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Abstract: Thalidomide analogues (or immunomodulatory imide drugs, IMiDs) are cornerstones in
the treatment of multiple myeloma (MM). These drugs bind Cereblon (CRBN), a receptor for the
Cullin-ring 4 ubiquitin-ligase (CRL4) complex, to modify its substrate specificity. IMiDs mediate
CRBN-dependent engagement and proteasomal degradation of ‘neosubstrates’, Ikaros (IKZF1) and
Aiolos (IKZF3), conveying concurrent antimyeloma activity and T-cell costimulation. There is now
a greater understanding of physiological CRBN functions, including endogenous substrates and
chaperone activity. CRISPR Cas9-based genome-wide screening has further elucidated the complex
cellular machinery implicated in IMiD sensitivity, including IKZF1/3-independent mechanisms.
New-generation IMiD derivatives with more potent anti-cancer properties—the CELMoDs (Cereblon
E3 ligase modulators)—are now being evaluated. Rational drug design also allows ‘hijacking’ of
CRL4CRBN utilising proteolysis targeting chimeras (PROTACs) to convey entirely distinct substrate
repertoires. As all these chemotypes—thalidomide, IMiDs, CELMoDs and PROTACs—engage CRBN
and modify its functions, we describe them here in aggregate as ‘CRBN-interacting small molecules’
(CISMs). In this review, we provide a contemporary summary of the biological consequences of
CRBN modulation by CISMs. Detailed molecular insight into CRBN–CISM interactions now provides
an opportunity to more effectively target previously elusive cancer dependencies, representing a new
and powerful tool for the implementation of precision medicine.
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1. Introduction

Thalidomide analogues, such as lenalidomide and pomalidomide, have significantly
improved outcomes for patients with multiple myeloma (MM), an incurable malignancy of
the plasma cell [1,2]. Prior to the precise elucidation of their molecular mechanism of action,
thalidomide analogues were characterized by anti-inflammatory and immune-enhancing
effects and designated as immunomodulatory imide drugs (IMiDs). It is now apparent that
many of the biological activities of IMiDs are mediated by their protein target, Cereblon
(CRBN). The CRBN gene is located on chromosome 3p and encodes a 50kDa LON protease
which regulates a plethora of biological roles. Before CRBN was identified as the protein
target of IMiDs, a CRBN germline nonsense mutation was implicated in an autosomal
recessive form of mental retardation [3,4]. CRBN functions as a receptor for the Cullin
Ring Ligand 4 E3 ubiquitin ligase complex (CRL4CRBN), where Cullin 4 (CUL4A/B) is the
scaffold, Ring-Box 1 (RBX1) is the RING component binding the E2 enzyme, and DNA
Damage Binding protein 1 (DDB1) is the adaptor [5,6]. CRBN docks onto DDB1 with its
helical bundle domain and engages substrates for ubiquitination via its C-terminus domain
(CTD). When bound by an IMiD, CRBN’s E3 ligase specificity is redirected towards non-
physiological proteins targets which are subsequently ubiquitinated and/or degraded [7,8].
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It is also evident that IMiDs modulate non-E3 ligase-related properties of CRBN, such
as chaperone functions [9,10]. More recently, the term ‘CELMoDs’ (Cereblon E3 ligase
modulators) was coined to refer to a ‘new generation’ of IMiDs that have been developed
in the post-CRBN era to exploit improved biological activities [11–13]. Moreover, bespoke
chimeric compounds combining a targeted small molecule with a phthalimide moiety can
‘hijack’ CRL4CRBN to degrade entirely distinct substrates [14–17]. Here, we review the phys-
iological activities of CRBN and how these may be modulated by CRBN-interacting small
molecules (CISMs) to improve precision in the treatment of hematological malignancies.

2. Mechanisms of Immunomodulatory Imide Drug (IMiD) Activity in
Multiple Myeloma

The biological changes induced by IMiD treatment can be divided into tumor cell-
extrinsic effects (e.g., relating to the host immune system and bone marrow microenvi-
ronment) and tumor cell-intrinsic effects (i.e., direct toxicity to the malignant plasma cell).
The earliest cell-based studies of thalidomide and its analogues exploited modulation of
immune effector activities including the suppression of tumor necrosis factor (TNF)-α se-
cretion by mononuclear cells following lipopolysaccharide (LPS) challenge [18–20] and the
capacity to costimulate T-cells [21]. In addition to stimulating cytotoxic effector cells, IMiDs
increase antigen presentation by dendritic cells and suppress the activity of T regulatory
lymphocytes [22–29]. IMiDs have diverse effects on the bone marrow microenvironment
including anti-angiogenic activity, bone protective properties and altered cellular adhesion.
Thalidomide impairs angiogenesis via suppression of vascular endothelial growth factor
(VEGF) signaling [30,31]. Lenalidomide also impairs angiogenesis by a reduction in VEGF
expression, together with inhibition of fibroblast growth factor (FGF) and interleukin (IL)-6
signaling, and shows increased anti-angiogenic activity relative to thalidomide [32–34].
Amelioration of myeloma-related bone disease is a consequence of reduced Receptor Ac-
tivator of NFκB Ligand (RANKL) expression and osteoclast activity [35]. Cell adhesion
to the bone marrow extracellular matrix and interactions with stromal cells are medi-
ated by adhesion molecules such as integrins and their ligands Intercellular Adhesion
Molecule (ICAM)-1 and Vascular Cell Adhesion Molecular (VCAM)-1 [36]; IMiDs suppress
the expression of these molecules and, therefore, interfere with pro-survival paracrine
signaling [36]. The net result is disruption of the protective effects of the bone marrow
niche with concurrent augmentation of the anti-myeloma immune response.

Cell-intrinsic effects on the myeloma cell include cytostasis and induction of apoptosis.
IMiDs cause G0–G1 cell cycle arrest by the induction of tumor suppressors p21, p27, and
members of the Early Growth Response (EGR) protein family [37], together with the
inhibition of cyclin-dependent kinases-2, -4 and -6 [38,39]. Thalidomide also suppresses
Nuclear Factor kappa of activated B-cells (NF-κB) signaling [40] which has apoptotic effects
consequent to downregulation of B-cell lymphoma 2 (BCL2) and BCL2-like proteins with
the release of mitochondrial cytochrome c [41]. Contemporary understanding of IMiD
biology indicates that these tumor cell intrinsic effects, and the broader microenvironmental
and immunomodulatory activities, are underpinned by a direct interaction with CRBN.

3. Cereblon (CRBN) Is Required for the Anti-Myeloma Activity of IMiDs

A major breakthrough in deciphering the molecular mechanism of IMiDs came with
the discovery that thalidomide bound directly to CRBN and that this interaction was
necessary for its teratogenic effects using zebrafish and chicken embryo modelling [5].
Soon after, it was shown that CRBN expression was required for the antimyeloma activity
of IMiDs [42]. The primacy of CRBN in the IMiD mechanism of action has now been
established by examining the cellular changes that arise in the context of IMiD resistance.
Prolonged in vitro exposure to increasing concentrations of lenalidomide resulted in IMiD-
resistant myeloma cells with reduced CRBN expression caused by deletion of one copy
of CRBN [42]. CRBN levels are positively associated with clinical responses to lenalido-
mide [43] and CRBN expression is lower in plasma cells from patients relapsing after
lenalidomide therapy [42]. Splice-out of CRBN exon 10, corresponding to the thalidomide
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binding domain (TBD), has been associated with lenalidomide refractoriness [44]. Recent
deep sequencing work has demonstrated that point mutations, copy number loss and
structural variants of CRBN can impair responses to lenalidomide and pomalidomide, and
that these aberrations significantly reduce the survival of MM patients [45]. Together these
data indicate that CRBN downregulation and/or mutations appear to represent the main
mechanism by which MM cells escape the anti-cancer effects of IMiDs in vivo.

4. CRL4CRBN Neosubstrates in Disease Responses and Teratogenicity

In 2014, two seminal papers demonstrated that lenalidomide’s interaction with CRBN
changes its substrate specificity to induce the proteasomal-dependent degradation of Ikaros
(or IKZF1) and Aiolos (or IKZF3) [7,8]. IKZF1 and IKZF3 were thus defined CRBN ‘neosub-
strates’ because they only become CRBN targets in the presence of an IMiD. Together IKZF1
and -3 are critical transcription factors within the hematological compartment. Degradation
of IKZF1/3 is associated with downregulation of interferon regulatory factor 4, IRF4 [7],
an ‘oncogene of addiction’ in MM [46]. IRF4 sustains the expression of MYC, another
important myeloma oncogene (Figure 1A) [47]. Shaffer and colleagues demonstrated that
MYC enhances the expression of IRF4, such that IRF4 and MYC reciprocally promote
each other’s transcription within a positive feedback loop [46]. More recent work defined
IKZF1/3, IRF4 and MYC as enhancer-associated transcription factors sustaining the core
transcriptional regulatory network of the malignant plasma cell [48]. Disruption of the
IKZF1/3-IRF4-MYC transcriptional axis is of specific importance in MM [39,49], as studies
have shown that in other diseases, such as primary effusion lymphoma, degradation of
IKZF1/3 is uncoupled from lenalidomide-induced suppression of IRF4 and MYC [50].
IKZF1/3 also transcriptionally repress the IL2 gene and IKZF1/3 degradation evokes IL-2
production (Figure 1A) [26,51]. This is thought to be one of the mechanisms by which
IMiDs mediate T-cell costimulation.

In addition to MM and certain other mature B-cell neoplasms, lenalidomide is indi-
cated for the treatment of myelodysplasia (MDS) with deletion of chromosome 5q (del(5q)
or 5q minus syndrome). Patients with del(5q) typically present with refractory anemia and
thrombocytosis [52]. The pathogenic mechanism implicates haploinsufficiency of riboso-
mal protein (RP) S14, which resides within the del(5q) common deleted region (CDR), as
the cause of a p53-dependent anemic phenotype [53–55]. Haploinsufficiency of another
CDR encoded gene, microRNA-145, is associated with increased expression of the tran-
scription factor Friend Leukemia Integration (FLI)-1 which skews hematopoiesis towards
megakaryopoiesis, resulting in thrombocytosis [56]. Lenalidomide treatment mitigates
both anemia and thrombocytosis in 5q minus syndrome, but it is unclear how lenalidomide
directly impacts the activity of RPS14 and microRNA-145 [57]. The specific activity of
lenalidomide in MDS with del(5q) is now explained by its capacity to target a further
CDR encoded protein, casein kinase 1 alpha (CK1α), for proteasomal degradation [58].
Reduced expression of CK1α in the del(5q) clone conveys sensitivity to the apoptotic effects
of lenalidomide via stabilization of p53. Deletion or pharmacological inhibition of CK1α
is also detrimental to MM cells, indicating that lenalidomide-dependent degradation of
CK1α may contribute to its anti-myeloma activity [59–61].
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Figure 1. Pathways that are modulated by immunomodulatory imide drugs (IMiDs) with therapeutic significance in mul-
tiple myeloma (MM). (A) Proteasomal degradation of Ikaros (IKZF1) and Aiolos (IKZF3) following IMiD treatment results 
in suppression of the IRF4-MYC transcriptional feedback loop. (B) CRBN is an HSP90 co-chaperone which facilitates the 
folding of transmembrane proteins, potentially modulating cell-to-cell interactions in the bone marrow microenvironment. 
(C) Lenalidomide binds Cereblon (CRBN) and interferes with neutralization of reactive oxygen species by disrupting the 
thioredoxin (TXN)-thioredoxin reductase (TXNR) axis. 

Figure 1. Pathways that are modulated by immunomodulatory imide drugs (IMiDs) with therapeutic significance in multiple
myeloma (MM). (A) Proteasomal degradation of Ikaros (IKZF1) and Aiolos (IKZF3) following IMiD treatment results in
suppression of the IRF4-MYC transcriptional feedback loop. (B) CRBN is an HSP90 co-chaperone which facilitates the
folding of transmembrane proteins, potentially modulating cell-to-cell interactions in the bone marrow microenvironment.
(C) Lenalidomide binds Cereblon (CRBN) and interferes with neutralization of reactive oxygen species by disrupting the
thioredoxin (TXN)-thioredoxin reductase (TXNR) axis.
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Greater understanding of the IMiD mechanism of action has facilitated the discovery
of an expanding repertoire of CRBN neosubstrates (Figure 2A). More recently disclosed
neosubstrates include ZFP91, SALL4 and PLZF. These proteins may be differentially regu-
lated by the emerging suite of CRBN-interacting small molecules (IMiDs and CELMoDs;
discussed below). ZFP91 is a zinc-finger (ZF) putative ubiquitin-ligase and CRBN neosub-
strate [62] that regulates NF-κB signaling by activating NFkB-inducing kinase (NIK) via
Lys63 ubiquitination [43]. ZFP91 is also associated with maintenance of T-regulatory cell
homeostasis [44]. However, the contribution of ZFP91 degradation to the anti-myeloma
activity of IMiDs remains undefined. Mutation of SALL4 causes Duane radial ray syn-
drome, a congenital disorder resulting in abnormalities of the bones of the forelimbs.
SALL4 is degraded upon thalidomide treatment, indicating a potential mechanism of
thalidomide teratogenicity [63]. In related work, other neosubstrates belonging to the
C2H2 zinc-finger protein family (e.g., RNF166, FAM83F, GZF1, ZBTB39) were identified
as potentially contributing to IMiD-induced embryopathy. PLZF/ZBTB16 is another ZF
protein that is degraded following thalidomide treatment, and loss of PLZF has been linked
to limb abnormalities [64]. Finally, thalidomide-dependent degradation of p63 has been
implicated in the pathogenesis of thalidomide embryopathy [65]. Taken together, these
studies suggest that abnormal fetal development may be caused by the modulation of
multiple CRBN neosubstrates.
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Figure 2. Structure of IMiDs and their reported substrate repertoires. (A) Chemical structures of
thalidomide, lenalidomide and pomalidomide. Endogenous CRBN substrates that are stabilized or
re-localized upon treatment with each of these molecules are listed in the blue panels. CRBN clients,
whose maturation/stability is modulated by the respective IMiDs are listed in the green panels.
CRBN neosubstrates are listed within the red panels. (B) The structure of thalidomide metabolite,
5-hydroxythalidomide and its demonstrated neosubstrates.

5. Structure–Activity Relationship of CRL4CRBN in Complex with CRBN-Interacting
Small Molecules (CISMs)

Thalidomide’s chemical structure is represented by a glutarimide ring bonded to a
phthalimide group [6,66]. The glutarimide ring binds CRBN at the TBD, which contains a
tryptophan-rich pocket (Tryptophan 380, 386, 402 and Phenylalanine 404) and is located at
the CRBN CTD [6]. The substitution of Tyr384 and Trp386 with alanine residues abrogates
the binding of CISMs into this tri-Tryp pocket [5]. Modifications of functional groups
(e.g., NH2 on C4 of the phthalimide substituent in pomalidomide or on the isoindolinone
moiety in lenalidomide) account for differences in the spatial interaction between different
CISMs and CRBN. Such differences likely explain differential neosubstrate specificity
between chemotypes [6]. Thalidomide is a racemic compound, and the S-enantiomer
displays greater CRBN binding relative to the R-enantiomer. S-thalidomide is thought to
be responsible for teratogenic effects [66] and it is unclear whether R-thalidomide engages
different CRBN neosubstrates to those recruited by S-thalidomide [66]. The potential role of
thalidomide metabolites in neosubstrate degradation has also been evaluated. Degradation
of PLZF and SALL4 is mediated by both thalidomide and 5-hydroxythalidomide (5-HT), but
IKZF1 is only degraded by thalidomide itself [64]. Interestingly, 5-HT was more efficient in
degrading SALL4 than unmodified thalidomide (Figure 2B). Therefore, substrate selectivity
in vivo may relate to the activities of both parent molecules and metabolites deriving from
newer CISMs, including IMiDs and CELMoDs, and this activity spectrum remains poorly
determined. A comprehensive study of the C2H2 ZF proteome expanded the pool of
known CRBN neosubstrates and highlighted the importance of specific ZF domains in
determining the engagement of neosubstrates upon treatment with different IMiDs [67]. In
particular, the ZF2 domain was identified as the necessary element required for degradation
of C2H2 ZF proteins, and the presence of ZF3 increased the affinity between CRBN and
pomalidomide. Structural studies of CK1α in complex with CRBN and lenalidomide have,
however, highlighted that degradation of non-ZF proteins, such as CK1α, can still be
engaged by a CISM despite the lack of ZF domains [58,68]. This observation demonstrates
that engagement of neosubstrates is not exclusively dependent on the presence of a ZF
domain but is determined by the three-dimensional structure of the binding interface
between CRBN/CISM and its target.

6. Genome-Scale CRISPR Screening as a Tool for Identifying Mediators of Sensitivity
to IMiDs

CRISPR-Cas9 technology facilitates the editing of individual genes within a population
of cells transduced with viral library expressing short guide (sg)-RNAs covering the entire
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genome. Exposure to a selective pressure (e.g., a drug) for a defined period enables positive
selection of drug-resistant clones and dropout of sensitized clones [69–72]. Employment
of in vitro CRISPR genome-wide screening has identified the minimal machinery required
for the response to the IMiDs in addition to CRBN itself [73–75]. Together with essential
components of the CRL4 ligase, loss of genes related or unrelated to protein degradation
can result in IMiD resistance. CRBN, DDB1, RBX1, GLMN, UBE2G1, UBE2M, UBE2D3,
CAND1 and genes encoding subunits of the Constitutive Photomorphogenesis (COP)-9
signalosome (COPS1, COPS2, COPS3, COPS4, COPS5, COPS6, COPS7A, COPS7B, COPS8)
are involved in ubiquitination and degradation of IMiD neosubstrates. UBE2G1, UBE2D3
are E2 enzymes implicated in the process of ubiquitin-tagging of substrates [76], whilst
UBE2M promotes NEDDylation of CUL4 [77]. The COP9 signalosome (CSN) is a 9-subunit
complex which removes NEDD8 from Cullin scaffolds [78,79]. NEDD8 is required for
ubiquitination of CRL4 substrates and CSN-dependent removal or inhibition with the
small molecule MLN4924 inhibits this process [77]. Once a target has been ubiquitinated
by CRL4CRBN, removal of NEDD8 and disassembly of CRL4CRBN by CAND1 are required
for recycling and reassembly of the complex. Loss of any of these factors interferes with
the cycling process of assembly-ubiquitination-disassembly of the CRL4CRBN ligase, dis-
rupting protein ubiquitination and causing resistance to IMiD treatment [73]. The CSN
is also regulates SCFFbxo7, an E3 ligase which targets CRBN itself; its activity inhibits the
degradation of CRBN by SCFFbxo7 and CSN loss causes a reduction in CRBN [74]. This led
to the hypothesis that the synergy between lenalidomide and proteasome inhibitors in the
clinic is based on sequential scheduling, where the proteasome inhibitor is given before
lenalidomide and raises baseline CRBN levels by inhibiting SCFFbxo7 mediated CRBN
degradation [74].

Other genes that are not directly implicated in protein turnover are also required for
IMiD sensitivity. Loss of any of these genes—NCOR1, EDC4, RARA, SNRNP25, OTUB1,
PLAA, DEPDC5, SRP14, XRN1, EIF4A1, ARID2, SCAP, MBTPS1, MBPTS2, C12orf49,
HIST1H4F-caused IMiD resistance [73–75]. Our laboratory performed genome-wide
CRISPR screening in cells with acquired lenalidomide resistance [42], aiming to iden-
tify potential candidates for IMiD resensitization. Here we found that deletion of TOP2B,
ATXN7, MIER3 and subunits of the glucose-responsive GID E3 ligase complex (YPEL5,
MAEA) restored IMiD sensitivity [75]. TOP2B is of potential therapeutic relevance as it
can be pharmacologically targeted by the cardioprotective agent, dexrazoxane and the
topoisomerase poison, etoposide. Interestingly, CRBN plays a role following DNA damage
evoked by etoposide in non-tumor cells as CRBN disrupts signaling between TP53 and
members of the BCL2 family, resulting in resistance to apoptosis following a DNA in-
sult [80]. Others have demonstrated IMiD resensitization by inhibition of STAT3 signaling
or the EP300/CBP acetyltransferase [81]. Inhibition of EP300/CBP causes acute repression
of IRF4 and MYC in myeloma cells [82], further indicating that MM cells are strongly
dependent on these two key transcription factors.

7. CRBN Functions as a Molecular Chaperone

In 2016, it was discovered that CRBN interacts with MCT1 (or SLC16A1) and CD147
(Basigin) [10]. These proteins have several physiological roles such as nutrient transport,
migration of inflammatory cells and induction of metalloproteinases [56]. CRBN promotes
maturation of MCT1 in complex with CD147 independent of ubiquitination, and the bind-
ing of CRBN to CUL4 or MCT1-CD147 is mutually exclusive. IMiDs inhibit the maturation
of MCT1-CD147 in a dose-dependent manner and suppress pro-survival signaling. This
important additional mechanistic data provides evidence for an alternative pathway by
which IMiDs exert anti-tumor and microenvironmental effects. More recently, the same
group reported that CRBN cooperates with the chaperone proteins HSP90 and AHA1 to
stabilize the transmembrane protein CD98h-LAT1; this work demonstrated that all CRBN
client misfolded proteins are also HSP90 clients, and these are directed to the surface
membrane (Figure 1B) [9]. Such clients included CD44, MCT1, MCT4, ENT, CD147, LAT1,
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CD98h, GLUT1, NHE1, ASCT2 and CFTR (Figure 2A). In a similar manner to that of MCT1-
CD147, CD98h-LAT1 was found to be a vulnerability in MM with the advantage of being
exploitable also as a radiotheranostic target [9]. Although IMiD-mediated destabilization
of MCT1-CD147 has been defined as potentially teratogenic, it remains unclear whether
destabilization of CD98h-LAT1 has an impact on fetal development.

8. Other Physiological and Pathological Roles of CRBN

CRBN was initially identified as a gene implicated by mutation in a mental retardation
syndrome [4]. The CRBNR419X mutation causes expression of a truncated transcript that
escapes non-sense mediated decay. This alteration was associated with disturbances of
Ca++ and K+ conductance resulting in increased reactivity to intracellular Ca++ [3]. Other
CRBN substrates are now implicated in the regulation of membrane electrical potential
(Figure 2A). BKCA channels, which regulate Ca2+-induced release of neurotransmitters and
neuronal excitability, are ubiquitinated by CRL4CRBN [83]. Interestingly, these are not then
degraded by the proteasome but are instead retained in the endoplasmic reticulum. Upon
loss of CRBN or thalidomide exposure, these BK channels are subsequently redirected to
the cell surface conveying increased neuronal excitability. The voltage gated CLC chloride
channels CLC-1 and -2 have also been identified as CRBN targets. These are engaged
by CRBN for polyubiquitination and proteasomal-dependent degradation and CLC-2 is
stabilized following lenalidomide treatment [84,85]. Crbn was identified as an epigenetic
regulator of Kv1.3 K+ channels by promoting histone methylation at the Kcna3 locus in
murine CD4+ T-cells. Here, thalidomide treatment increased Kv1.3 expression [86].

Detailed structure–activity relationship studies of thalidomide in complex with
CRL4CRBN identified MEIS2 as an endogenous substrate that is stabilized in the pres-
ence of IMiD [6]. MEIS2 is a homeobox transcription factor that plays a key role in
the maturation of cranial and cardiac neural crests [87]. MEIS2 is also associated with
pro-survival activity in neuroblastoma and leukemia cells [88,89]. More recently, JUN, a
well-studied proto-oncogene, was shown to be regulated by CRBN [90]. This observation
is relevant in the context of LPS-induced inflammatory responses where CRBN dampens
excessive proinflammatory cytokine expression induced by JUN/AP1 transcriptional ac-
tivity [90]. However, further studies demonstrated that JUN levels are not altered upon
IMiD exposure, as JUN binds to a CRBN domain that is distinct from that involved in
substrate degradation [91]. CRBN also regulates NF-κB signaling in the context of an
inflammatory response. Here CRBN binds to TRAF6, preventing its ubiquitination at K124,
with subsequent reduction in TAB2 ubiquitination, NF-κB downregulation and dampened
TLR4-dependent inflammation [92].

The alpha subunit of AMP kinase (AMPK), which contains the ATP-dependent cat-
alytic domain, is an endogenous CRBN substrate that is stabilized by thalidomide [93].
AMPKα is a pivotal modulator of glucose and lipid metabolism; low AMPK activity en-
hances the Warburg effect and activates mTOR pathway signaling [94,95]. Other authors
also report CRBN-dependent degradation of AMPKγ, another AMPK subunit [96]. The
glucose transporter, GLUT1, is a CRBN-HSP90 client and its maturation is affected by
IMiD treatment [9]. Together, these observations indicate that CRBN may regulate glucose
metabolism. The resensitization of lenalidomide-resistance cells to IMiDs by deletion of
the GID E3 ligase further supports this hypothesis [75]. Remarkably, CRBN also promotes
degradation of glutamine synthase (GS) in a non-canonical manner. In the presence of
high intracellular levels of glutamine, p300/CBP mediates acetylation of GS at lysine 11
and 14 [97]. Acetylated GS has an increased affinity for the thalidomide binding domain
of CRBN. The recruitment of GS to CRBN is enhanced by IMiDs and CRBN-engagement
mediates polyubiquitination and degradation of GS. Finally, resistance to IMiDs has been
associated with the capacity of MM cells to resist the oxidative stress induced by IMiD
treatment via inhibition of thioredoxin reductase (TXNR). An interaction between CRBN
and thioredoxin (TXN) has been demonstrated, suggesting that CRBN may regulate the
response to oxidative stress via disruption of the TXN-TXNR axis (Figure 1C) [98]. CRBN-
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dependent regulation of cellular metabolism is an interesting yet largely unexplored area.
Given the multiplicity of metabolic pathways regulated by CRBN, we suggest that CISMs
may have important consequences on cancer cell metabolism.

9. Distinct and Overlapping Toxicity Profiles of the CISMs

Common side effects of therapy with IMiDs include peripheral neuropathy, venous
thromboembolism and myelosuppression. Neuropathy is a greater issue in thalidomide-
treated patients, usually arising within 12 months of drug commencement [99]. Thalidomide-
induced peripheral neuropathy (TiPN) presents as chronic axonal neuropathy displaying
Wallerian-like degeneration, without demyelination and in the absence of immune cell
infiltrate [100]. Wallerian degeneration is cytokine driven, suggesting that thalidomide
interferes with the inflammatory response to axonal damage [101,102]. Dysregulated cation
channel function is also implicated in Wallerian degeneration [103,104], and thalidomide’s
effects on Ca++ and K+ may therefore contribute to neuropathy [83,85,86]. However, the
pathogenesis of TiPN remains poorly understood, and multiple events could perpetuate
neurotoxicity. In contrast to neuropathy, myelosuppression is an uncommon thalidomide
side effect [105] that is frequently observed with the more potent IMiDs. Myelosuppres-
sion has been attributed to IKZF1 degradation and subsequent downregulation of the
transcription factor PU.1 [106–108]. As thalidomide is a much less potent IKZF1 degrader
relative to lenalidomide and pomalidomide, it may not be as prone to this ‘on target’
toxicity [63]. Thrombocytopenia is a potential consequence of IMiD-induced aromatase
degradation [109], which might also contribute to the reduction in platelet count in patients
with del(5q) when treated with lenalidomide [52]. Thus, the distinct and overlapping side
effect profile of the different CISMs (and their respective metabolites) may be explained
by differential ‘on target’ effects on the CRL4CRBN substrate/neosubstrate pool as well as
modulation of other physiological CRBN functions (e.g., chaperone activity).

10. Rationally Developed CISMs: CELMoDs and Hetero-Bifunctional Targeted
Protein Degraders

CELMoDs, or Cereblon E3 ligase modulators, such as CC-885, CC-90009, avadomide,
iberdomide, CC-92480, CC-3060 and CC-647 represent a new generation of ‘IMiDs’ which
have been developed in the ‘post CRBN era’ (Figure 3A). CC-885 and CC-9009 target
GSPT1, a translation termination factor. Degradation of GSPT1 is detrimental in acute
myeloid leukemia (AML) cell lines and patient-derived AML samples [68]. CC-885 also
induces IKZF1/3 degradation, whereas CC-90009 is highly specific for GSPT1 and leaves
IKZF1 intact [110]. Analogous to CK1α, GSPT1 is engaged by CRBN despite the absence
of ZF domains, again indicating the importance of protein tertiary structure in substrate
binding. Avadomide does not degrade GSPT1, but is active on other canonical CRBN
neosubstrates such as IKZF1, IKZF3 and ZFP91 [13,67]. Unlike other IMiDs or CELMoDs,
avadomide degrades ZNF198 (or ZMYM2) fusion oncoproteins, such as ZNYM2-FGFR1
and ZMYM2-FLT3, indicating potential benefit for patients with acute lymphoblastic
leukemias harboring these translocations [13]. CELMoDs CC-3060 and CC-647 degrade
PLZF and the PLZF fusion proteins that are pathogenic in variant forms of promyelocytic
leukemia. Both compounds target either PLZF-RARα or RARα-PLZF by engaging each
at a distinct degron. Therefore, these molecules could be purposed therapeutically in
the presence these uncommon cytogenetic entities [111]. Iberdomide is a CELMoD with
demonstrable activity in MM patients who are refractory to pomalidomide [11,12]. Recent
work demonstrated the activity of iberdomide across a panel of pomalidomide-resistant
cell lines despite reduced CRBN expression [12]. The potency and acute kinetics of IKZF3
degradation are greater with iberdomide relative to pomalidomide, which may explain its
activity in IMiD-refractory patients [49]. However, differential substrate specificity might
also be at play, as iberdomide degrades IKZF2 and IKZF4 as well as IKZF1/3 [67]. Among
the newest CELMoDs, CC-92480 also showed remarkable in vitro potency, degrading
IKZF1/3 at concentrations as low as 1nM, and is now being assessed in IMiD-refractory
myeloma [112].
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Figure 3. Cereblon E3 ligase modulators (CELMoDs), dBET and their respective protein targets.
(A) The structure of avadomide, iberdomide, CC-92480, CC-885, CC-90009, CC-647 and CC-3060.
Currently disclosed neosubstrates are listed in the red panels beneath. (B) The structure of the
hetero-bifunctional selective degrader dBET and its targets.

Hetero-bifunctional targeted protein degraders hijack the function of E3 ubiquitin
ligases to degrade specific vulnerabilities via the ubiquitin–proteasome system. This
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approach is particularly attractive where the use of simple enzymatic small molecules
inhibitors is problematic [15,16]. Chimeric molecules interact with the binding receptor
for an E3 ligase and a second desired protein target simultaneously and are referred to
as ‘proteolysis-targeting chimeras’, or PROTACs [15]. CRBN is commonly utilized as a
receptor for thalidomide-based degraders, where a phthalimide moiety is linked to a small
molecule inhibitor against the desired target. In 2015, Winter et al. designed dBET1, a
BET-bromodomain (BRD)-2/3/4 degrader (Figure 3B), by conjugating phthalimide to JQ1,
an acetyl-lysine mimetic BRD2/4 inhibitor. The resulting molecule demonstrated superior-
ity to JQ1 in reducing the tumor burden in murine models of acute leukemia [17]. Other
attempts have been made to generate CRBN-based degraders for cancer vulnerabilities,
including BCR-ABL selective degraders for Philadelphia-positive malignancies [113]. PRO-
TAC chemistry is a rapidly evolving area of drug development and beyond the scope of this
review to describe in detail. We direct the reader to recent reviews and the PROTAC-DB
online database as contemporary resources [114–116].

11. Conclusions

Following the initial identification of CRBN as the thalidomide binding protein by
the Handa laboratory, the works of Krönke and Lu heralded the discovery that IMiDs
modulate the ubiquitin ligase activity of CRL4CRBN. Together, the CISMs (thalidomide,
IMiDs, CELMoDs and PROTACs) redirect CRL4CRBN substrate specificity towards pro-
teins that are normally not targeted by CRL4CRBN [7,8] while stabilizing the expression of
endogenous CRBN substrates [6]. After the first descriptions of canonical endogenous sub-
strates (e.g., MEIS2) and neosubstrates (e.g., IKZF1/3, CK1α) a plethora of new CRL4CRBN

interactors have been discovered [63,64,67,84,85]. Differential structural configuration of
various CISM chemotypes is proposed to be the basis of their different substrate speci-
ficity [66]. Differential potency between CISMs, the presence of active metabolites and
variation in the specificity of engaged neosubstrates, likely underpins different side effects
and tissue-specific toxicities. Given the number of biological processes regulated by CRBN
(Figure 4A), the potential consequences of CISM treatment may be equally numerous.
CISMs concurrently inhibit CRBN’s endogenous activity, engage neosubstrates for degra-
dation, alter the transmembrane proteome and modulate important metabolic pathways in
a fashion that is still not completely understood (Figure 4B). The anti-cancer and side effect
profiles of CISMs are likely explained by the net product of these many biological events.
CISMs exert their anti-myeloma action via distinct and complementary pathways, such
as the induction of neosubstrate degradation, the inhibition of CRBN chaperone activity,
and the modulation of the response to oxidative stress (summarized in Figure 1). The
design and development of selective protein degraders may represent the quintessence of
personalized medicine, as targeted protein degraders are theoretically capable of inducing
degradation of any cancer vulnerability. The associated medicinal chemistry efforts now sit
at a new threshold with CELMoDs and PROTACs being deployed in clinical trials [11,117].
The ability to rationally target a growing repertoire of cancer dependencies at the protein
level will likely enable extension of the therapeutic landscape of CISMs well beyond their
current niche in the myeloma clinic into the broader practice of precision oncology.
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Figure 4. Intracellular pathways regulated by CRBN and potentially disrupted by treatment with
CISMs. (A) CRBN interacts with the chaperone protein HSP90, augmenting the maturation of
transmembrane proteins. CRBN is the adaptor of the E3 ligase CRL4 which engages proteins that
are destined to the proteasome (e.g., MEIS2) or to other cell compartments (e.g., storage of BK
Ca++ channels in the endoplasmic reticulum). CRBN also regulates other pathways via undefined
mechanisms (e.g., responses to oxidative stress). (B) In the presence of a CISM, CRBNs endogenous
targets may be inhibited (e.g., inhibition to the response to reactive oxygen species, transmembrane
protein maturation), hijacked to ubiquitinate neosubstrates for proteasomal degradation (e.g., IKZF1,
IKZF3) or accumulate in non-physiological cell compartments (e.g., redirection of BK Ca++ channels
to surface membrane).
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