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Abstract

Scutellaria, or skullcaps, are medicinally important herbs in China, India, Japan, and else-

where. Though Scutellaria is the second largest and one of the more taxonomically challeng-

ing genera within Lamiaceae, few molecular systematic studies have been undertaken within

the genus; in part due to a paucity of available informative markers. The lack of informative

molecular markers for Scutellaria hinders our ability to accurately and robustly reconstruct

phylogenetic relationships, which hampers our understanding of the diversity, phylogeny,

and evolutionary history of this cosmopolitan genus. Comparative analyses of 15 plastomes,

representing 14 species of subfamily Scutellarioideae, indicate that plastomes within Scutel-

larioideae contain about 151,000 nucleotides, and possess a typical quadripartite structure.

In total, 590 simple sequence repeats, 489 longer repeats, and 16 hyper-variable regions

were identified from the 15 plastomes. Phylogenetic relationships among the 14 species rep-

resenting four of the five genera of Scutellarioideae were resolved with high support values,

but the current infrageneric classification of Scutellaria was not supported in all analyses.

Complete plastome sequences provide better resolution at an interspecific level than using

few to several plastid markers in phylogenetic reconstruction. The data presented here will

serve as a foundation to facilitate DNA barcoding, species identification, and systematic

research within Scutellaria, which is an important medicinal plant resource worldwide.

Introduction

Lamiaceae is the sixth largest angiosperm family and contains over 7000 species that are divided

into 12 subfamilies [1, 2]. Scutellarioideae, while relatively small, is one of the most morphologi-

cally distinct subfamilies within Lamiaceae. As circumscribed in earlier classifications [3, 4], the
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subfamily contained only three genera, Scutellaria L., Perilomia Kunth, and Salazaria Torr.,

with the latter two genera synonymized with Scutellaria by Paton [5]. Subsequent studies based

on morphological [6, 7] and molecular data [8, 9] expanded the subfamily to include Renschia
Vatke, Tinnea Kotschy ex Hook. f.,Holmskioldia Retz., andWenchengia C. Y. Wu & S. Chow.

Morphological synapomorphies for Scutellarioideae include pericarps with tuberculate or elon-

gate processes [9], high densities of xylem fibers in the calyces [10], and racemose inflorescences

(but most species of Tinnea andHolmskioldia have cymose inflorescences). The monophyly of

the subfamily has also been supported by molecular phylogenetic studies [1, 8, 9, 11].

As currently defined, Scutellarioideae includes approximately 380 species in five genera [1]:

Holmskioldia, Renschia,Wenchengia, Scutellaria, and Tinnea. The former three are monotypic

genera. The genusHolmskioldia, comprising the single species H. sanguinea Retz., is native to

the subtropical Himalayan region but is widely grown as an ornamental in warm climates and

has become naturalized throughout the Old and New Worlds [12]. The monotypic Renschia,

represented by R. heterotypica (S. Moore) Vatke, is narrowly endemic to the Ahl Mountains in

northern Somalia [13], and its systematic position within Scutellarioideae remains unclear.

The placement ofWenchengia in Scutellarioideae was resolved by Li et al. [9] based on the

rediscovery of the extremely rare species,W. alternifolia C.Y. Wu & S. Chow. This genus was

long thought to be endemic to Hainan Island in southern China [14, 15], but recently it was

also reported from Vietnam [16]. With 19 species recognized to date, Tinnea is the second

largest genus in Scutellarioideae, occurs mainly in fire-prone grassland, woodland, and scrub

vegetation, and is endemic to Africa [17].

Scutellaria, containing approximately 360 species and commonly known as skullcaps, is the

largest genus in Scutellarioideae [18]. The genus is distributed nearly worldwide and occurs in

various habitats, but is mostly found in tropical montane and temperate regions [5, 19]. Most

species are herbaceous perennials or small shrubs. The calyx of Scutellaria consists of two

undivided lips and bears an appendage on the upper lip, which is described as a scutellum and

is the most distinctive character of the genus; this feature is the basis for the common name

skullcap. Many Scutellaria species possess medicinal uses, and some species are of economic

importance. For example, S. baicalensisGeorgi (baical skullcap or Chinese skullcap; ‘Huang-

qin’ in Chinese) is a traditional Chinese medicinal herb that was first recorded in Shen Nong
Ben Cao Jing in ca. 100 BC [20], and is widely used to treat hepatitis, jaundice, tumor, leuke-

mia, hyperlipaemia, arteriosclerosis, diarrhea, and inflammatory diseases [21].

Due to tremendous diversity in habit, as well as calyx, corolla, inflorescence, and nutlet

morphology, infrageneric boundaries within Scutellaria are poorly defined [3–5, 22–24]. Based

on morphological data, Paton [5] subsumedHarlanlewisia Epling, Perilomia, and Salazaria
into a broad Scutellaria as part of a global taxonomic revision, and divided Scutellaria into two

subgenera: subg. Scutellaria and subg. Apeltanthus (Nevski ex Juz.) Juz. The former is further

subdivided into five sections: Scutellaria, Salviifoliae (Boiss.) Edmondson, Salazaria (Torrey)

Paton., Perilomia (Kunth) Epling, and Anaspi (Rech.f.) Paton. And the latter is divided into

two sections: Apeltanthus and Lupulinaria A. Hamilt. As opposed to other large genera of

Lamiaceae, such as Plectranthus L’Hér. [25–27], Salvia L. [28–34], and Isodon (Schrad. ex

Benth.) Spach [35–38], molecular phylogenetic studies within Scutellaria are relatively scarce.

Most previous work concentrated on genetic diversity and biogeography of taxonomic com-

plexes (e.g. S. angustifolia Pursh [39, 40]), population genetics [21, 41], or species identification

[42]. To date, only three phylogenetic studies have focused on Scutellaria [18, 41, 43]. Using

both nuclear and chloroplast (cp) DNA markers, Chiang et al. [41] studied the relationships

of Taiwanese Scutellaria and Safikhani et al. [18] focused on Iranian taxa. Similarly, when

describing S. wuana C. L. Xiang & F. Zhao, only 41 taxa were involved in the phylogenetic

analyses [43]. In total, only five DNA markers were used in these studies (nrITS,matK, ndhF-
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rpl32, rpl32-trnL, and trnL-trnF) and none generated phylogenetic trees with high resolution,

ostensibly due to a lack of variability within these DNA markers among the sampled species.

The chloroplast is an essential organelle in angiosperms because it provides energy for plant

cells [44]. This uniparentally inherited plastid is characterized by a circular double-stranded

DNA molecule between 120,000–160,000 base pairs in length, multiple copies per cell, and a

quadripartite structure that includes two identical regions in opposite orientations called the

inverted repeat (IR), flanked by large single copy (LSC) and small single copy (SSC) regions

[45]. With increasingly rapid and less expensive next generation sequencing (NGS) technolo-

gies continually developing, ever-increasing numbers of non-model species plastid genome

are being sequenced and successfully used for resolving phylogenetic and taxonomic problems

in flowering plants at various ranks [46–48]. However, using cp genomes to resolve phyloge-

netic questions within the mint family has been rare [49], and plastomes of only two species,

Scutellaria baicalensis and S. indica L. var. coccinea S. Kim & S. Lee, have been published from

Scutellarioideae [50, 51]. Sequences of S. insignisNakai and S. lateriflora L. were uploaded to

GenBank without any related publication or analyses. Consequently, little is known regarding

plastome structure variation within Scutellaria.

In this study, we sequenced 12 plastomes from 11 species representing four of the five genera

of Scutellarioideae. In addition, three previously released plastomes of Scutellaria (S. baicalensis,
S. insignis and S. lateriflora) were downloaded from GenBank and included for comparative

analyses. The species S. indica var. coccinea was exclude in this study because the sequence was

unavailable. With these data, we aim to: 1) characterize and compare the structure and gene

organization of plastid genomes within Scutellarioideae; 2) identify candidate molecular mark-

ers for future phylogenetic and/or population genetic studies within Scutellaria; and 3) recon-

struct the phylogeny of Scutellarioideae using complete chloroplast genome sequences. The

data presented in this study will provide abundant information for further studies about phy-

logeny, taxonomy, species identification, and population genetics of Scutellaria, and will also be

helpful for exploration, utilization, and conservation of plant genetic resources of this important

medicinal plant resources.

Materials and methods

Taxon sampling, DNA extraction, and sequencing

Plastomes of 12 samples, including eight species of Scutellaria, one species each ofHolmskiol-
dia and Tinnea, and two individuals ofWenchengia alternifolia, were newly generated for this

study. Voucher information is listed in Table 1 and all voucher specimens were deposited at

the Herbarium of Kunming Institute of Botany (KUN), Chinese Academy of Sciences. In

addition, three complete plastomes of Scutellaria from GenBank, S. baicalensis (MF521633), S.

insignis (KT750009), and S. lateriflora (KY085900), were included for comparative analyses

(Table 1).

Total genomic DNA was extracted from 150 mg fresh or silica-gel dried leaves using the

CTAB method [52]. The DNA samples were sheared into fragments of about 300 bp to con-

struct libraries according to manufacturer’s instructions (Illumina, San Diego, CA, USA).

Paired-end (PE) sequencing of 150 bp was conducted on an Illumina Hiseq-2500 platform

(Illumina Inc.) at BGI-Wuhan.

Quality control of raw sequence reads was carried out using FastQC toolkit (http://www.

bioinformatics.babraham.ac.uk/projects/fastqc; [53]) with the parameter set as Q� 25 to

acquire high-quality clean reads for downstream analyses. De novo assembling of the plas-

tomes was implemented in the GetOrganelle pipeline [54]. The filtered de Bruijn graphs file

“gfa” was visualized in Bandage v. 0.8.1 [55] and the complete chloroplast sequence paths were
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manually selected, with the minimum depth of contigs above 100 × and the minimum

length> 300 bp. Then all PE reads were mapped to the assembled plastomes using the Bowite2

[56] plugin in Geneious v.11.0.4 [57] to verify quality and correct assembly errors.

Plastome annotation was first performed using the online programs Dual Organellar

Genome Annotator (DOGMA) [58] and Ge-seq [59]. We then inspected and curated all anno-

tation manually with comparisons to the published plastome of S. baicalensis (MF521633) in

Geneious v.11.0.4 [57]. The tRNAs were verified using the online tRNAscan-SE service with

default parameters [60]. The resulting circular plastome maps were drawn using the Organel-

larGenomeDRAW tool [61].

Characterization of simple sequence repeats and repeat structure

The simple sequence repeats (SSRs) in plastomes were identified using MISA perl script

(http://pgrc.ipk-gatersleben.de/misa). Thresholds for the minimum repeated size were set as

follows:� 10 for mono-nucleotide,� 5 for di-nucleotide,� 4 for tri-nucleotide, and� 3 for

tetra-nucleotide, penta-nucleotide, and hexa-nucleotide repeats. The location and size of the

repeating sequences (forward, reverse, palindromic and complement) were visualized in

REPuter [62] with the parameter set as with a hamming distance of 3 and a minimum repeat

size of 30 bp following the procedure outlined in Jiang et al. [50].

Comparative plastome and sequence divergence analysis

Comparative analyses of 15 plastomes of Scutellarioideae were carried out using the Mauve

v.2.3.1 [63] plugin in Geneious v.11.0.4 [57]. We applied mVISTA [64] to visualize the results

and evaluate the similarity among different plastomes, using default parameters to align plas-

tomes under the LAGAN model and the annotations of S. baicalensis (MF521633) as a reference.

In order to investigate the IR contraction or expansion, we also compared the boundaries

between IR and SC regions in Geneious v.11.0.4 [57]. Two data sets (alignments of all 15 samples

from Scutellarioideae and 11 species of Scutellaria) were used for the sliding window analysis to

evaluate the intergeneric and intrageneric nucleotide sequence variabilities (Pi). Sequences were

aligned using MAFFT v.7.221 [65] and misaligned regions were manually adjusted in Geneious

v.11.0.4. [57]. DnaSP v.6 [66] was then used to calculate the Pi. The step size was set to 200 bp,

with a 600 bp window length.

Table 1. Voucher information of the newly sequenced samples in this study.

Species Location Vouchers Coordinate

Wenchengia alternifolia C.Y. Wu & S. Chow HN China, Hainan, Ding’an Xiang et al. 1318 E 110˚17050.19@, N 19˚13053.27@

W. alternifolia C.Y. Wu & S. Chow VN Vietnam, DaNang, Ba na Hill Li et al. Lbo824 E 107˚59017.91@, N 15˚59059.80@

Holmskioldia sanguinea Retz. China, Yunnan, XTBG� Zhao et al. ZF014 E 101˚15021.10@, N 21˚55038.06@

Tinnea aethiopica Kotschy ex Hook. f. Kenya, Kabarnet Li et al. 4292 E 35˚44036.30@, N 0˚29024.38@

Scutellaria amoena var. amoena C.H. Wright China, Yunnan, Kunming Zhao et al. ZF034 E 102˚43007.74@, N 25˚07019.91@

S. calcarata C.Y. Wu & H.W. Li China, Yunnan, Gongshan Li et al. NJ023 E 98˚39039.55@, N 27˚44026.32@

S. mollifolia C.Y. Wu & H.W. Li China, Sichuan, Emei Chen et al. EM201 E 103˚20001.25@, N 21˚55038.06@

S. orthocalyx Hand.-Mazz. China, Yunnan, KBG� Zhao et al. ZF035 E 102˚44038.26@, N 25˚08027.10@

S. quadrilobulata Y.Z. Sun China, Yunnan, Xinping Li et al. XP965 E 101˚56055.70@, N 23˚56051.32@

S. kingiana Prain China, Xizang, Cuona Yang et al. ZJW-3890 E 99˚56009.26@, N 28˚05018.95@

S. altaica Fisch. ex Sweet China, Xinjiang, Xinyuan Zhang et al. 17CS16318 E 84˚02023.18@, N 43˚18024.83@

S. przewalskii Juz. China, Xinjiang, Aletai Chen et al. YC_ZX027 E 88˚02042.31@, N 47˚20041.62@

�: XTBG: Xishaungbanna Tropical Botanical Garden; KBG: Kunming Botanical Garden.

https://doi.org/10.1371/journal.pone.0232602.t001
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Phylogenetic analysis based on complete plastome sequences

In addition to the previously published plastomes of Scutellaria, plastomes of 31 species from

within other subfamilies of Lamiaceae (12 Nepetoideae, 15 Lamioideae, two Ajugoideae, and

one each from Premnoideae and Tectonoideae) were also included in the analyses to evaluate

the utility of complete plastome sequences for resolving broad relationships within Scutellar-

ioideae. Based on previous studies [1], Callicarpa americana (assembly from the WGS data

under the SRR6940059) from Callicarpoideae was selected as the outgroup. GenBank acces-

sion numbers are provided in S1 Table.

Alignments were initially performed using MAFFT v.7.221 [65] with default settings, and

subsequently manually adjusted in Geneious v.11.0.4 [57]. Ambiguously aligned regions (e.g.

characters of uncertain homology among taxa and single-taxon insertions) were excluded

before phylogenetic analyses. Since the plastid genome is uniparentally inherited and does not

undergo recombination [67], we combined all sequences and constructed three matrices: (i)

combined coding regions (dataset CR); (ii) combined non-coding regions (dataset NCR); (iii)

combined whole plastome sequences (dataset CPG). In order to reduce the overrepresentation

of duplicated sequences, only the IRa region was included in all data sets. In addition, in order

to evaluate the efficacy of the complete plastome sequences for phylogeny reconstruction

within Scutellarioideae, we also created two additional datasets for phylogenetic analyses and

comparison. One was a combined dataset of hyper-variable regions (16VAR) detected in this

study, the other dataset consisted of six commonly used DNA regions (6CP) from previous

studies [9, 41, 68].

Maximum likelihood (ML) and Bayesian inference (BI) analyses were performed on the

Cyberinfrastructure for Phylogenetic Research Science (CIPRES) Gateway (http://www.phylo.

org/; [69]. ML analyses were conducted using RAxML HPC2 v.8.2.9.0 [70] with the general

time reversible (GTR) + G model and 1000 bootstrap replicates. BI analyses were carried out

using MrBayes v.3.2.6 [71]. The best substitution model for each data set was determined

using jModelTest2 [72] on the CIPRES Gateway, under the Bayesian information criterion

(BIC) [73]. Four Markov Chain Monte Carlo (MCMC) chains (one cold and three heated)

were run for 20 million generations. Convergence of the MCMC runs and estimated sample

size (ESS) were analyzed by Tracer v.1.7.0 [74]. The first 25% of trees discarded as burn-in,

and the remaining trees were summarized to construct the 50% majority-rule consensus tree.

Results

Genome assembly, features, and gene content across scutellarioideae

Illumina paired-end sequencing generated 16,687,912–27,007,418 clean reads for the 12 newly

sequenced samples, with the mean coverage ranging from 618× in Scutellaria altaica Fisch. ex

Sweet to 4510× in S. kingiana Prain. The genome size ranged from 151,675 bp in S. przewalskii
Juz. to 153,272 bp inHolmskioldia sanguinea (Table 2). All 15 plastomes of Scutellarioideae

displayed the typical quadripartite structure consisting of a pair of IR regions (25,208–25,634

bp) separated by the LSC (83,891–84,807bp) and SSC (16,750–17,569 bp) regions (Table 2).

The GC content was similar among different species of Scutellarioideae and the average GC

content was 38.3% (Table 2). In general, the GC content in the IR regions (43.4–43.6%) was

higher than in the LSC (36.3–36.5%) and SSC (32.4–32.8%) regions, and the GC content

within non-coding regions (35.0%) was lower than within coding regions (40.5%).

Intraspecific plastome polymorphisms can be evaluated among multiple individuals from

the same species. The sequence identity between the two samples ofWenchengia alternifolia
was 98.6%, with only two large indels (> 100 bp), within the intergenic psbE-petL (344 bp) and
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psbM-trnD (GUC) (226 bp) regions, detected. The plastome maps ofHolmskioldia sanguinea,

W. alternifoliaHN, Tinnea aethiopica, and Scutellaria przewalskii are presented as representa-

tives of Scutellarioideae (Fig 1), while maps of the remaining species are provided in supple-

mentary materials (S1 Fig). All newly sequenced and annotated plastomes were submitted to

the National Center for Biotechnology Information (NCBI) database under accession numbers

MN128378–MN128389 (Table 2).

When duplicated genes in IR regions were counted only once, each of the plastomes

included 114 unique genes (80 protein-coding genes, 30 tRNAs and four rRNAs; Table 2) that

Fig 1. Complete plastome maps of Holmskioldia sanguinea, Wenchengia alternifolia, Tinnea aethiopica, and Scutellaria przewalskii.

https://doi.org/10.1371/journal.pone.0232602.g001
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were arranged in the same order. A total of 18 genes exist in duplication within the IR region,

including seven protein-coding genes, seven tRNAs and four rRNAs (Table 3). Ten of the pro-

tein-coding genes and six of the tRNA genes contained one intron, and two genes (ycf3 and

clpP) contained two introns. Among those newly sequenced samples, protein-coding regions

accounted for 52.1–53.5% of the length of the whole genome, while tRNA and rRNA regions

accounted for 1.78–1.92% and 5.9–5.96%, respectively (S2 Table). The remaining regions were

non-coding sequences, including intergenic spacers, introns, and pseudogenes. All of the gene

functions and groups were shown in Table 3.

Table 3. The gene functions of the plastomes of 15 species of Scutellarioideae.

Category for

genes

Group of genes Name of genes

Photosynthesis Subunits of NADH-

dehydrogenase

ndhA�, ndhB�(2x), ndhC, ndhD, ndhE, ndhF, ndhG, ndhH, ndhI,
ndhJ, ndhK

Photosystem I psaA, psaB, psaC, psaI, psaJ, ycf3��

Photosystem II psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK, psbL,

psbM, psbN, psbT, psbZ
Cytochrome b/f complex petA, petB�, petD�, petG, petL, petN
ATP synthase atpA, atpB, atpE, atpF�, atpH, atpI
Large chain of rubisco rbcL

Self-replication Ribosomal RNA genes rrn16 (2x), rrn23 (2x), rrn4.5 (2x), rrn5 (2x)

Transfer RNA genes 30

tRNA genes

(6 contain one intron, 7 are duplicated in the IR region)

trnA-UGC�(2x), trnfM-CAU, trnI-GAU�(2x), trnM-CAU,

trnR-ACG(2x), trnS-UGA, trnC-GCA, trnG-GCC�, trnK-UUU�,
trnN-GUU(2x), trnW-CCA, trnT-GGU, trnD-GUC, trnG-UCC,

trnL-CAA(2x), trnY-GUA,

trnR-UCU, trnT-UGU, trnE-UUC, trnH-GUG, trnL-UAA�,
trnP-UGG, trnS-GCU, trnV-GAC(2x), trnF-GAA, trnI-CAU(2x),
trnL-UAG, trnQ-UUG, trnS-GGA, trnV-UAC�

Small subunit of ribosome rps2, rps3, rps4, rps7 (2x), rps8, rps11, rps12, rps14, rps15, rps16�,
rps18, rps19

Large subunit of ribosome rpl2� (2x), rpl14, rpl16�, rpl20, rpl22, rpl23 (2x), rpl32, rpl33, rpl36
RNA polymerase subunits rpoA, rpoB, rpoC1�, rpoC2

Other genes Translation initiation

factor

infA

Maturase matK
Protease clpP��

Envelope membrane

protein

cemA

Subunit of acetyl-CoA-

carboxylase

accD

cytochrome c biogenesis

protein

ccsA

Component of TIC

complex

ycf1

Genes of unknown function ycf2, ycf4, ycf15 (2x)

�gene with a single intron,

��gene with two introns, (2x) duplicated gene.

https://doi.org/10.1371/journal.pone.0232602.t003
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SSRs and repeat structure

In total, 590 SSRs were identified in the 15 plastomes of Scutellarioideae, of which 483 SSRs

(81.86%) were in the LSC region, 65 SSRs (11.02%) were in the SSC region, and 42 SSRs

(7.12%) were in the IR region (Fig 2, S3 Table). The number of SSRs (or microsatellite loci)

ranged from 31 (Scutellaria altaica) to 48 (Wenchengia alternifoliaHN) among species of Scu-

tellarioideae (Fig 2). The mononucleotide represents the highest variability with the repeat

number ranging from 15 (S. altaica) to 35 (W. alternifoliaHN), while the number of dinucleo-

tide, trinucleotide, and tetranucleotide repeats showed no significant difference among the 15

samples. The number and frequency of each repeat type within the 15 plastomes of Scutellar-

ioideae is shown in Fig 2 and S3 Table.

When the cyclic queues and reverse complements were regarded as the same SSRs, the 590

SSRs can be classified into 17 different repeat types. The mononucleotide repeat unit (A/T);

dinucleotide repeat unit (AT/AT), trinucleotide repeats unit (AAG/CTT) and tetranucleotide

repeat unit (AAAG/CTTT, AAAT/ATTT) were shared in all the 15 samples (Fig 3). The mono-

nucleotide repeat unit (G/C) was absent in Scutellaria calcarata. Within the trinucleotide

repeat, the repeat unit (AAC/GTT) was unique toWenchengia, and the repeat unit (AAT/ATT)

Fig 2. Comparisons of the simple sequence repeats (SSR) among the 15 plastomes of Scutellarioideae. (A) Number of SSRs detected in each

plastome; (B) Frequencies of identified SSRs in LSC, IR, and SSC regions; (C) Number of SSR types detected in each plastome.

https://doi.org/10.1371/journal.pone.0232602.g002
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was shared by the other samples except theWenchengia alternifoliaVN accession. The tetranu-

cleotide repeats showed the most polymorphisms, the repeat unit (AAAC/GTTT) were shared

withHolmskioldia and the two samples ofWenchengia; the repeat unit (AACC/GGTT) was

detected in nine species from Scutellaria; the repeat unit (AATC/GATT) was found inHolms-
kioldia and four Scutellaria species (S. calcarata, S. insignis, S.mollifolia and S. quadrilobulata);

the repeat unit (AATT/AATT) was not found in S. calcarata, S. lateriflora, S.mollifolia, S.

orthocalyx and S. quadrilobulata. The repeat unit (ACAG/CTGT) was shared by other species

excluding theHolmskioldia, and repeat unit (AGAT/ATCT) didn’t present in S. altaica, S.

amoena var. amoena, S. baicalensis, S. insignis and S. przewalskii. The pentanucleotide repeats

Fig 3. Distribution of the 17 types of SSR repeat units among 15 plastomes of Scutellarioideae and their relationships. The horizontal axis

indicates the species name and the Y-scale indicates the type of repeat unit.

https://doi.org/10.1371/journal.pone.0232602.g003
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were detected in both individuals ofW. alternifolia and in Tinnea aethiopica, while the hexanu-

cleotide repeats were only found in S. baicalensis. The distribution of the 17 repeat types

among the 15 plastomes and their relationships is shown in Fig 3.

In total, 489 long repeats including forward, reverse, and palindromic were detected in the

15 plastomes (Fig 4). The most abundant type were the palindromic repeats, which accounted

for 54.26% of the total repeats, followed by forward repeats (44.91%). The reverse repeats were

rare and accounted for only 0.83% of the total repeats (Fig 4). Most repeats were located in the

non-coding regions (77.96%; Fig 4). The length of the repeats ranged from 30 bp to 136 bp, and

most of the repeat sequences were 30 bp, 32 bp, 39 bp, 41 bp, and 60 bp long (Fig 4, S4 Table).

Comparative analysis of plastomes of Scutellarioideae

The Mauve results showed that the organization of the plastomes in Scutellarioideae is

highly conserved; neither translocations nor inversions were detected. However, differences

in the size of the plastomes were detected. For example, the plastome of Scutellaria przewals-
kii was the shortest (151,675 bp), while that of Holmskioldia sanguinea (153,272 bp) was lon-

ger than the other species (S2 Fig). Results from the analyses by mVISTA showed that the

two IR regions were less divergent than the LSC and SSC regions. Moreover, the non-coding

regions and the intergenic spacers exhibited a higher divergence than the coding regions

(Fig 5). In all species, the IRa/LSC junctions were located within the rps19 gene, with a 41–

74 bp protrusion of the rps19 gene into the IRa region that resulted in a part of the rps19
gene (ψrps19) present in the IRb region. In Wenchengia alternifolia and Tinnea aethiopica,

the ndhF gene was completely located in the SSC region while in H. sanguinea and all species

of Scutellaria a small fragment of the ndhF gene extended into the IRa region with (29 bp in

H. sanguinea and 25–45 bp among species of Scutellaria). The IRb/SSC boundary was within

the ycf1 gene, with between 771 and 1,184 bp in the IRb region. An equal length ycf1 pseudo-

gene (ψycf1) was detected in the IRa region. The IRb/LSC boundary was located between the

pseudogene rps19 (ψrps19) and trnH-GUG across the 15 plastomes. The distance between

trnH-GUG and the IRb/LSC boundary for all species varied from 0 to 3 bp (Fig 6).

Sequence divergence and nucleotide diversity

The average nucleotide variability (Pi) of plastomes was estimated to be 0.004 in Scutellaria
(Fig 7). The SSC region showed the highest average nucleotide diversity (Pi = 0.0148), followed

by the LSC region (Pi = 0.0087) and the IR region (Pi = 0.0019). Among the 11 species of Scu-
tellaria, ten hyper-variable regions were identified, including two genes (ndhF, ycf1) and eight

intergenic spacers (psbA-trnH, trnK-rps16 intron, petN-psbM, rbcL-accD, petA-psbJ, petB-petD
intron, rpl32-trnL, and rps15-ycf1), with the variation exceeding 2.0%.

As for the 15 samples of Scutellarioideae, the average nucleotide variability (Pi) of the whole

plastome was 0.014, while that of the LSC, SSC, and IR regions were 0.0178, 0.028, and 0.003,

respectively. In the LSC region, we found 11 hyper-variable loci with Pi values> 0.03 (psbA-
trnH, trnK-rps16 intron, atpH-atpI, rpoB-trnC, petN-psbM, ycf3-trnS, trnT-trnF, rbcL-accD,

ycf4-cemA, petA-psbJ, and petB-petD intron), while in the SSC region, only five hyper-variable

loci with Pi values > 0.03 (ndhF, rpl32-trnL, ccsA-ndhD, rps15-ycf1, and ycf1) were detected

(Fig 7).

Characteristics of the datasets and phylogenetic relationships within

Scutellarioideae

After the exclusion of ambiguously aligned sites, the total length of the complete aligned data-

set (CPG) was 144,120 bp, of which 36,934 bp were variable (25.63%). The length of the CR
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Fig 4. Long repeat sequences in the complete plastomes of 15 taxa of Scutellarioideae. (A) Number of repeat types detected in each plastome; (B)

Frequency of each repeat type; (C) Percentages of repeat type loci in the non-coding and coding regions; (D) Frequencies of repeats longer than 30 bp.

https://doi.org/10.1371/journal.pone.0232602.g004
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dataset was 70,046 bp, of which 14,288 bp (20.4%) were variable. The noncoding dataset

(NCR) was 72,624 bp, of which 23,032 bp (31.71%) were variable. The hyper-variable dataset

(16VAR) was 24,090 bp, of which 9,953 bp (39.8%) were variable. The six commonly used

cpDNA regions (6CP) was 8,346 bp, of which 2,820 bp (33.6%) were variable. Data characteris-

tics with models selected for each dataset used for Bayesian phylogenetic analyses are list in

Table 4. Topologies obtained from both ML and BI analyses for all three datasets were identi-

cal, thus the ML topology resulting from the analysis of the CPG dataset (Fig 8) is presented

here for subsequent discussion of phylogenetic relationships.

In all our analyses, the Scutellarioideae was supported as monophyletic (ML/BS 100%, BI/

PP 1.00) [all values follow this order hereafter] (Fig 8, S3–S8 Figs). The two samples of the

monotypic genusWenchengia formed a well-supported clade (100%, 1.00) sister to remaining

genera of Scutellarioideae. All species of Scutellaria were recovered in a strongly supported

clade (100%, 1.00), in which two subclades were recognized. Subclade I (100%, 1.00) com-

prised five species from three sections: sect. Lupulinaria (S. altaica and S. przewalskii, sect. Scu-
tellaria (S. baicalensis and S. amoena var. amoena), and sect. Anaspis (S. kingiana). Subclade II

(100%, 1.00) consist of six species from sect. Scutellaria.

Fig 5. Sequence alignment of the whole plastomes of 15 taxa of Scutellarioideae using the LAGAN alignment algorithm in mVISTA, with

Scutellaria baicalensis as the reference. The horizontal axis indicates the coordinates within the plastomes. The Y-scale indicates the percentage of

identity, ranging from 50% to 100%. Genome regions are color coded as protein coding, trnA gene, rrnA gene, intron, mRNA, and conserved non-

coding sequences.

https://doi.org/10.1371/journal.pone.0232602.g005
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Discussion

General characteristics of the plastomes of Scutellarioideae

Prior to this study, three plastomes of Scutellaria were available on GenBank, but two of them

were without any related publication or analysis; only S. baicalensis was formally published

[50]. The species S. indica var. coccinea has since been published, but the sequences were not

Fig 6. Comparisons of the LSC, IR, and SSC borders of plastomes of Scutellaria and related genera.

https://doi.org/10.1371/journal.pone.0232602.g006
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yet available [51]. Here, we report on 12 complete plastomes representing 11 species from four

genera of Scutellarioideae for the first time. In total, 15 plastomes were included for compara-

tive analysis.

The length of plastomes of the 15 taxa from Scutellarioideae ranged from 151,675 bp to

153,272 bp, with the variation mainly caused by large indels (insertions/deletions) in the non-

coding regions. The plastomes of Scutellarioideae are highly conserved in structure, gene

Fig 7. Sliding window analysis of the whole chloroplast genomes. (A) the 11 species of Scutellaria; (B) the 15 samples of Scutellarioideae.

https://doi.org/10.1371/journal.pone.0232602.g007

Table 4. The number of parsimony-informative sites and the best fit model for each data set.

Data

set�
Aligned length

[bp]

GC content

(%)

No. of variable

sites [bp]

No. of parsimony-informative

sites [bp]

Best fit model

(BIC)

CR 70,046 38.20 14,288 (20.4%) 8,695 (12.41%) GTR+I+Γ

NCR 72,624 33.60 23,032 (31.71%) 13,208 (18.19%) GTR+I+Γ

CPG 144,120 37.10 36,934 (25.63%) 21,763 (15.10%) GTR+I+Γ

16VAR 24,090 31.60 9,953 (39.8%) 5,865 (24.30%) GTR+I+Γ

6CP 8,346 35.70 2,820 (33.6%) 1,812 (21.71%) GTR+I+Γ

�: CPG, complete plastome sequences; CR, coding regions; NCR, non-coding regions; 16VAR: 16 hyper-variable

regions; 6CP: six commonly cpDNA regions.

https://doi.org/10.1371/journal.pone.0232602.t004
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order, and content. All the 15 plastomes encode 114 unique genes in the same gene order and

display the typical quadripartite structure, including a pair of IR regions separated by the LSC

and SSC regions (Fig 1 and S1 Fig). Lee and Kim [51] have recently identified 115 genes from

the plastome of S. indica var. coccinea. In comparison with the present study, one extra tRNA

Fig 8. The best-score tree from maximum likelihood analysis of Scutellarioideae based on the complete plastome sequences.

Support values BS� 50% or PP� 0.90 are displayed on the branches follow the order MLBS/BIPP (“-” indicates a support value

BS< 50%). Scale bar denotes the expected number of substitutions per site in maximum likelihood analysis.

https://doi.org/10.1371/journal.pone.0232602.g008
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gene was identified. Because sequences and annotation information of this plastome have not

been released, we could not include it for comparative analysis. The average GC content of

Scutellarioideae plastomes in our study was38.3%, very similar to other species in Lamiaceae

[50, 51, 75–77].

The complete aligned sequences indicate that the 15 plastomes of Scutellarioideae are con-

served, with the sequence identity among genera higher than 95% and no major structural

rearrangements or gene losses discovered. The location of the IR boundaries, especially as this

pertains to IR contraction and expansion, can be exploited for phylogenetic purposes as small

expansions or contractions tend to have similar endpoints in closely related species [78]. We

find that the variation in the IR boundaries in Scutellarioideae, however, is not as extensive as

reported in previous studies [79].

Chen et al. [79] reported that the LSC/IR regions within Lamiales can be divided into four

different types: type I, with the LSC/IR regions being located in the intergenic rpl2-rps19; type

II, with the rps19 pseudogene at the LSC/IR border; type III, with the ycf2 pseudogene at the

IR/LSC border; and type IV, with the IR extending to include the trnH gene and a truncated

psbA pseudogene at the IR/LSC border. Subsequently, Gao et al. [48] detected a new type

where the IR/LSC border was found in the intergenic rpl2-rps19. In our study, the LSC/IR

junction of all 15 species of Scutellarioideae belongs to type II, and the boundary of the SSC

and IRa regions inWenchengia alternifolia and Tinnea aethiopica is aberrant, with an expan-

sion that involved the complete ndhF gene being included in the SSC region (Fig 6).

SSRs are widely used in molecular identification, genetic diversity, and population genetics

studies [80]. Studies have shown that A/T mononucleotides are often very rich in SSRs [50, 76,

77]. Our analyses also show that SSRs in Scutellarioideae are generally composed of short poly-

adenine (poly A) or polythymine (poly T) repeats and rarely contain tandem guanine (G) and/

or cytosine (C). In this study, a total of 455 SSRs are made up of A or T bases, accounting for

approximately 77% of the total SSRs. In addition, most mononucleotide repeats were detected

in the non-coding regions (S3 Table). A potential reason for the higher frequencies of the AT

repeats is the strand separation for ATs is relatively easier than GCs during plastome replica-

tion, which increases slipped-strand mispairing. There is a tendency for SSRs to occur in the

non-coding region of the chloroplast genome of higher plants [81]. The molecular processes

that give rise to repeats are more likely to be preserved in non-coding regions because there is

strong selection against them in coding regions. In addition, because the non-coding regions

are so AT rich, there is an expectation that repeats will be biased towards AT content, espe-

cially in the single copy regions. In general, the structure and organization of plastomes is con-

served and SSRs primers are transferable across species or genera. Thus, the new SSRs detected

in this study are potential resources for estimating the genetic diversity of some important

medicinal species of Scutellaria, and for phylogenetic study among species and genera.

It has been demonstrated that short dispersed repeats are a major factor promoting plas-

tome rearrangements in land plants [82], but within the unrearranged plastid sequence the

function of these repeats remains unknown [76]. Our study reveals three types of repeats (for-

ward, reverse, and palindromic) in the 15 plastomes of Scutellarioideae. As has been reported

in other species of Lamiales [79, 83], most of these repeats are located in the intergenic spacers

and introns, but several also occur in the coding regions. In total, 22.04% of the repeats occur

in four protein coding regions (psaB, psaA, ycf1, and ycf2; S4 Table). The genes ycf1 and ycf2
have been demonstrated to be associated with repeat events [84]. In our study, the richest

repeats are found in the ycf2 gene, similar to other studies [48, 79, 83]. However, only one pal-

indromic repeat, in the ycf1 gene ofWenchengia alternifolia VN was detected. The absence of

the dispersed repeats from the ycf1 gene in this study is partially because the plastomes from

closely related species are highly similar and lack of variation.
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Potential DNA barcodes for Scutellaria
Genomic comparative analyses of complete plastome sequences have become necessary for

developing variable DNA barcodes, especially for finding mutation “hotspot” regions for novel

DNA barcodes in addition to the set of widely used DNA markers (matK, rbcL, psbA-trnH,

and nrITS [85–87]).

Though Scutellaria is the second largest genus within Lamiaceae and has medicinally

important [88], DNA barcoding research within the genus is wanting. Guo et al. [68]

attempted to distinguish the most widely used medicinal species, S. baicalensis, from its conge-

ners, S. amoena, S. rehderianaDiels, and S. viscidula Bunge. However, this study had sparse

sampling and only three DNA regions were used (matK, rbcL, and psbA-trnH). In previous

studies, the cpDNA markers rps16 (as part of the trnK-rps16 intron), ndhF, rps15-ycf1, and

ycf1 were used to resolve the systematic position of some genera within Lamiaceae [89, 90],

and fragments of psbA-trnH, rpl32-trnL, rps15-ycf1, and ycf1 were applied to infer the intra-

generic relationships [91, 92]. Some fragments, such as petN-psbM and petA-psbJ have been

commonly used in seed plant phylogenetic studies [93, 94], but never have been used to resolve

phylogenetic relationships in Lamiaceae. The intergenic spacer rbcL-accD and petB-petD
intron have been identified as highly variable regions in other plants [95, 96]. The 10 highly

variable regions (psbA-trnH, trnK-rps16 intron, petN-psbM, rbcL-accD, petA-psbJ, petB-petD
intron, ndhF, rpl32-trnL, rps15-ycf1, and ycf1; Fig 7) identified here could be used as potential

barcodes for species identification and phylogenetic study of Scutellaria. Although further

research is needed to investigate the reliability and effectiveness of using these regions and/or

complete plastome sequences for DNA barcodes in Scutellaria, the results obtained here could

be a reference for future studies on global genetic diversity assessment, phylogeny, and popula-

tion genetics.

Phylogenetic relationships within Scutellarioideae

Our study is the first to use complete plastome sequences to reconstruct the phylogeny of Scu-

tellarioideae. The phylogenetic tree obtained here is largely consistent with previous studies

based on the plastid DNA markers [1, 9, 97, 98]. However, some phylogenetic relationships

within Lamiaceae differ from recent nuclear trees [99]. Such incongruence between plastid

and nuclear phylogenies emphasizes a need for phylogenetic inferences based on both plas-

tome sequences and nuclear data, which can together both robustly resolve relationships and

point to potential ancient hybridization events.

The monophyly of Scutellarioideae is confirmed based on the analyses of all datasets (Fig 8,

S3–S8 Figs), and the major splits determined in this study for Scutellarioideae agree with previ-

ous studies [1, 9]. This study confirmed that the monotypic genusWenchengia is sister to the

remainder of Scutellarioideae (Fig 8). This relationship has been reported in a previous study

using two DNA markers (i.e. rbcL and ndhF; [9]). The accession ofW. alternifolia from Viet-

nam was recovered in a clade with an accession ofW. alternifolia from Hainan, China in our

analyses. The genus has long been thought to be endemic to Hainan Island in China and was

only recently reported from Vietnam. As suggested by Paton et al. [16], the distribution of

Wenchengia in Vietnam indicates that the Hainan populations are probably relicts of a once

more widely distributed W. alternifolia. The discovery of living plants in Vietnam offers the

opportunity for population genetic and biogeographic studies ofWenchengia in future.

The African genus Tinnea is sister to Scutellaria, as reported by Wagstaff et al. [8] and Li

et al. [1, 9]. Although Renschia has never been included in a molecular analysis, morphological

characters, e.g. ciliate anthers, well-developed nectar disk, bilabiate calyx with entire, rounded

lips, and the closing of the calyx during fruit maturation [6]), suggest a close relationship
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among Renschia, Tinnea, and Scutellaria. Renschia is probably most closely related to Tinnea
based on distribution (both genera are distributed in Africa; Renschia is endemic to North

Somalia and Tinnea to tropical Africa) and morphology. Vatke [100] established Renschia
based on Tinnea heterotypica S. Moore, and distinguished Renschia from Tinnea by its pro-

truding stamens, the short and basal areoles of nutlets, and the indistinct nervation of calyces.

A total of 11 species of Scutellaria were sampled from both subgenera sensu Paton [5]. The

monophyly of Scutellaria is supported here as in other studies [1, 9, 18, 43], but the infragene-

ric classification of Scutellaria as proposed by Paton [5] is not supported by the present study

(Fig 8). As shown in Fig 8, in our sampling Scutellaria is comprised of two subclades: Subclade

I included five taxa from subg. Scutellaria and two taxa from subg. Apeltanthus; Subclade II

consists of six species from subg. Scutellaria sect. Scutellaria. Species from sect. Scutellaria are

recovered in both subclades, thus the monophyly of subgenus Scutellaria and sect. Scutellaria
is not supported by the plastome sequences in this study or nuclear ribosomal sequences in

previous studies [18, 43]. With only one species of sect. Anaspis sampled here, it is premature

to assess its monophyly. Though a recent study by Safikhani et al. [18] revealed that sect. Ana-
spis is a well-supported group, only four representatives of the section from Iran were included

in their study. Subgenus Apeltanthus is well supported in all studies [18, 43]. The two sections

of subg. Apeltanthus, sect. Apeltanthus and sect. Lupulinaria, are shown to be monophyletic in

our study as in Zhao et al. [43]. However, based on a broader sampling, Safikhani et al. [18]

revealed that neither of the two sections is supported. Further phylogenetic study of subg.

Apeltanthus is needed based on a more comprehensive sampling and more DNA markers.

Despite the limited sampling, our study, based on complete plastomes, presents a more

resolved and better supported phylogeny of Scutellarioideae than previous studies [1, 9, 18, 43,

98]. All the phylogenetic trees inferred from the complete plastome sequences have higher res-

olution (Fig 8) than trees based on the six commonly used chloroplast DNA regions (matK,

ndhF, rbcL, rpL32-trnL, rps16-intron, and trnL-F; S7 Fig) in previous studies [9, 41, 68] and 16

hyper-variable chloroplast regions (S8 Fig), demonstrating that complete plastome sequences

can markedly improve phylogenetic resolution, at least within Scutellarioideae and Lamiaceae.
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