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Abstract

Because synonymous mutations do not change the amino acid sequence of a protein, they are generally considered to be se-
lectively neutral. Empiric data suggest, however, that a significant fraction of viral mutational fitness effects may be attrib-
utable to synonymous mutation. Bias in synonymous codon usage in viruses may result from selection for translational effi-
ciency, mutational bias, base pairing requirements in RNA structures, or even selection against specific dinucleotides by
innate immune effectors. Experimental analyses of codon usage and genome evolution have been facilitated by advances in
synthetic biology, which now make it feasible to generate viral genomes that contain large numbers of synonymous muta-
tions. The generally pleiotropic effects of synonymous mutation on viral fitness have, at times, made it difficult to define
the mechanistic basis for the observed attenuation of these heavily mutated viruses. We have addressed this problem by
developing a bioinformatic tool for the generation and analysis of viral sequences with large-scale synonymous mutation.
A variety of permutation strategies are applied to shuffle codons within an open reading frame. After measuring the dinu-
cleotide frequency, codon usage, codon pair bias, and free energy of RNA folding for each permuted genome, we used z-
score normalization and a least squares regression model to quantify their overall distance from the starting sequence.
Using this approach, the user can easily identify a large number of synonymously mutated sequences with varying similar-
ity to a wild-type genome across a range of nucleic-acid-based determinants of viral fitness. We believe that this tool will be
useful in designing genomes for subsequent experimental studies of the fitness impacts of synonymous mutation.
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1 Introduction

Issues of synonymous mutation and codon usage are funda-
mental to studies of molecular evolution. Synonymous muta-
tion will not change the function of a protein, and in many
cases, these mutations will be selectively neutral. This principle
underlies commonly used metrics of positive and negative se-
lection (L Hartl 1988; Yang 2006). However, many organisms and
viruses exhibit biases in codon usage that are largely unex-
plained (Sharp et al. 1993; Jenkins and Holmes 2003; Belalov and
Lukashev 2013). Often, codon bias can be ascribed to selection
for translational efficiency, where highly expressed genes have

codons that are well matched to the abundance of their respec-
tive tRNA in a given cell or tissue. The other main factor
influencing base composition and codon usage is inherent mu-
tational bias caused by sequence context or the polymerases
themselves. Mutational pressure and selection for translational
efficiency are not mutually exclusive, and many genomes have
evidence of both processes (Plotkin and Kudla 2011).

Experiments in viral systems have suggested a number of
additional reasons for codon usage bias within and between ge-
nomes. Much of this work has been performed in RNA viruses,
where compact genomes, efficient natural selection, and a high
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level of host dependence have revealed situations where synon-
ymous mutation can have a significant impact on fitness. The
genomes of many RNA viruses fold into complex secondary and
tertiary structures that are important for replication, transla-
tion, or evasion of host innate immunity (Simmonds and Smith
1999; Simmonds, Tuplin, and Evans 2004; Steil and Barton 2009).
These structures often occur within open reading frames and
may be perturbed by synonymous mutation. Codon usage may
also be influenced by the dinucleotide frequency, and bias
against CpG has been observed in a number of RNA viruses
(Karlin, Doerfler, and Cardon 1994). While the reasons are not
clear, it may reflect recognition of these sequences as a patho-
gen-associated molecular pattern by toll-like receptors
(Rabadan, Levine, and Robins 2006; Burns et al. 2009; Wong et al.
2010). Similarly, avoidance of sequences targeted by host micro
RNA may influence base and codon usage in RNA virus ge-
nomes. Sanjuan and coworkers have suggested that up to 18
per cent of the mutational fitness effects in RNA viruses may be
due to selection at synonymous sites (Cuevas, Domingo-Calap,
and Sanjuán 2012).

Experimental analyses of codon usage and genome evolu-
tion have been facilitated by advances in synthetic biology,
which now make it feasible to generate viral genomes that con-
tain large numbers of synonymous mutations (Wimmer and
Paul 2011). This approach was initially applied to poliovirus,
where shifting codon usage away from that of the natural hu-
man host reduced translational efficiency and virulence (Burns
et al. 2006; Mueller et al. 2006). Alterations in codon or codon
pair bias of poliovirus, vesicular stomatitis virus, influenza vi-
rus, and Dengue virus have all been used to rationally attenuate
these agents for vaccine design (Nougairede et al. 2013; Nogales
et al. 2014; Shen et al. 2015; Wang et al. 2015). In theory, these
live, attenuated vaccines would have a low probability of revert-
ing to virulence as each individual synonymous mutation has
only a small impact on fitness. Subsequent work, however, has
suggested that the process of fitness gain in these heavily mu-
tated viruses is complex and may include compensatory muta-
tions outside the synonymously mutated sequences (Bull,
Molineux, and Wilke 2012; Nougairede et al. 2013).

Despite these advances, relatively little is known about the
global fitness impact of large-scale synonymous mutation. One
problem is that it is hard to alter one sequence determinant
while keeping others intact. For example, shifting codon or co-
don pair bias may alter dinucleotide frequency, and it may be
difficult to determine which distinct disruption leads to an ob-
served fitness defect (Burns et al. 2009; Tulloch et al. 2014). We
found that while codon usage was a determinant of viral muta-
tional robustness, it was difficult to exclude pleiotropic effects
of large-scale synonymous mutation on RNA structure or other
sequence determinants (Lauring et al. 2012). Given the large size
of synonymous sequence space, it should be possible to identify
synonymously mutated sequences that differ from a wild type
in only a single parameter, such as CpG frequency or codon pair
bias.

Here, we describe a bioinformatic tool for the generation and
analysis of viral sequences with large-scale synonymous muta-
tion. We illustrate its features using the sequence coding for the
poliovirus capsid, as poliovirus was the first virus to be chemi-
cally synthesized, and a number of synonymously mutated var-
iants have been described (Cello, Paul, and Wimmer 2002; Burns
et al. 2006, 2009; Mueller et al. 2006; Coleman et al. 2008). We
employ four mutational strategies to generate thousands of per-
mutations of an open reading frame (Belalov and Lukashev
2013). Each sequence contained hundreds of synonymous

mutations. We incorporate a multifaceted approach to simulta-
neously evaluate the codon bias, codon pair bias, dinucleotide
frequency, and free energy of RNA folding for these permuted
sequences. By using z-score normalization of these metrics and
a least-squares model for overall distance, users may identify
sequences that are globally similar or dissimilar to the wild
type. As this tool will also allow selection of sequences that are
similar to wild type in all but one of the above metrics, we ex-
pect that it will facilitate experimental studies of the fitness im-
pact of synonymous mutation.

2 Permutation of sequences

In many studies of synonymously mutated viruses, the goal has
been to deoptimize the codon bias or codon pair bias of viral ge-
nomes leading to reduced translational efficiency (Burns et al.
2006, 2009; Mueller et al. 2006; Nogales et al. 2014; Shen et al.
2015; Wang et al. 2015). As we seek to identify sequences with
preserved codon and codon pair bias, our permutation of the
initial viral open reading frame relies on shuffling of existing co-
dons. A number of permutation strategies are available that use
distinct algorithms to generate sequences with large numbers
of synonymous mutations. We chose four that are described in
a recent study of viral codon usage (Belalov and Lukashev 2013).

Because each approach generates synonymous mutations
by shuffling the existing bases, the overall frequency of each is
preserved (Belalov and Lukashev 2013). The N3 approach shuf-
fles the third position of each codon throughout a sequence
(Fig. 1A). The dN23 approach preserves the amino acid sequence
while shuffling dinucleotides representing the second and third
position of each codon. The dN31 approach shuffles dinucleo-
tides corresponding to the third position of one codon and the
first position of the next. The dN231 approach also permutes
nucleotides within a codon pair, shuffling units consisting of
the second and third position of the first codon and the first po-
sition of the next. Use of these different permutation strategies
allowed us to generate a large number of candidate sequences
that varied in various nucleic acid characteristics.

3 Analysis of permuted sequences

While permutation of a base sequence will preserve its overall
nucleotide composition, shuffling of these bases has the poten-
tial to alter biologically relevant properties of the coding RNA.
Among these are dinucleotide composition, codon bias, codon
pair bias, and free energy of RNA folding. Therefore, the second
step of our approach is to define how the permuted sequences
differ from the wild-type input with respect to these metrics.
We used the permutation strategies to create a large number co-
don-shuffled sequences based on the 2,643 base sequence that
codes for the poliovirus capsid protein (Type I Mahoney strain,
VP1–VP4). In our pilot study, we evaluated 1,000 sequences per
permutation script.

We analyzed each group of 1,000 sequences for a variety of
sequence-based metrics, plotting their distribution with respect
to the wild type. To understand better the biological relevance
of these differences, we also analyzed a set of enterovirus se-
quences downloaded from Genbank. Poliovirus is a Type C en-
terovirus, and the enterovirus genus includes a large number of
closely related viruses with similar genome structures and rep-
lication strategies (Fields, Knipe, and Howley 2013). Out of 352
entries, we compiled a set of 89 full-length capsid sequences for
comparison. Twenty-three of these were poliovirus with four
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Type I, four Type 2, and fifteen Type 3 sequences included
(Fig. 1B).

3.1 Dinucleotide frequency

An obvious and unavoidable consequence of nucleotide shuf-
fling is alteration of the dinucleotide composition of a sequence.
The frequency of a given dinucleotide can vary substantially in
viral sequences, particularly across genera (Karlin, Doerfler, and
Cardon 1994). It is well known that CpG and UpA are under-rep-
resented in many viruses. This bias may reflect the impact of
these motifs on viral replication and the potential recognition of
CpG, a pathogen-associated molecular pattern, by toll-like re-
ceptor 9. There are sixteen possible dinucleotides, and we mea-
sured bias in the usage of each dinucleotide in each candidate
sequence by comparing the observed frequency of a given dinu-
cleotide compared with its expected frequency given overall
mononucleotide frequencies.

DinucAB ¼
FAB

FA x FB
;

where FA, FB, and FAB are the frequencies of nucleotide A, nucle-
otide B, and the dinucleotide AB, respectively. Dinucleotide fre-
quencies will also co-vary in a given sequence. Given a constant
GC content, a bias toward CpG dinucleotides will lead to a bias
away from GpC. Furthermore, inclusion of seventeen different
measurements of dinucleotide bias in our final assessment of
distance from wild type (see below) would overweight dinucleo-
tide bias relative to other sequence-based determinants. We
therefore used a least squares approach to compile the seven-
teen different measurements of dinucleotide bias into a single
term.

Dinucleotide bias ¼
X16

x¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xwtðABÞ � xRdðABÞ
� �2

q
;

where Xwt(AB) and XRd(AB) are the frequency of a given dinucleo-
tide (see above) in the wild-type and ‘random’ permuted se-
quence, respectively. The distributions of values for this
composite metric of dinucleotide bias are shown in Fig. 2 for

1,000 sequences generated with each of the four permutation
scripts. The overall bias of the wild type is shown for reference.
The range in dinucleotide bias for our set of enterovirus capsid
sequences is also shown.

3.2 Codon usage bias

Codon bias is a major determinant of translational efficiency,
and optimization or deoptimization of codon usage is a com-
mon way to manipulate the replicative capacity, fitness, and
virulence of a virus within a given host (Burns et al. 2006;
Mueller et al. 2006; Plotkin and Kudla 2011). Because our goal
was to generate sequences with replicative fitness similar to
that of wild type, we incorporated two different measurements
of codon bias into our algorithm. The simpler measurement, ef-
fective number of codons (ENC), reflects the number of the
sixty-one non-termination codons that are used in a given se-
quence (Wright 1990).

N̂c ¼ 2þ 9

F̂2
þ 1

F̂3
þ 5

F̂4
þ 3

F̂6
;

where Fi denotes the average homozygosity for the class with i
synonymous codons, and the numerators in each term indicate
the number of amino acids belonging to each class.

An ENC of twenty represents extreme bias as only one codon
is used for each amino acid and a value of sixty-one suggests
that there is no bias. The distributions in ENC values for our per-
muted sequences and the enterovirus reference set are shown
in Fig. 3.

Because each of the four scripts is designed to predomi-
nantly shuffle codons, the overall codon bias is largely
preserved.

The other commonly used metric of codon bias is the codon
adaptive index (CAI), which measures the usage of codons in a
given open reading frame relative to a reference set of highly ex-
pressed genes from a given organism (Sharp and Li 1987). In our
case, we used a human reference set, as humans are the only
known natural host for poliovirus.

wij ¼
xij

ximax

A B

Figure 1. (A) Diagram of permutation approaches, adapted from Belalov and Lukashev (2013). (B) Subtype representation of eighty-nine enteroviral (EV) full-length cap-

sid sequences used as reference set for analyses in Figs 2–6 below.
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CAI ¼
XL

k¼1

lnwk

 !1 L=

;

where Xij is the number of times that codon i for amino acid j oc-
curs in the reference set of coding sequences, L is the number of
codons in a gene, and Wk is the weight of the kth codon in the
gene sequence. The distributions in CAI values for our per-
muted sequences and the enterovirus reference set are shown
in Fig. 4.

As for the ENC, these shuffling strategies largely preserve
the codon bias of a sequence.

3.3 Codon pair bias

It has long been recognized that protein coding regions can ex-
hibit bias in usage of synonymous codon pairs (Gutman and
Hatfield 1989). While the biological relevance of this observed
codon pair bias is unclear, some work suggests that it might in-
fluence translational efficiency by determining ribosomal A and
P site occupancy (Coleman et al. 2008). As described previously,
the first step in measuring codon pair bias is to generate a score
for each codon pair. Like dinucleotide frequency, this codon pair
score (CPS) compares the frequency of each codon pair relative

to that expected by chance given the frequencies of each codon
in a set of sequences.

CPS ¼ lnð FðABÞ
F Að Þ x FðBÞ
F Xð Þ x FðYÞ x FðXYÞ

Þ;

where F(A), F(B), and F(AB) are the frequencies of codon A, codon
B, and codon pair AB, respectively, and where F(X), F(Y), and
F(XY) are the frequencies of amino acid A, amino acid B, and
amino acid pair AB, respectively (Gutman and Hatfield 1989;
Coleman et al. 2008). We used the CPS scores calculated from
the human genome, as described in Coleman et al. (2008). The
codon pair bias (CPB) for a given transcript is then the arith-
metic mean of the CPS for each codon pair across the open read-
ing frame.

CPB ¼
Xk

i¼1

CPSi

k� 1
;

where k is the number of codon pairs in a given sequence. The
distribution of CPB scores for our permuted sequences and the
enterovirus reference set are shown in Fig. 5.

While both N3 and dN23 shuffling disrupted the codon pair
bias of the poliovirus capsid, it was largely preserved when the
dN31 and dN231 scripts were used to permute the sequences.

Figure 2. Dinucleotide bias of permuted sequences. Distribution of least squares values (x axis, see text) for 1,000 permuted sequences generated from each of the four

permutation scripts, indicated in top left of each panel. Values for permuted sequences are shown in green and values for the reference set of eighty-nine enterovi-

ruses are shown in orange. Purple dashed line is the value for the wild-type poliovirus capsid (Type 1, Mahoney). Of the four permutation approaches, dN31 and dN231

had little to no effect on the dinucleotide bias. This is consistent with a previously observed bias in GC content in the third codon and first codon positions of poliovirus

(Belalov and Lukashev 2013).

Figure 3. Codon bias of permuted sequences. Distribution of ENC values (x axis) for 1,000 permuted sequences generated from each of the four permutation scripts, in-

dicated in top left of each panel. Values for permuted sequences are shown in green and values for the reference set of eighty-nine enteroviruses are shown in orange.

Purple dashed line is the value for the wild-type poliovirus capsid (Type 1, Mahoney).
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3.4 RNA folding

Base pairing across an RNA sequence can result in complex sec-
ondary and tertiary RNA structures (Palmenberg et al. 2009).
Because these structures often act as cis-acting regulatory se-
quences in RNA virus replication and translation, synonymous
mutations can have profound effects on viral fitness. One advan-
tage of the poliovirus system is that the capsid sequence is
generally devoid of RNA secondary structure and tolerates large-
scale synonymous mutation without apparent effects on replica-
tion (Burns et al. 2006; Mueller et al. 2006; Coleman et al. 2008;
Lauring et al. 2012). Since this may represent a special case, we
included an assessment of RNA folding free energy in our analy-
sis algorithm. If permutation of the coding sequence either dis-
rupts or creates a stable RNA structure, this would be identified
as a change in free energy. We estimated the minimal free en-
ergy of folding using UNAFold (Markham and Zuker 2008), a
more flexible and higher throughput software package based on
the more commonly used Mfold algorithm (Zuker 2003). The
folding free energies of our permuted sequences are shown in
Fig. 6 relative to the wild type and enterovirus reference sets.

As above, the relatively narrow distribution of RNA folding
free energy in the permuted sequences is consistent with the ab-
sence of stable structures across the poliovirus capsid sequence.

To demonstrate better this function of CodonShuffle, we
performed an identical analysis of the corresponding capsid re-
gion of foot and mouth disease virus (FMDV), a virus with a high
level of genome-scale-ordered RNA structure (Simmonds,

Tuplin, and Evans 2004). Here, we found that permutation sig-
nificantly altered the minimum free energy of RNA folding rela-
tive to the wild-type input sequence (Fig. 7A). All four
permutation scripts had a similar effect, consistent with large-
scale disruption of base pairing. While this global analysis of
RNA structure is well suited to rapid analysis of large numbers
of sequences, it is less sensitive for disruption of smaller but
functionally important motifs. We therefore performed a sliding
window analysis of a permuted FMDV sequence (Fig. 7B). Using
a window size of 100 nucleotides and eighty nucleotide overlap
as in (Coleman et al. 2008), we found significant perturbation of
genome-scale-ordered RNA structure. This sliding window
analysis can be performed within CodonShuffle on a limited
subset of permuted sequences using ViennaRNA (Lorenz et al.
2011). There is currently no option to run it on larger datasets,
as it is computationally costly and would require access to a
large computer cluster.

4 Assessment of similarity to wild type

As detailed above, the permuted sequences differ from the wild
type across a range of metrics to varying degrees. In many
cases, investigators would prefer to define a set of sequences
that are similar to wild type across all of these genomic charac-
teristics. Because each of the metrics has its own units and dy-
namic range, we used z-score normalization and a least squares
model to combine them into a single measurement of distance

Figure 5. Codon pair bias of permuted sequences. Distribution of CPB values (x axis) for 1,000 permuted sequences generated from each of the four permutation scripts,

indicated in top left of each panel. Values for permuted sequences are shown in green and values for the reference set of eighty-nine enteroviruses are shown in or-

ange. Purple dashed line is the value for the wild-type poliovirus capsid (Type 1, Mahoney).

Figure 4. Codon bias of permuted sequences. Distribution of CAI values (x axis) for 1,000 permuted sequences generated from each of the four permutation scripts, indi-

cated in top left of each panel. Values for permuted sequences are shown in green and values for the reference set of eighty-nine enteroviruses are shown in orange.

Purple dashed line is the value for the wild-type poliovirus capsid (Type 1, Mahoney).
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relative to wild type. The distributions in Figs 2–6 were used to
generate a z-score value (Fig. 8A) for each permuted sequence in
a given distribution. A delta z for a given sequence and metric
was then calculated as the difference in z-score value between
the permuted sequence and the wild type. These delta z values
were combined using least-square-based regression to generate
a least squares distance (D).

Least square dist ðDÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z CPBwt�Z CPBRdð Þ2

þ Z Mfoldwt�Z MfoldRdð Þ2

þ Z ENCwt�Z ENCRdð Þ2

þ Z CAIwt � Z CAIRdð Þ2

þ Z Dinucwt � Z DinucRdð Þ2

vuuuuuuuuuuuut

Figure 6. RNA structure in permuted sequences. Distribution of minimum free energy values (x axis) of 1,000 permuted sequences generated from each of the four per-

mutation scripts, indicated in top left of each panel. Values for permuted sequences are shown in green and values for the reference set of eighty-nine enteroviruses

are shown in orange. Purple dashed line is the value for the wild-type poliovirus capsid (Type 1, Mahoney).

A

B

Figure 7. Minimum free energy of permuted FMDV sequences. (A) RNA structure in permuted sequences. Distribution of minimum free energy values (x axis) of 1,000

permuted sequences generated from each of the four permutation scripts, indicated in top left of each panel. Values for permuted sequences are shown in green.

Purple dashed line is the value for the wild-type FMDV capsid sequence (Genbank KF152935.1). (B) Sliding window analysis, 100 nucleotides with eighty nucleotide

overlap, of local RNA structure in the FMDV capsid sequence for the wild type (left), and one of the permuted sequences (right).
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To define how close the permuted sequences were to wild
type, we plotted D versus the Hamming nucleotide distance of
each sequence (Fig. 8A).

While all four permutation approaches generated a large
number of sequences that were quite different based on
Hamming distance, they differed in how close the sequences
were to wild type. We found that dN231 and d31 were the clos-
est to wild type, followed by dN23 and N3. This is consistent
with the manner in which each strategy permutes the input se-
quence and the effect of these permutations on the individual
sequence determinants (Figs 2–6). For our purposes, dN231 was
the best, as it generated sequences with the highest Hamming
distance and lowest D.

5 Convergence on common solutions

Synonymous sequence space for even a moderately sized open
reading frame is quite large. Given that a peptide containing
one of each of the twenty amino acids can be encoded by over
1018 distinct nucleic acid sequences, there will be many poten-
tial synonymous variants that code for the 881 amino acid po-
liovirus capsid. To determine whether our permutation
approaches would converge on a set of common solutions, we
ran them ten times, generating 10,000 total sequences with
each strategy. Haplotype accumulation curves indicate that all
the sequences in each of the four sets were unique (Fig. 9A).

A plot of Hamming distance versus overall distance (D) also
demonstrates a range of optimal solutions for the dN231, which
imposed the most constraints on permutation (Fig. 9B). Finally,

we generated a neighbor joining tree of the ninety-eight nucleic
acid sequences generated by dN231 that were closest to the
wild type by our least squares distance metric (Fig. 9C). They
were all distantly related to each other, with pairwise distances
of 400–600. Therefore, CodonShuffle can quickly generate a
large number of distinct synonymously mutated sequences that
are similar to the wild type across a range of sequence
determinants.

6 Installation and usage

We designed CodonShuffle to be run on a personal computer by
users with limited experience in bioinformatics. It can be run on
any Mac or Windows computer in a terminal window, and the
entire dataset presented here can be obtained with just three
commands. The user must have python installed and a number
of additional programs. An ‘install dependencies’ script is pro-
vided to ensure these additional programs are installed and
loaded in the appropriate directories. An ‘RNA sliding window’
script can be used to select individual sequences from the initial
CodonShuffle output and to perform a sliding window analysis
of their RNA structures (Fig. 7B). All other data are generated
from the main ‘CodonShuffle’ script. Graphics are generated au-
tomatically, but users may also generate their own panels using
the raw output data. Complete instructions for software
download, installation, and usage are provided in an open-
access github repository https://github.com/lauringlab/
CodonShuffle

Figure 8. Assessment of overall similarity using a least squares model. (A) Calculation of z-score for each sequence in each distribution (blue dotted line) and the delta

z relative to wild type (red dotted line), Figs 2–6. (B) Plots of Hamming distance versus Least Squares Distance, D, for 1,000 permuted sequences generated from each of

the four permutation scripts, indicated in top left of each panel. The Hamming distance is in nucleotides across the 2,643 base capsid sequence of poliovirus.
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Discussion

With recent advances in synthetic biology, it is now feasible to
generate highly mutated viral genomes in a reasonable time
frame (Wimmer and Paul 2011). This approach has been used to
generate RNA viruses with large numbers synonymous muta-
tions, often with the goal of predictable attenuation for vaccine
design (Nogales et al. 2014; Shen et al. 2015; Wang et al. 2015).
While most studies have sought to deoptimize codon and codon
pair bias, synonymous mutation will often have pleiotropic ef-
fects on dinucleotide bias, RNA structure, and viral mutational
robustness (Burns et al. 2009; Lauring et al. 2012; Tulloch et al.
2014). We have developed a flexible tool that will allow investi-
gators to generate synonymously mutated sequences and to an-
alyze them for differences in dinucleotide frequency, codon
usage, codon pair bias, and free energy of RNA folding. A unique
aspect of our algorithm is the z-score-based normalization of
these diverse outputs and their ultimate combination into a sin-
gle distance value derived by least squares regression. This dis-
tance value can be used to identify permuted sequences based
on their overall similarity or dissimilarity to wild type.

We envision several ways in which this tool could be used to
select individual sequences for synthesis and subsequent ex-
perimental analysis. In the first, one could choose sequences
with a large Hamming distance and low D score. These se-
quences would be located in vastly different regions of se-
quence space yet share the same basic genomic characteristics
of the wild type. Because synthetic viruses containing these per-
muted sequences would occupy distinct fitness landscapes,
they could be used to study the impact of these landscapes on
viral evolution (Lauring et al. 2012). For vaccine design, one
might choose candidate sequences with a large Hamming dis-
tance and a high D score. Viruses based on these sequences
would likely differ from wild type in many ways. This approach
might lead to a greater level of attenuation than current exam-
ples, which have focused on codon bias, codon pair bias, or di-
nucleotide frequency alone. Some investigators may want to
vary just one sequence determinant, dinucleotide frequency,
for example, while holding all others constant. This could be ac-
complished by removing the dinucleotide frequency term from
the final least squares regression and by using the N3 or dN23
permutation approaches only, which have the greatest impact
on this particular determinant (Fig. 3). Finally, if perturbation of

a single element, such as CpG content, is desired, the user could
sort and interrogate the output .csv file, which provides all of
the data on each permuted sequence. While CodonShuffle will
run all permutation strategies and include all metrics by de-
fault, users can exclude either in the initial command.

The modular design of CodonShuffle also makes it a flexible
tool. We included only measures of dinucleotide frequency, co-
don bias, codon pair bias, and folding free energy in our final
calculation of distance. While these are perhaps the most stud-
ied parameters, synonymous mutation may also impact the
tRNA adaptive index (Tuller et al. 2010), codon volatility (Plotkin
and Dushoff 2003), or 5’–3’ codon bias of a sequence (Goodman,
Church, and Kosuri 2013). These parameters could also be in-
cluded in the least squares regression, provided a distribution of
measurements can be obtained. In the case of localized codon
volatility or 5’–3’ codon bias, one would need to perform a slid-
ing window analysis to capture the variation in permuted se-
quences. A sliding window analysis could also be used to
capture the effect of codon shuffling on local as opposed to
global RNA structure (Coleman et al. 2008). Similarly, the modu-
lar design of CodonShuffle allows users to substitute their own
tools. We used the commercial package, UNAfold, to analyze
folding free energy given its facility with large numbers of se-
quences (Markham and Zuker 2008). Mfold and other freely
available tools can be used to generate the requisite distribu-
tions for the z-score normalization and least squares regression
(Zuker 2003). In the current version of CodonShuffle, users may
select RNAfold package from Vienna RNA for this purpose
(Lorenz et al. 2011).

We have implemented CodonShuffle in python and have its
component scripts in a github repository that can be accessed
anonymously, https://github.com/lauringlab/CodonShuffle. We
believe that this tool will be useful in designing genomes for
subsequent experimental studies of the fitness impacts of syn-
onymous mutation.
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