificity of

driver gene detection. On the other hand, this could also present a

limitation of RNA-seq, because loss-of-function mutations in

tumor suppressor genes may lead to nonsense-mediated decay,

and as consequence low sequence coverage to call mutations.

Based on our data however, this is not the case because we could

detect PHF6 mutations in up to 4/31 patient cases (13%), where

exome sequencing identified PHF6 mutations in 9/67 cases (13%)

[17] and Zhang et al identified PHF6 mutations in 24/106 cases by

means of whole genome sequencing and capillary sequencing [13].

Interestingly, the gene expression information used above (i.e.,

read coverage to identify point mutations) can be further exploited

at the quantitative level, similar to gene expression studies

performed with microarray technology over the last 15 years. As

many leukemia driver genes are characterized by changes in gene

expression, this level of information is invaluable, both in research

and diagnostic settings. We investigated how accurate gene

expression levels can be achieved and we found that multiple

normalization steps are required, both within-sample (gene length

and gene GC content) and across samples (library size), and that

batch effects can be effectively removed using a previously

published Generalized Linear Model (GLM) [73]. The gene

expression levels of the known drivers (e.g., TLX1/3, TAL1,

NOTCH1) are highly representative as driving events and as

subtype identifiers. However, to discover driver genes de novo, using

only gene expression values, is to our opinion not feasible (data not

shown). Alternatively, we attempted to select candidate drivers

based on the expression similarity (i.e., co-expression across the

cohort) with known drivers. This led to the identification of

PTK2B, whose expression strongly correlated with JAK3 and

which is known to be implicated in JAK-STAT signaling. The

next level of gene expression analysis would preferably be a

network-level analysis [74], but this requires a larger sample

cohort.

Another kind of information that can be extracted from RNA-

seq data, besides point mutations and gene expression changes, are

alternative transcript events (ATE) and gene fusions [75]. We

found only few significant ATEs but could confirm two exon-

skipping events in the known T-ALL oncogenes SUZ12 and LCK.

More importantly, we identified (i) known and novel in-frame

fusions encoding chimeric proteins, (ii) TCR gene arrangements

resulting in over-expression of oncogenes, and (iii) fusions not

involving TCR genes but also resulting in over-expression of

oncogenic transcription factors. The most recurrent fusion event,

observed in 8/31 samples, was the STIL-TAL1 fusion resulting in

the ectopic over-expression of the TAL1 gene. We also identified

novel gene fusions, including two in-frame fusions, TPM3-JAK2

and SSBP2-FER, producing chimeric oncoproteins; and other

fusions resulting in the ectopic expression of transcription factors

such as PLAG1, MEF2C, ZNF219, and BMI1. The ectopic

expression of these genes is associated with a fusion event and

with changed expression, which can both be detected by RNA-

seq, making this technology extremely powerful to accurately

detect such oncogenic events. Each of these novel events appears

to be rare in T-ALL, as we identified at most 2 cases of each

fusion. However the evidence of transcriptional activation of the

partner genes suggests that further studies are required to establish

the recurrence of these lesions and their functional meaning. It is

notable that the normal thymus sample also shows four fusion

events. However, as these genes are located in close proximity to

each other, they may represent unannotated isoforms in the

human transcriptome. Despite RNA-seq has offered a deeper

insight into the complexity of the transcriptome, several studies

have highlighted that the catalogue of all expressed transcripts is

still far from complete and it is increasing the number of novel

splice junctions connecting novel exon, non-exon regions, or

linking independent transcripts [76].

Today, high-quality catalogues of driver genes across cancer

types are available, and this influences how and why cancer

genomes need to be sequenced. For T-ALL, and for many

common cancer types, the objectives of sequencing are shifting

from the discovery of cancer genes, to a diagnostic setting in which

a list of driver events are a priori known. Targeted re-sequencing

provides an interesting route, although this poses technical

challenges of amplification or capturing, and perhaps more

importantly, is focused on a limited number of genes and on

one particular mutation type, namely point mutations and small

insertions/deletions. We have shown in this study that, with a list

of interesting cancer drivers at hand, and with other datasets being

available (e.g., rare variants from local exome studies, 1000

genomes, TCGA data, etc), RNA-sequencing of only the cancer

sample provides a technically straightforward approach and

delivers at once the point mutations, gene fusions and gene

expression changes across the entire transcriptome. And as a

corollary, the data analysis strategies provided here would be

beneficial for any cancer type as long as a body of knowledge is

available for selecting and prioritizing candidate events.

Materials and Methods

Patient samples and cell lines
Diagnostic total RNAs from 31 T-ALL patients (20 adults and

11 children) were collected at various institutions. All patients have

given their informed consent and all samples were obtained

according to the guidelines of the local ethical committees. This

study was approved by the ethical committee of the University

Hospital Leuven. Diagnosis of T-ALL was based on morphology,

cytochemistry and immunophenotyping according to the World

Health Organization and European Group for the Immunological

Characterization of Leukemia criteria [77]. The clinical and

hematologic features of the 31 patients at the diagnosis are

summarized in Table S11 Total RNAs from 18 T-ALL cell lines
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(DSMZ, Braunschweig, Germany) were extracted using QIAGEN

RNeasy Mini Kit. A pool of total RNAs from 5 normal human

thymuses was purchased from Capital Biosciences.

All the RNA samples showed a high quality RNA Integrative

Number (RIN./ = 7) score on the Bioanalyzer (Agilent Technol-

ogies).

Fifty additional RNA samples were used for TPM3-JAK2 and

SSBP2-FER analysis.

Genomic DNA from of 71 adult T-ALL patients were used for

H3F3A K28 screening.

RNA-seq
Next generation sequencing libraries were constructed from

500 ng of total RNA using the Truseq RNA sample prep kit

(Illumina). RNA-seq libraries were subjected to 26100 bp paired-

end sequencing on a HiSeq2000 instrument (Illumina). Sequence

reads were processed to identify gene fusion transcripts, single

nucleotide variants (SNVs) and gene expression levels. For the

read mapping, variant calling and transcriptome assembly, we

used the infrastructure of the VSC - Flemish Supercomputer

Center, funded by the Hercules foundation and the Flemish

Government - department EWI.

Fusion transcript discovery
Fusion transcript discovery was performed using defuse v.0.5.0

[49] with default parameters. The resulting list was filtered as

described in [78]. Briefly, fusion transcripts with less than 8

spanning reads and less than 5 split reads were filtered out. In

addition, we removed fusion events observed in adjacent genes

and fusion events involving ribosomal genes (ribosomal genes were

downloaded from Biomart on 24-05-2011 using GO:0005840) and

the genes located on chrM. Fusion events were annotated using

Pegasus (http://sourceforge.net/projects/pegasus-fus/).

Gene expression analysis
For Gene Expression Profiling analysis, reads were mapped to

the human reference genome (assembly GRCh37.68) using

TopHat v.2.0.5 [26] with the following parameters: transcrip-

tome-only. Read counts per gene were obtained with the HTSeq

package (htseq-count) (http://www-huber.embl.de/users/anders/

HTSeq). The aggregated read counts were normalized with

EDASeq v1.4.0 [79] and generalized linear model was fitted with

edgeR v3.0.4 [73] to remove batch effect originating from the

sample collection center. The pathways, and upstream regulators

were generated through the use of IPA (Ingenuity Systems, www.

ingenuity.com). Expression neighbors were detected with Pavlidis

Template Matching (PTM) analysis [80]. Transcript based gene

expression values were obtained using cufflinks suite [81,82].

Transcript assembly was performed with cufflinks v2.1.1 with –g

option using assembly GRCh37.68.

Gene set enrichment analysis (GSEA) was performed for TAL1,

TLX and LYL1 clusters [83]. We have obtained whole genome

rankings for TAL1, TLX (TLX1 and TLX3), and LYL1 simply by

calculating the log fold changes between samples expressing the

respective gene versus the remaining samples. The gene signatures

from Soulier et al were obtained from Table S2 [41].

Alternative transcript event discovery
Tumor patient samples and Thymus RNA-Seq samples were

mapped to the Ensembl GRCh37.68 reference genome by

Tophat2 [26]. Mapped reads were realigned, and transcript

abundance were estimated using cufflinks v2.1.1 [81,82]. Tran-

script assembly was reconstructed using the cuffmerge program of

the cufflinks package from the realigned transfrags for each of

patient RNA-seq samples, merged with the Thymus sample

(control), followed by differential expression analysis performed

using cuffdiff program. The significant events were extracted from

the list of differentially expressed genes, isoforms, primary

transcripts and coding sequence and assessed manually with

IGV [84]. The mRNA sequences for novel SUZ12 and LCK

transcripts were extracted using gffread command of cufflinks, and

these sequences were translated using the translate tool of the

ExPASy Bioinformatics Resource Portal [85]. The longest ORF

sequence was used to verify the domain architecture of the

resulting proteins using SMART [86,87].

Prediction of single nucleotide variation
The sequence reads were mapped to the human reference

genome (assembly GRCh37.68) using TopHat2 setting the option

‘‘read-realign-edit-dist’’ to zero [26]. Duplicate removal process

was performed on the aligned reads using Picard v1.74 (http://

picard.sourceforge.net). Then SAMTools package v0.1.19+
(pulled from the git repository on 29-07-2013) [27] was used for

single nucleotide variant (SNV) and small insertion and deletion

(INDEL) detection with minimum mapping quality threshold of 1

and minimum base quality threshold of 13 (-q 1 -Q 13) [27]. The

variant calling was done on the coding regions of the genome only

(extracted from the transcript definitions in the assembly

GRCh37.68). The variant predictions that were supported

exclusively by variants located in the beginning or the end of the

read were filtered out. Then the SNVs were further filtered with

depth of coverage threshold of 20 and minimum variant allele

frequency threshold of 0.20. INDELs predictions were filtered

with the SAMTools recommended parameters (varFilter -10 -20 -

30 -40 -a4 -G90 -S30) and additionally INDELs located in

homopolymer stretches longer than 5 bps were filtered. The high

quality list of variants was filtered for common population variants

using the calls from 1000 genomes, dbSNP, HapMap, and

Complete Genomics. Note that, the list of common population

variants was cleaned from oncogenic variants using COSMIC

listed variants (v66) [36]. Moreover, the variants located in the

repeat regions (simple repeat and RepeatMasker) were filtered

out. Finally, the variants that are observed in the exomes of

remission (i.e. healthy) samples (including the previously published

39 exome remissions [17] and the 6 additional exome remission

sequenced) and the variants that are observed in Thymus were

also filtered out. The final filtered list of variants was annotated

with the Variant Effect Predictor version 2.7 [25] and the

protein-altering mutations were selected. The following terms

were used for selecting protein-altering SNVs: splice-donor-

variant, splice-acceptor-variant, stop-gained, initiator-codon-vari-

ant, missense-variant, splice-region-variant. The same terms

were used for filtering the INDELs with the addition of the

following terms: inframe-insertion, inframe-deletion, frameshift-

variant.

The list of candidate genes was created by intersecting the genes

with recurrent mutations (SNVs and INDELs) in RNA-seq patient

cohort with the somatic mutations in Exome-seq patient cohort

[17]. The list of genes that have recurrent mutations in the

RNA-seq patient cohort was filtered for mutations observed in

chrM.

The list of T-ALL driver genes were curated using the Census

database [46] and T-ALL literature and includes the following

genes: TLX1, TLX3, PHF6, MYC, BCL11B, HOXA1, SET, MLL,

MLLT1, PICALM, MLLT10, WT1, MYB, LEF1, LMO2, LMO1,

TAL1, NUP98, NOTCH1, FBXW7, CCND2, PTEN, PTPN2, NF1,

FLT3, JAK1, NRAS, LCK, NUP214, ABL1, EZH2, SETD2, SUZ12,
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JAK3, MEF2C, NKX2-1, NKX2-2, CDKN2A, CDKN2B, RUNX1,

KRAS, EED, ETV6, RPL10, DNM2, IL7R, CNOT3.

Exome-seq analysis
Somatic mutations from the exome pairs were obtained as

described previously [17]. Briefly, the alignment was performed

with BWA [22] and post-alignment modifications (duplicate

removal, realignment around INDELs and calibration of the

quality scores) were done with the Genome Analysis Toolkit

(GATK) [23]. Variant calling was performed with GATK using

Variant Quality Score Recalibration (VQSR) method. Putative

somatic variants were identified by subtracting the mutations

observed in the primary samples from the mutations observed in

the corresponding remission samples. SomaticSniper score above

70 was used to identify the final list of somatic events [24].

Variant allele frequency (VAF) plots were drawn for the

positions that are novel SNVs in either of the RNA-seq or

Exome-seq data and covered by at least 20 reads in both datasets.

RT-PCR and Sanger sequencing
Novel candidate fusion transcripts were validated by Reverse-

Transcription Polymerase-Chain-Reaction (RT-PCR) and Sanger

sequencing. In all cases Thymus was used as negative control.

cDNA synthesis and PCR amplification were performed using

standard protocols that come with Superscript III Reverse

Transcriptase (Invitrogen) and GoTaq (Promega). PCR primers

were designed to amplify 200–400 bp fragments containing the

fusion boundary detected by RNA-seq. The PCR products were

analyzed using a QIAxcel automated multicapillary electrophore-

sis system (QIAGEN). The results were processed and visualized

using the BioCalculator Software. PCR products were analyzed by

Sanger Sequencing. In cases where multiple PCR products were

detected, we performed conventional agarose gel electrophoresis

and extraction of specific bands using the gel DNA Recovery Kit

(Zymo). Analysis of Sanger chromatograms was performed using

CLC Main Workbench 6 (CLC Bio, Aarhus, Denmark). Fusion

detection was performed using NCBI Blast alignment. Analysis of

the breakpoint was done on the longest isoform reported on the

Ensembl genome browser. The tested fusions predictions and the

primers used for validations are reported in Table S12.

Validation of SUZ12 exon skipping was performed by RT-PCR,

gel extraction and sequencing of the two PCR products

(Figure 4.I). The following primers were used for RT-PCR and

Sanger sequencing: SUZ12_EX1F (CTGACCACGAGCTT

TTCCTC) and SUZ12_EX9R (CCATTTCCTGCATGGC-

TACT).

Cloning
The plasmid TPM3-JAK2 pMSCV-GFP was obtained as

follows: a DNA fragment containing TPM3 coding region till

exon 7 was PCR amplified from thymus cDNA using Phusion

High Fidelity DNA Polymerase (Finzyme) and primers containing

BglII and XhoI restriction sites. Primers containing XhoI and

EcoRI restriction sites were used to amplify JAK2 coding exons

17–25. PCR products were cloned into the BglII and EcoRI sites

of the pMSCV-GFP vector after subcloning into the pJET1.2

CloneJET vector (Fermentas). As a final control, plasmid DNA

was sequenced by Sanger sequencing.

SSBP2-FER fusion was synthesized by Genscript (Piscataway,

NJ, USA) and cloned into pMSCV-GFP by using the unique

restriction sites XhoI and EcoRI. The plasmid contained the full

length SSBP2-FER fusion including the first 16 coding exons of

SSBP2 and the coding exons 14–20 of FER.

Cell culture
Viral supernatants were produced in HEK293T cells using an

EcoPack packaging plasmid and TurboFect transfection reagent

(Fermentas). Viruses were harvested 48 hours after transfection

followed by transduction of the Ba/F3 murine pro-B cells (DSMZ,

Braunschweig, Germany) as described previously [88].

Transformation experiments
Ba/F3 cells were washed twice in PBS to remove all traces of

cytokines and were seeded in triplicate in 24-well dishes at 100 000

cells/mL. GFP expression and cell number were measure on a

Guava flow cytometer (Millipore). All experiments were terminat-

ed at day 8 after cytokine removal and cell lines showing no sign of

cell proliferation at that timepoint were declared to be non-

transforming.

Western blotting
Total cell lysates were analyzed by standard electrophoresis and

western blotting procedures using the following antibodies: anti-

phospho-JAK1 (Tyr1022/1023), anti-phospho-STAT1, anti–phos-

pho-STAT5 (Tyr694), anti–phospho-STAT3 (Tyr705), anti-phos-

phoERK1-2, anti-phospho-SRC families (Tyr416) (from Cell

Signaling Technology).

Inhibitor experiments
TPM3-JAK2 and SSBP2-FER IL3-independent Ba/F3 cells were

seeded in triplicate in 96-well plates at a density of 0.036106 cells

in the presence of JAK inhibitor Ruxolitinib (INCB018424, Azon

Medchem). Cell proliferation and viability were assessed on a

Guava flow cytometer after 24 hours to determine the IC50, the

concentration of inhibitor that gave a 50% inhibition.

Accession numbers
Genome data has been deposited at the European Genome-

phenome Archive (EGA, http://www.ebi.ac.uk/ega/) which is

hosted at the EBI, under accession number EGAS00001000536.

Supporting Information

Figure S1 Suboptimal mapping strategies result in incorrect

read alignment. Alignment of the Exome-seq and RNA-seq reads

on GLUD2 and GLUD1 genes for the RPMI8402 cell line. Two

alignment strategies are visualized in these figures for RNA-seq:

genome-only mapping and combined mapping strategy. Panel (A)

shows the alignment for GLUD2 gene. With exome-seq a very high

coverage was achieved (the coverage track scale is 0–1000).

Aligning the RNA-seq reads with ‘genome-only’ option yields high

coverage as well however with a lot of mismatches in the

alignment (colored lines indicate the presence of a nucleotide

different than the reference base). However, when combined

mapping strategy is applied the coverage drops drastically. Panel

(B) shows the alignment of GLUD1 gene. When mapping with

genome only option, the coverage is not high (the coverage track

scale is 0–900) since the reads are forced to map to the pseudogene

(GLUD2) with a lot of mismatched. When the combined mapping

strategy implemented, the reads align to GLUD1 gene correctly

with less mismatches.

(PDF)

Figure S2 Variant allele frequency plots for assessing transcrip-

tome-only mapping strategy. The variant allele frequencies of the

SNVs that have at least 206reads in exome-seq and RNA-seq are

plotted. The RNA-seq SNVs were obtained with the transcrip-

tome-only alignment option. Red and green dots represent the
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SNVs that are detected only in RNA-seq and only in exome-seq,

respectively, while black dots represent the SNVs that are called in

both. Venn diagrams are produced from the points represented in

the graphs. The plots are generated for (A) RPMI8402 cell line

and (B) TLE79 patient sample.

(PDF)

Figure S3 Variant Allele Frequency (VAF) plots for 16 cell lines

and 20 patient samples. RNA-seq calls are made with combined

mapping strategy. The venn diagrams and VAF plots are drawn

for variants that have sequence coverage of at least 206.

(PDF)

Figure S4 Scatter plot of average coverage versus recall ratio per

sample. Recall ratio per sample is calculated as the percentage of

Exome-seq SNVs that are called in the RNA-seq as well. Recall

ratio 0.3 is assumed as the indicator of a ‘good sample’ in terms of

variant detection.

(PDF)

Figure S5 Visualization of the alignments with Exome-seq and

RNA-seq for the 5 INDELs that are validated in the DNA of the

samples but absent in the RNA-seq alignments. The Exome-seq

and RNA-seq alignment files are visualized using IGV for (A)

KDM6A in TLE87, (B) PTEN in TLE92, (C) WT1 in TLE76, (D)

USP9X in SUPT1, and (E) UNC5D in MOLT4. The exome-seq

alignment files (below) have the reads containing the INDEL,

whereas RNA-seq alignment files (above) either contain reads with

reference only (A, B, and E) or a small portion of reads with

INDEL (C and D).

(PDF)

Figure S6 INDELs in TLE92 and TLE87 are detected after

mapping with a different aligner. The screenshots from UCSC

genome browser shows (A) the 4 bp deletion in PTEN (note that

only a part of the alignment was shown) and (B) 1 bp deletion in

KDM6A. In both cases BWA transcriptome-only mapping

was coupled to BLAT genome mapping. In (C) and (D), TopHat2

transcriptome-only mapping coupled with BLAT genome

mapping was displayed for PTEN and KMD6A INDELs,

respectively.

(PDF)

Figure S7 Batch effect removal for gene expression profiling.

Multidimensional scaling (MDS) plots before and after batch effect

removal. A batch effect was observed whereby samples originating

from the same collection center clustered together based on the

edgeR normalized gene-by-gene counts (A). A similar clustering

was observed when the FPKM values per transcript was used (B).

After fitting a Generalized Linear Model (on the edgeR

normalized gene-by-gene counts) accounting for sample collection

center, the aberrant clustering of the samples is corrected (C).

(PDF)

Figure S8 Overview of exon skipping event in LCK. (A)

Predicted novel transcript of LCK aligned with known LCK

isoforms. Dotted red box indicates the exon-skipping event in the

8th exon (B) Sashimi plot detailing the junction supporting the

exon skipping event in patient samples R5, R5 and TLE93 with

respect to Thymus. (C) Schematic representation of the predicted

alternative splicing event of LCK. The exon skipping ratio (C/

A+B+C) of exon 8 of LCK in R5, R4, TLE93 are 0.40, 0.47 and

0.20, respectively. (D) Schematic overview of LCK protein

illustrating the spliced out portion without affecting the functional

domains.

(PDF)

Figure S9 Schematic overview of the SUZ12 exon-skipping

event. (A) Schematic representation of the predicted alternative

splicing event of SUZ12. The exon skipping ratio (C/A+B+C) of

exon 7 of SUZ12 in R5 is 0.35. (B) Schematic overview of SUZ12

protein illustrating the spliced out portion without affecting the

functional domains.

(PDF)

Figure S10 Out-of-frame fusions can have various consequenc-

es. The over or under expression caused by out-of-frame

gene fusions are illustrated in the normalized expression heatmap.

CLINT1-MEF2C, HNRP-ZNF219, ZEB1-BMI1 and AHI1-MYB

fusion are associated with overexpression of MEF2C, ZNF219,

BMI1 and MYB; whereas as TP53-TBC1D3F, PTEN-RNLS,

IKZF1-ABCA13 and CDKN2A-miR31HG fusions are responsible

for the under-expression of TP53, PTEN, IKZF1 and CDKN2A.

(PDF)

Table S1 (A) Sequencing and mapping statistics, (B) Variant

statistics, (C) Fusion statistics.

(XLSX)

Table S2 Samples analyzed in this study.

(XLSX)

Table S3 Comparison of the number of novel SNV and

INDELs between RNAseq and Exome-seq.

(XLSX)

Table S4 Validated INDELs from the Exome-seq.

(XLSX)

Table S5 Mutations detected in 213 genes.

(XLSX)

Table S6 IPA on 213 candidate genes.

(XLSX)

Table S7 ENDEAVOUR results on 213 genes.

(XLSX)

Table S8 ATEs identified in known T-ALL drivers.

(XLSX)

Table S9 Fusions detected in 49 samples and the Thymus.

(XLSX)

Table S10 Annotation of fusions with Pegasus.

(XLSX)

Table S11 Patient characteristics.

(XLSX)

Table S12 Novel Fusion Transcript validated by RT-PCR and

Sanger sequencing.

(XLSX)
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