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Background: Carbapenem-resistant Pseudomonas aeruginosa strains are on the rise worldwide. This study char-
acterized clinical isolates of P. aeruginosa from three Nigerian hospitals for carbapenem resistance.

Methods: Strains isolated from wounds (n = 88), urine/catheter tips (n = 25), sputum/tracheotomy aspirates (n =  
5), ear swabs (n = 4) and vaginal swabs (n = 1) were identified by MALDI-TOF and antibiotic susceptibility testing 
was performed using the VITEK 2 system. The genomic DNA of each isolate was subject to sequencing using 
Illumina and Oxford nanopore technology. Bioinformatics analyses were performed to detect antimicrobial re-
sistance genes, clonal affiliations and phylogenetic relations of 123 non-duplicate P. aeruginosa isolates, where-
as assembly of the nanopore reads using the plasmIDent pipeline enabled the identification of plasmids.

Results: Forty-three percent of the isolates were resistant to all antibiotic categories tested. More than 40% of 
the isolates were resistant to the carbapenems imipenem and/or meropenem (39% and 44%, respectively). 
Among the meropenem-resistant isolates, 48 (89%) carried at least one carbapenemase gene. The predomin-
ant one was blaNDM-1 (n = 34), which conferred resistance to all five antibiotic categories and highly increased the 
MICs of both meropenem and imipenem. The other recurrent carbapenemase genes were blaVIM-2 (n = 4), and 
blaVIM-5-like (n = 11), which co-existed with blaNDM-1 in two isolates.

Conclusions: The study revealed a high rate of carbapenem resistance and conjugative, broad host range plas-
mids carrying carbapenemase-encoding genes, especially the NDM-1 type, among isolates of P. aeruginosa. This 
may forebode the emergency of ubiquitous carbapenem resistance urging the implementation of infection con-
trol and antimicrobial stewardship strategies in Nigerian hospitals.

© The Author(s) 2023. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https:// 
creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided 
the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Introduction
Pseudomonas aeruginosa is a commonly multi-drug-resistant 
(MDR) bacterial pathogen that causes serious infections, includ-
ing ventilator-associated pneumonia, in hospitalized patients 
and immunodeficient individuals, but it is also prevalent in the 
environment.1–3 Infections with MDR P. aeruginosa are difficult 
to treat due to limited treatment options and are associated 
with prolonged hospitalization and increased mortality.4 The 

widespread occurrence and rising prevalence of MDR P. aerugino-
sa have become a major concern of public health practitioners, 
clinicians and infection control experts worldwide.5

Carbapenems are widely used in the treatment of infections 
with MDR P. aeruginosa, and colistin is used as an antibiotic of 
last resort. However, the emergence and spread of carbapenem- 
resistant P. aeruginosa necessitates periodic surveillance to 
understand the mechanisms of carbapenem resistance and ex-
tent of dissemination.6,7
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Carbapenemases are resilient β-lactamases that hydrolyse 
most β-lactam antibiotics, i.e. penicillins, cephalosporins and car-
bapenems. The first carbapenemases in P. aeruginosa and mem-
bers of the Enterobacteriaceae were reported during the 1990s, 
and for the past two or three decades these enzymes have 
evolved, diversified and spread on a global scale. Apart from sim-
ple spread of introduced carbapenemase-carrying bacteria, 
which typically leads to outbreaks with monoclonal population 
structure, horizontal transfer of carbapenemase genes is an im-
portant route of dissemination.6 Carbapenemase genes, as well 
as other resistance determinants, are frequently found on conju-
gative plasmids with broad host range and can be readily ex-
changed between the plasmids and host chromosomes by 
transposons or integrons. Thereby, locally adapted populations 
of pathogenic bacteria can, under the selective pressure of anti-
biotics, acquire multiple antibiotic resistances. In recent studies, 
plasmid-borne carbapenemases such as blaGPC-1, blaVIM-1, 
blaVIM-4, blaVIM-11, blaGIM, blaSIM, blaIMP-13 and blaNDM-type have 
been reported as causes of carbapenem resistance in P. aerugino-
sa in Germany,8 Egypt,9 Algeria,10 Argentina,11 UK,12 India13 and 
South Korea.14,15

Based on multi-locus sequence typing (MLST), some of these 
studies also reported the involvement of high-risk epidemic clones 
of MDR P. aeruginosa in the dissemination of carbapenem resist-
ance. These clones include sequence types (STs) 111, 175, 233, 
235, 244, 277, 357, 381, 654, 773 and 1076. Members of these 
high-risk clones have an increased tendency to acquire resistance 
genes from other bacteria within the same hospital facilities.16

New Delhi metallo-β-lactamase (NDM) is a type of carbapene-
mase that was first isolated in 2008 in Sweden from a patient 
who had recently been discharged from a hospital in India.17

Since its encoding gene is located on a multitude of transferable 
plasmids, it has now spread globally among various species of 
bacteria.18 In central Europe, blaNDM-1 has been detected only 
sporadically, e.g. in France, in a P. aeruginosa isolate from a pa-
tient who returned from Serbia.19

In Nigeria, blaNDM-1 has been documented in Escherichia coli 
and Klebsiella pneumoniae before 2020.20,21 Among the very 
few publications describing the molecular epidemiology of clinic-
al MDR P. aeruginosa isolates in Nigeria, a study reported the pres-
ence of blaNDM-1 in one isolate of P. aeruginosa.22 Others reported 
the presence of blaVIM-1,23 blaVIM-2 and the extended-spectrum 
β-lactamase (ESBL) blaGES-1,24,25 Since 2021, there has been an 
increasing number of publications describing highly resistant 
P. aeruginosa hospital isolates from Nigeria and highlighting the 
increased occurrence of the carbapenemase-encoding genes 
blaNDM, blaKPC and blaVIM-5.26–29 Whole-genome sequencing 
was, to our knowledge, performed only once on a collection of 
66 carbapenem-non-susceptible, Gram-negative clinical isolates 
from Northeast Nigeria30; one P. aeruginosa isolate, which be-
longed to ST-773, carried blaNDM-1. In view of the rising preva-
lence of MDR P. aeruginosa in Nigeria,23,26 knowledge of the 
mode of transmission, sources of infection, mechanisms of resist-
ance and genetic relatedness of the isolates in local and global 
context is crucial for the development of appropriate mitigation 
and control measures in the country and provides a perspective 
on the current international dissemination of resistance genes.

This study aimed to determine (i) the antimicrobial susceptibil-
ity pattern and (ii) the content of antimicrobial resistance genes, 

with particular focus on those encoding carbapenemases, in clin-
ical isolates of P. aeruginosa from tertiary hospitals in Nigeria, and 
(iii) to elucidate their clonal affiliation and phylogenetic related-
ness. We show that a major proportion of the isolates were resist-
ant to multiple categories of antibiotics and harboured a 
multitude of resistance genes. Resistance to carbapenems was 
common and conferred by different types of ESBL and 
carbapenemase-encoding genes spreading both clonally and 
horizontally.

Methods
Bacterial isolates
One-hundred and twenty-three non-duplicate isolates of P. aeruginosa 
were collected from three hospitals in Lagos State, Nigeria, between 
September 2018 and June 2019. The sampling was non-biased, the iso-
lates have not been pre-selected in any way, all P. aeruginosa isolates ob-
tained during the collection period from adult patients (>18 years) were 
included. The hospitals, namely the National Orthopaedic Hospital (NOH) 
(n = 58), a specialist hospital for orthopaedic surgery, the Lagos University 
Teaching Hospital (LUTH) (n = 59), a tertiary generalist hospital affiliated 
to the college of medicine of the University of Lagos, and the Federal 
Medical Centre (FMC), a secondary generalist health institution, all located 
in Lagos State metropolis. The isolates were obtained from both patients 
on admission (88) and outpatients (35). Sample materials were urine/ 
catheter tips (25), wound swabs (88; including deep surgical swabs, dia-
betic foot swabs, burn wounds, crush injuries and ulcers), ear swabs 
(four), sputum/tracheotomy aspirates (five) and one vaginal swab. The 
protocol was approved by the Health Research Ethics Committee of the 
College of Medicine University of Lagos (approval no., CMUL/HREC/05/ 
17/136). The species of the isolates was confirmed with MALDI-TOF 
mass spectrometry (Microflex LT, Bruker Daltonics, Germany), following 
a standard protocol.

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was carried out on a VITEK 2 system, 
using card N-232 (both bioMerieux SA, France). The minimal inhibitory 
concentrations were interpreted according to the clinical breakpoints 
and interpretation guidelines of the European Committee on 
Antimicrobial Susceptibility Testing (EUCAST, version 13.0). P. aeruginosa 
ATCC 27853 was used for quality control. The isolates tested as intermedi-
ate according to EUCAST were regarded here as susceptible. Resistance 
towards different classes of antibiotics was inferred from resistance to 
piperacillin (for penicillins), ceftazidime and/or cefepime (for cephalospor-
ins), imipenem and/or meropenem (for carbapenems) and ciprofloxacin 
(for quinolones) according to the MDR Gram-negative (MRGN) classifica-
tion system for Gram-negative bacteria.31 In addition, we included ami-
noglycosides (derived from tobramycin resistance, EUCAST) as a fifth 
antibiotic category.

mCIM test
To test for phenotypic carbapenemase activity, 10 carbapenemase or 
ESBL-encoding isolates of different STs were selected for mCIM-tests 
(modified Carbapenem Inactivation).32,33 For each isolate, one inocula-
tion loop of colony mass (∼1 µL) was homogenized in 2 mL of soy broth 
by vortexing, one 10 µg-meropenem disc was added and incubated for 
4 h at 35°C. A suspension of the indicator strain E. coli ATCC25922 in sterile 
0.9% NaCl solution (McFarland 0.5) was spread on a Müller–Hinton agar 
plate and the pre-exposed meropenem disc was placed on the agar. 
After incubation of the test plate for 18–24 h at 35°C, the diameter of 
the inhibition zone around the disc was measured. Diameters of 15 mm 

2 of 10



Carbapenemase-producing Pseudomonas aeruginosa                                                                                      

or less indicate meropenem inactivation, diameters of 19 mm or more in-
dicate no carbapenemase activity.

DNA extraction, library preparation and whole-genome 
sequencing (WGS)
For all 123 study isolates, genomic DNA was extracted from discrete col-
onies of overnight subcultures using the DNeasy UltraClean Microbial Kit 
(Qiagen, Hilden, Germany). The genomic DNA was sheared (Covaris 
M220, Woburn, USA) to obtain 550-bp fragments, and libraries were pre-
pared using the TruSeqNano DNA LT Kit (Illumina, San Diego, USA) accord-
ing to the manufacturer’s standard protocol. The prepared barcoded 
libraries were quantified on the Invitrogen Qubit 4 fluorometer (Thermo 
Fisher Scientific, Germany) and analysed on the QIAxcel Advanced capil-
lary electrophoresis instrument (Qiagen, Hilden, Germany). All libraries 
were sequenced bidirectionally, either on an Illumina NextSeq instrument 
with 2 × 150 bp reads using the NextSeq 500/550 High Output Kit v2.5 
(300 cycles) (Illumina, San Diego, USA), or on an Illumina MiSeq instru-
ment with 2 × 250 bp reads (500 cycles). For determination of the plasmid 
content, the same 10 isolates as selected for the mCIMtests were sub-
jected to long-read sequencing using Oxford Nanopore Technologies 
MinION (chemistry SQK-LSK109, flowcell R9.4.1/FLO-MIN106D) or 
PromethION (chemistry SQK-LSK109, flowcell R9.4.1/FLO-PRO002) fol-
lowing standard protocols.

Sequence assembly and bioinformatic analysis
The sequencing reads were assembled using the A5 pipeline 
(v.20140604)34 and SPAdes v.3.7.0,35 as previously described.36 The 
core genome of all isolates was calculated using Spine (v.0.1.2).37 apply-
ing the default settings except for the segment length, which was ad-
justed to 500 bp and an identity of 85%. Prophage regions were 
detected using PHASTER38 and removed from the core genomes using 
a customized script. This resulted in a core genome of 5.182 MB. Single 
nucleotide polymorphisms were called applying a customized script com-
prising GATK (v.3.2–2) and SAM tools (v.0.1 19).39,40 A maximum likelihood 
estimation was performed using IQ tree v.1.6.341–43 (UF boot mode with 
parameters model Finder and 1000 bootstraps) followed by visualization 
applying Figtree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/). For 
additional confirmation of the species identification, the average nucleo-
tide identity based on the ANI algorithm was calculated using JSpecies 
v.1.2.44 For the identification of resistance genes and ST, the assembled 
WGS dataset was uploaded to ResFinder v.2.1 on the Centre of 
Genomic Epidemiology website (https://cge.food.dtu.dk/services/ 
ResFinder/).45 The current distinction of β-lactamases into carbapene-
mases and ESBLs was adopted from the European beta-lactamase data-
base (March 2023).46 STs were assigned using the PubMLST website 
(https://pubmlst.org/).47 The nanopore reads were assembled using the 
plamIDent pipeline for identification of plasmids.48 Putative plasmid se-
quences were used to BLAST-search the NCBI nucleotide database for 
homologous sequences. Homology with known plasmids and rearrange-
ments of syntenic sequences were visualized using progressive MAUVE.49

Prophages were identified in isolates 17 and 84 (both 5386 bp) and in iso-
late 24 (7849 bp). They did not harbour any resistance genes and were 
not further analysed.

Results
General characteristics and antimicrobial susceptibility
A total of 123 unique P. aeruginosa isolates were recovered from 
clinical samples of 65 male and 58 female patients from 20 to 85 
years of age (Table 1). Most of the isolates originated from 
wounds (71.5%) and from urine or urinary catheters (20.3%). 

For all P. aeruginosa isolates, the minimal inhibitory concentration 
(MIC) of 10 antibiotics was determined (Table 2). Remarkably, 
>70% of the isolates were resistant to the fluoroquinolones, ci-
profloxacin and levofloxacin, 59%/55% were resistant to the ami-
noglycosides gentamicin and tobramycin and 39%/44% of the 
isolates were resistant to the carbapenems imipenem and mero-
penem. Thirty-one isolates (25%) were susceptible to all antibio-
tics tested, while 11 isolates (9%) were resistant to one antibiotic 
category, mostly to fluoroquinolones. Eighty-one (66%) were re-
sistant to fluoroquinolones and at least one more antibiotic cat-
egory, and 53 of these (44%) showed resistance towards all five 
of the tested antibiotic categories, i.e. penicillins, cephalosporins, 
carbapenems, aminoglycosides and fluoroquinolones, and are 
thus classified as 4MRGN (Table 3).

Antimicrobial resistance gene content of the isolates
Fifty-four (44%) of the 123 P. aeruginosa isolates from this study 
were resistant to meropenem, in 48 (89%) of the meropenem- 
resistant isolates at least one carbapenemase gene was identi-
fied, and 3 (6%) of the meropenem-resistant isolates encoded 
an ESBL. The most prevalent carbapenemase gene in the gen-
omes of all isolates was the New Delhi metallo-β-lactamase 
gene blaNDM-1. This was present in 34 isolates, which all belonged 
to ST-773, were resistant to all five antibiotic categories, and had 
high MICs for both meropenem and imipenem. Thirty-two of 
these isolates harboured blaNDM-1 as the only carbapenemase 
gene. The second most prevalent carbapenemase gene was 
blaVIM-5, which was found in the genomes of 11 isolates. 
blaVIM-2 was found in four isolates. Two isolates carried two car-
bapenemase genes (blaNDM-1 and blaVIM-5-like). The ESBL 
blaGES-9, conferred the lowest levels of carbapenem resistance 
(meropenem and imipenem intermediate). Detailed records of 
the antibiotic resistance genes detected in the carbapenem- 
resistant isolates are summarized in Table S1 (available as 
Supplementary data at JAC Online). The other antibiotic resist-
ance genes found in the genomes of the blaNDM-1—carrying iso-
lates were blaCARB-2, blaCARB-4, blaGES-5, blaGES-9, blaNPS-like, 
blaOXA-4, blaOXA-10, blaTEM-1B (beta-lactam resistance), aph 
(3′)-IIb-like, aph (3′)-III-like, aph(3′)-XV, aadB-like, aadA1-like, 
aac(3)-IIa, rmtB-like (aminoglycoside resistance), qnrVC1 (fluoro-
quinolones resistance), fosA-like (fosfomycin resistance), sul1 
(sulfonamide resistance), tetG (tetracycline resistance), catB7 
(chloramphenicol resistance) and arr2 (arsenate resistance).

Carbapenemase production (mCIM test)
A phenotypic test for carbapenemase production, the modified 
Carbapenem Inactivation Method (mCIM) was performed on 10 
carbapenem-resistant isolates from different STs (Table 4). The 
isolates with blaNDM-1 and blaVIM-5 tested positive for carbapene-
mase production. Isolate number 7 with the carbapenemase 
blaVIM-2 tested borderline negative. The isolates harbouring 
extended-spectrum β-lactamases (ESBLs) tested negative, al-
though some were highly carbapenem resistant.

Multi-locus sequence typing (MLST)
MLST analysis allowed the classification of the 123 isolates in 47 
STs, 13 of which were newly assigned. The most prevalent was 
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ST-773 (35 isolates), followed by ST-2613 (15), ST-381 (6), ST-244 
(6), ST-233 (6), ST-357 (4), ST-1203 (3), ST-277 (3) and ST-654 (3), 
ST-238 (2), ST-316 (2), ST-1076 (2). Others were ST-217, ST-234, 
ST-242, ST-258, ST-260, ST-261, ST-270, ST-303, ST-308, ST-463, 
ST-487, ST-569, ST-571, ST-639, ST-903, ST-1117, ST-1400, 
ST-2021, ST-2329, ST-2340, ST-3004, ST-3069, ST-3205 and the 
13 newly assigned ST-3391 to ST-3402. There was no noticeable 
bias in the distribution of STs, both between hospitals and sample 
types. Interestingly, 34 of 35 isolates belonging to ST-773 carried 
the blaNDM-1 carbapenemase gene, all isolates of ST-654 carried 
blaVIM-5-like, all isolates of ST-1203 carried the ESBL gene 
blaGES-9, and 4 of 6 isolates belonging to ST-233 carried blaVIM-2. 
This pattern of different carbapenemase and ESBL-types being 
restricted to specific STs indicates clonal spread of recently intro-
duced strains as a major source of carbapenem resistance within 
the study population.

Phylogeny analysis
The genetic relatedness of the isolates was assessed by using the 
core genome polymorphism data to construct a phylogenetic 
tree (Figure 1) further details can be found at https:// 

microreact.org/project/fJtGKnBHjPvEZJaTowFkZZ. The blaNDM-1- 
carrying isolates, which all belonged to ST-773, clustered closely 
together. This indicates very close relatedness of the blaNDM-1 car-
rying isolates, which probably share a recent common ancestor 
and thus form a clonal complex. However, also singletons were ob-
served among the carbapenem-resistant isolates, such as ST-639, 
which originates from ST-773. Phylogenetic diversity was highest 
among the carbapenem-susceptible isolates, which scattered all 
over the dendrogram, unlike the carbapenem-resistant isolates, 
which clustered together and likely constitute clonal complexes.

Plasmids
Long-read sequencing was performed on 10 carbapenemase and 
ESBL-harbouring isolates (same isolates in mCIM test) from dif-
ferent STs that represent the different clades of the ML phylogeny 
(Table 5, Figure 2). This approach allowed analysis of plasmid con-
tent and locating the carbapenemase genes to plasmid or 
chromosome. Overall, circular DNA structures were found in six 
of 10 isolates, plasmids were identified in five of 10 isolates, 
and circular prophages were detected in three isolates. Three of 
five identified plasmids contained resistance genes.

Table 1. Origin of the P. aeruginosa isolates

Hospital A Hospital B Hospital C Total

Catheter tip/urine 9 (7.3%) 14 (11.4%) 2 (1.6%) 25 (20.3%)
Wound swab 49 (39.8%) 37 ((30%) 2 (1.6%) 88 (71.5%)
Ear swab — 2 (1.6%) 2 (1.6%) 4 (3.2%)
High vaginal swab — 1 (0.8%) — 1 (0.8%)
Sputum/tracheotomy tube — 5 (4.1%) — 5 (4.1%)
Sex: 

Female/male
31/27 25/34 2/4 58/65 

47.1%/52.8%
Mean age (years) 45 45 44 45
Meropenem-resistant 23 (39.6%) 27 (45.8%) 4 (66.7%) 54 (43.9%)
Period of sample collection 8/9/2018 -19/6/2019 5/11/2018 -18/5/2019 14/2/2019 - 

6/3/2019
Total number 58 (47.6%) 59 (47.6%) 6 (4.8%) 123 (100%)

Table 2. Proportions of resistant P. aeruginosa isolates in this study

Category Antibiotic
MIC range  

(mg/L)
Breakpoint (mg/L)  

(resistant >)
n of resistant  
(total n = 123)

Percentage  
resistant (%)

Penicillins Piperacillin ≤4–>128 16 76 62
(+β-lactamase inhibitor) Piperacillin/Tazobactam ≤4–>128 16 73 59
Cephalosporins Ceftazidime ≤1–>64 8 64 52

Cefepime ≤1–>64 8 55 45
Carbapenems Imipenem ≤0.25–>16 4 48 39

Meropenem ≤0.25–>16 8 54 44
Aminoglycosides Gentamicin ≤1–>16 8 72 59

Tobramycin ≤1–>16 8 68 55
Fluoroquinolones Ciprofloxacin ≤0.5–>4 0.5 87 71

Levofloxacin 1–8 2 91 74

4 of 10

https://microreact.org/project/fJtGKnBHjPvEZJaTowFkZZ
https://microreact.org/project/fJtGKnBHjPvEZJaTowFkZZ


Carbapenemase-producing Pseudomonas aeruginosa                                                                                      

Isolate 32 contained a small plasmid of 20 197 bp carrying the 
carbapenemase gene blaNDM-1, in addition to other antibiotic re-
sistance genes [aac(3), tet(G), floR2] and rich in transposase se-
quences (5800/20 197 bp). The full plasmid sequence is 
identical (99.9%) to a transposase-flanked scaffold, probably a 
plasmid, in the genome of P. aeruginosa strain PSE6684 from 
South Korea (CP053917). Isolate 84 harboured a large plasmid 
of 200 693 bp, encoding a beta-lactamase (NPS-like) and resist-
ance against aminoglycosides and trimethoprim. Of its sequence, 
75% is homologous to a plasmid of the extensively drug resistant 
P. aeruginosa hospital isolate PA83 from Germany (CP017294).55

The plasmid in isolate 40 is a conjugative, broad host range mega-
plasmid of 453 289 bp. It is widely identical to the MDR P. aeruginosa 
megaplasmids pBT2436 (Figure 2; CP039989; 83% coverage, 99% 
identity) and pBT2101 (CP039991; 81% cov, 99% id), which were iso-
lated in Thailand,51 the carbapenemase-containing P. aeruginosa 
plasmid pPUV-7 (83% cov, 98.5% id), which was isolated in 
Poland,52 and with the P. aeruginosa MDR plasmid pPAG5 (83% 
cov, 98.5% id), which was isolated in China (Figure 2).53 However, 
the MDR region has different resistance determinants in any of these 

plasmids (blaVIM-5, qnrVC1, aadA1, qacE, sul1), and is flanked by 
transposase genes and insertion sequences that facilitate ex-
change of resistance cassettes. One locus in the plasmid of isolate 
40 (242 000…289 000), which contains genes involved in plasmid 
transfer and partition (e.g. trb-family members) and components 
of efflux transporter systems, does not align with other known 
Pseudomonas plasmids. It is identical (99.9%) to the broad host 
range plasmid pE33, which was isolated from Citrobacter freundii 
in Australia (CP042518),54 indicating possible horizontal gene 
transfer with a wide range of Gram-negative bacteria.

Discussion
Studies in Nigeria have shown that P. aeruginosa is a leading 
cause of morbidity and mortality among hospitalized patients 
in health institutions.56–60 However, data on antibiotic suscepti-
bility and resistance mechanisms, especially for carbapenem 
antibiotics, are limited in many of the local hospitals, which im-
pedes adequate case management and efficient containment 
strategies for extensively antibiotic resistant strains. This is 

Table 3. Patterns of co-occurring resistances in selected antibiotic categories among the P. aeruginosa isolates (n = 123), according to the 
MRGN-classification system for MDR Gram-negative bacteria31

Number of resistances 
(antibiotic categories) Number of isolates (%) Penicillinsa Cephalosporinsa Carbapenemsa Amino-glycosidesa Fluoro-quinolonesa

0 31 (25%) 0 0 0 0 0
1 11 (9%) 0 0 0 1 10
2 8 (6%) 3 0 0 5 8
3 9 (7%) 9 6 0 3 9
4 11 (9%) 11 11 1 10 11
5 53 (43%) 53 53 53 53 53
Total 123 76/62% 70/57% 54/44% 72/59% 91/74%

aNumber of isolates resistant to the respective class of antibiotics.

Table 4. Carbapenemase production of selected isolated; mCIM test results. A 10 µg meropenem paper disc is incubated in a suspension of the isolate 
and is thereafter laid on a lawn of the meropenem-susceptible E. coli indicator strain. A lack of inhibition (<15 mm; positive) indicates meropenem 
inactivation by carbapenemase activity

Isolate 
number

Inhibition zone (mm) E. coli 
ATCC25922 Interpretation

Meropenem MIC 
(mg/L)

Imipenem MIC 
(mg/L)

Beta-lactamase or 
carbapenemase

Sequence 
type

3 0 positive ≥16 ≥16 blaNDM-1 ST-773
7 18 borderline ≥16 ≥16 blaVIM-2 ST-233
19 25 negative 4 2 blaOXA-10 ST-233
20 0 positive 4 ≥16 blaVIM-5-like ST-654
24 25 negative 4 2 blaGES-9 ST-1203
32 0 positive ≥16 ≥16 blaNDM-1, 

blaVIM-5-like
ST-773

40 0 positive ≥16 ≥16 blaVIM-5-like ST-639
84 0 positive ≥16 ≥16 blaNDM-1 ST-773
96 0 positive 8 ≥16 blaVIM-5-like ST-2613
119 22 negative ≥16 ≥16 blaGES-5 ST-2613

Bold font (isolates that are positive for mCIM test with their corresponding carbapenemase gene).
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Figure 1. Maximum likelihood phylogeny generated from the core genomes of the 123 P. aeruginosa isolates of this study. Clusters of equal sequence 
types are marked by grey boxes with ST-numbers. Leaf labels denote isolate ID, origin (Hospital A, B, C), sample material, carbapenem susceptibility 
(according to EUCAST; CS: carbapenem susceptible, CI: carbapenem intermediate, CR: carbapenem resistant) and, if detected, the type of carbapene-
mase (red: blaNDM-1, yellow: blaVIM-5-like, light blue: blaGES-5, ochre: blaVIM-2) or ESBL (purple: blaGES-1, blue: blaGES-9). Ten isolates were selected for 
Nanopore sequencing to generate long reads for plasmid identification using the PlasmIDent tool;48 plasmid size and plasmid-encoded carbapene-
mase are stated after the respective leaf labels. Further details can be found https://microreact.org/project/fJtGKnBHjPvEZJaTowFkZZ.
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the first comprehensive, whole-genome-sequence-based report 
of numerous carbapenemase-producing, clinical isolates of 
P. aeruginosa from Nigeria, which elucidates their resistance me-
chanisms and their evolutionary trajectory.

In the present study, the prevalence of carbapenem resistance 
in clinical P. aeruginosa isolates was 39% for imipenem and 44% 
for meropenem. In 2018, a report from central Nigeria described 
200 isolates with 12% imipenem and 28% meropenem resistance, 
which could be ascribed to the sole presence of the carbapene-
mase blaVIM-1.

23 A recent study from Southwest Nigeria found 

that 17% of clinical P. aeruginosa isolates were extensively drug re-
sistant and harboured metallo-β-lactamase genes.28 Thirteen dif-
ferent carbapenemase and ESBL genes were detected in a 
collection of 430 isolates, while in the present study four different 
carbapenemase and two different ESBL genes were identified in 
123 isolates. A recent study from Northeast Nigeria reported 
blaNDM-1 in one clinical P. aeruginosa isolate of ST-773, in addition 
to other carbapenemase-encoding genes (blaNDM, blaKPC) found 
in other Gram-negative clinical isolates.27

The samples for our study were taken in secondary and tertiary 
hospitals. These hospitals may have a larger fraction of patients 
with serious infections and therefore an increased use of carbape-
nems, selecting for resistant bacteria that may cause additional 
nosocomial infections. This could explain the considerable difference 
in the fractions of highly resistant, carbapenemase-producing iso-
lates between the studies. Moreover, the samples were taken in 
Lagos, the economic hub of the country, where international ex-
change and a greater population density may accelerate import 
and spread of resistant bacteria and antibiotic resistance genes, 
and periodical flooding events may facilitate genetic exchange 
among pathogenic bacteria. Nonetheless, local small-scale differ-
ences aside, our study contributes to the growing scientific evidence 
that antibiotic resistance of hospital isolates in Western Africa has 
dramatically increased.61 Most of the carbapenemase-encoding iso-
lates in our study were resistant to all the antibiotics tested, espe-
cially the isolates carrying the carbapenemase blaNDM-1, which 
indicates spread of carbapenemase-encoding genes as central dri-
ver of multiple antibiotic resistance.

Table 5. Plasmids of selected isolates, as identified by PlasmIDent48

analysis of Nanopore reads, and plasmid-bound resistance, as identified 
by ResFinder.45,50 Prophages are not shown

Isolate ID Plasmid size (bp) Resistance genes

3 no plasmid
17 no plasmid
19 no plasmid
20 no plasmid
24 103 560 none
32 20 197 blaNDM-1, tetG, floR2, aac3
40 453 289 blaVIM-5, qnrVC1, aadA1, qacE, sul1, terD
84 200 693 blaNPS, dfrB5, ant(2’’)-Ia
96 no plasmid
119 213 132 none

Figure 2. Alignment of syntenic sequences (locally colinear blocks) of the blaVIM-5-containing megaplasmid of isolate 40 (ID_40) with the closely re-
lated P. aeruginosa plasmids pBT2436, pBT2101 from Thailand (CP039989, CP039991),51 pPUV-7 from Poland (MT732185)52 and pPAG5 from China 
(CP045003),53 The blaVIM-5 gene is situated, together with other resistance determinants, in a plastic MDR region that shows several traces of horizontal 
gene transfer. There is a 47-kb region (242‘000..289‘000) that encodes numerous factors mediating plasmid partition and conjugative transfer (e.g. 
trb-family genes) as well as efflux transporter components. This region does not align with other Pseudomonas plasmids, but it is 99.9% identical to a 
region in a 243-kb conjugative megaplasmid that was isolated from Citrobacter freundii in Australia (CP042518).54.
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In a setting where almost half the P. aeruginosa isolates are 
carbapenem resistant, treatment options are very limited, and 
antibiotic susceptibility testing is crucial. Ceftazidime/avibactam 
may be an option for P. aeruginosa strains producing Ambler 
class-B ESBLs/carbapenemases (e.g. GES, KPC type). For the highly 
resistant blaNDM-1 and blaVIM-5-producing strains, cefiderocol or 
colistin could be tried as last-resort antibiotics for life-threatening 
infections. Unfortunately, in MDR P. aeruginosa resistance against 
both cefiderocol and colistin can arise rapidly.55

In contrast to these findings from Nigeria, carbapenem resist-
ance in P. aeruginosa isolates from European countries and the 
US is mostly conferred by loss or decreased expression of the out-
er membrane porin OprD, often in combination with upregulation 
of the MexAB-OprM efflux system.62–64 Also, the inducible, 
chromosomal-encoded beta-lactamase AmpC of P. aeruginosa 
plays a role in resistance to carbapenems. In our isolate collec-
tion, however, the carbapenemase blaNDM-1 is the dominant 
mechanism of carbapenem resistance.

The STs of the isolates, as revealed by MLST analysis, agree 
with the phylogeny reconstructed from their core genomes and 
also with the distribution of carbapenemase and ESBL gene types 
(Figure 1). Every carbapenemase is specific to one ST, except 
blaVIM-5, which was found in isolates of four different STs. 
blaNDM-1 was only present in ST-773, and blaVIM-2 was only found 
in ST-233. Both ST-233 and ST-733 were described as ‘inter-
national high-risk clones’, i.e. internationally dispersed clones 
that readily acquire and frequently carry carbapenemase genes 
and other resistance determinants.12,16,65 ST-773 seems to 
have originated from Asia,66 but it has since been detected 
worldwide.12,16,66 ST-773 was initially described to carry the car-
bapenemase blaVIM-2. The combination of ST-773 and blaNDM-1 
was first reported in Hungary in 2019,16 and in 2022 from 
Nigeria.30 An introduction from Asia seems plausible considering 
common business travels from and to Asian countries and the 
previous records of the respective sequence and carbapenemase 
types. However, due to the limited data in the database and the 
high mobility of both plasmids and strains of P. aeruginosa, the 
source of the original blaNDM-1-carrying ST-773 strain that was in-
troduced to Nigeria cannot be determined. Other international 
high-risk clones in our isolate collection are ST-654 (three isolates 
with blaVIM-5), ST-277 and ST-357 (both of the latter without car-
bapenemase). Taken together, 51 of our 123 isolates (41%) be-
long to previously described international high-risk clones. The 
uniformity in resistance determinants and close phylogenetic re-
lation of the isolates within each of these clones indicates that 
they may have been introduced to Nigeria recently, and have 
spread clonally due to a selective advantage, probably their in-
creased antibiotic resistance. In contrast, the isolates of the 13 
newly assigned STs (ST3391-3402) within our collection, which 
are mostly susceptible to all the antibiotics tested (four are resist-
ant to quinolones), may represent the primary local population of 
P. aeruginosa. The backbones of plasmids from our isolate collec-
tion that encode carbapenemases are highly identical to other 
plasmids of isolates from different continents (Asia, Australia, 
Europe). Therefore, both the resistance genes and their vectors 
indicate that antibiotic resistances are subject to dispersal and 
exchange on a global scale. The observed spread of blaNDM-1 
and other carbapenemases on plasmids with broad host range 
such as the blaNDM-1-carrying pE33-like plasmid of our isolate 

32 is worrisome, considering the possible transfer to other patho-
genic bacteria in the environment, or in a hospital setting. This is 
exemplified by the finding that multiple Vibrio parahaemolyticus 
and V. vulnificus strains carrying blaNDM-1 and other carbapene-
mases were isolated from seawater on different beaches in 
Lagos State, Nigeria.67

In conclusion, the exceptional prevalence of carbapenemases, 
particularly blaNDM-1, in Nigerian hospitals highlights the global 
rise in carbapenem resistance mediated by carbapenemases 
and emphasizes the necessity of limiting the continuing spread 
of antimicrobial resistance. This can be achieved by controlling 
and reducing antibiotic use in agriculture, by adequate waste-
water treatment, and by implementing routine susceptibility 
testing, antibiotic stewardship programmes and improved hy-
giene measures in hospitals to limit the application of last-resort 
antibiotics and the spread of highly resistant bacteria.
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