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Abstract: A systematic investigation on the cellular uptake, intracellular dissolution, and in vitro
biological effects of ultra-small (<10 nm) iron hydroxide adipate/tartrate coated nanoparticles (FeAT-
NPs) was carried out in intestinal Caco-2, hepatic HepG2 and ovarian A2780 cells, and the nucleotide
excision repair (NER) deficient GM04312 fibroblasts. Quantitative evaluation of the nanoparticles
uptake, as well as their transformation within the cell cytosol, was performed by inductively coupled
plasma mass spectrometry (ICP-MS), alone or in combination with high performance liquid chro-
matography (HPLC). The obtained results revealed that FeAT-NPs are effectively taken up in a cell
type-dependent manner with a minimum dissolution after 3 h. These results correlated with no effects
on cell proliferation and minor effects on cell viability and reactive oxygen species (ROS) production
for all the cell lines under study. Moreover, the comet assay results revealed significant DNA damage
only in GM04312 cells. In vivo genotoxicity was further studied in larvae from Drosophila melanogaster,
using the eye-SMART test. The obtained results showed that FeAT-NPs were genotoxic only with
the two highest tested concentrations (2 and 5 mmol·L−1 of Fe) in surface treatments. These data
altogether show that these nanoparticles represent a safe alternative for anemia management, with
high uptake level and controlled iron release.

Keywords: ultra-small iron hydroxide adipate/tartrate coated nanoparticles; HPLC-ICP-MS;
genotoxicity; cytotoxicity; Caco-2 cells; HepG2 cells; A2780 cells; GM04312 cells; D. melanogaster

1. Introduction

The use of iron oxide nanoparticles (IONPs) as potential therapeutic agents in the man-
agement of iron-deficiency severe anemia has become an area of increasing importance over
the years [1]. Commercially available nano-iron formulations are, in general, spheroidal
nanoparticles with an iron oxy-hydroxide core and a carbohydrate shell, differing in size
and carbohydrate structure from the core, that can be administered intravenously [2].
They have the ability to quickly fill up the iron deposits in the human body, which is of
great importance for patients with critical iron deficiency, i.e., caused by great blood loss,
chronic kidney disease or chemotherapy. Trying to overcome the disadvantage associated
to the intravenous administration and the adverse event profiles of these formulations,
alternative nano-iron agents have been designed and tested [3]. In this regard, some of
the most interesting approaches include nanoparticles with iron cores that try to mimic
the ferric oxy-hydroxide core of the protein ferritin and coated by biologically compatible
ligands [4]. Among them, the ultrasmall (<10 nm) nanoparticles of iron hydroxide adipate
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tartrate (FeAT-NPs) have been proposed in 2014 as an interesting alternative for oral iron
supplementation with a very specific mode of action [5,6]. This nano-compound shows
minimum dissolution at the pH of the gastrointestinal tract and reaches the duodenal
enterocytes in the almost intact nanoparticulated form. Once there, it is efficiently taken up
by the enterocytes as whole nanoparticles by endocytosis, minimizing tissue inflammation,
followed by lysosomal dissolution (in a similar fashion to ferritin) to join the intracellular
iron pool [7].

Initial experiments to evaluate the extent of intracellular release of iron ions from these
ultrasmall FeAT-NPs were conducted in our research group by developing a specific chro-
matographic separation strategy that permitted to distinguish among the nanoparticulated
as well as the iron ionic forms simultaneously [8]. In this work, the aim is to apply the
developed strategy to explore the cellular uptake as well as the intracellular dissolution of
these FeAT-NPs on a set of different cell models of different origin. Since iron is a potent
redox agent, the release of this element from the nanoparticles might involve significant
changes on the intracellular redox status. An excess of intracellular soluble iron is toxic, as
it generates reactive oxygen species (ROS) by interconverting between ferrous (Fe2+) and
ferric (Fe3+) forms via the Fenton and Haber–Weiss reactions [9]. This adverse effect of
soluble iron is a major difficulty in the treatment of anemia. At high levels, ROS may cause
oxidative damage to cellular components such as proteins, lipids and DNA [10], which can
then trigger cellular cytotoxic and genotoxic responses that are associated with disease [11].

With respect to the induction of DNA damage, previous studies observe genotoxicity
with the comet assay, in cultured cells treated with different types of IONPs. For example,
silica-coated magnetite (Fe3O4) nanoparticles were genotoxic in human SHSY5Y neuronal
cells [12]; DNA damage was also observed in lymphocytes treated with uncoated Fe2O3
nanoparticles [13]; and oleic acid-coated magnetite nanoparticles showed a dose-dependent
genotoxic activity in astrocytes [14]. However, there are also studies revealing the absence
of genotoxicity when using uncoated Fe2O3 and Fe3O4 nanoparticles in lung epithelial A549
cells [15], or uncoated magnetite nanoparticles in human lymphocytes and lymphoblastoid
TK6 cells [16]. Similarly, thiol-coating Fe3O4 nanoparticles exposure of human lymphocytes
and breast cancer MCF-7 cells caused no increase in DNA damage [17]. Thus, the coating of
the particles seems to be a key aspect regarding the associated intracellular solubilization
and induced genotoxicity [16].

Therefore, the biological aspects concerning the potential cellular damage caused by
the exposure of the different cell lines to FeAT-NPs ought to be, and were, evaluated in this
work by addressing cell viability, cell proliferation, ROS formation and induced oxidative
DNA damage, and these parameters were correlated with the cellular nanoparticle uptake
levels and their intracellular release of iron ions. The use of several human cell lines,
with different origins and characteristics, including intestinal, hepatic and ovarian cells
(Caco-2, HepG2 and A2780, respectively), and GM04312 cells, known to be deficient in the
nucleotide excision repair (NER) system [18], that contributes to the repair of oxidative DNA
damage [19,20], would provide a wide background of the evolution of these nanoparticles
under different environments, as well as their potential for DNA damage induction [21].

In addition, the effects of these FeAT-NPs were also evaluated in vivo, using Drosophila
melanogaster as a model organism, recommended for testing the genotoxic potential of
nanomaterials [22], and the eye-SMART assay to check the induction of somatic mutation
and mitotic recombination [23–25].

2. Results and Discussion
2.1. Cellular Uptake and Intracellular Dissolution of Ultra-Small FeAT-NPs

These nanoparticles, described as stable in different conditions and capable of forming
small agglomerates, can be taken up by cells [8]. To evaluate their cellular uptake in
different cell models, the total Fe concentration was measured by inductively coupled
plasma mass spectrometry (ICP-MS) in cell lysates from the different tested cells exposed to
FeAT-NPs, at a concentration of 2 mmol·L−1 of Fe, for 3 h, and also from the respective non-
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treated control cells, as described before [8]. The measurement conditions are presented
in Table 1. The obtained results are plotted in Figure 1A, expressed as fg Fe per cell. We
observed that the intracellular Fe level increased, in all the cell lines, upon exposure to the
nanoparticles, which revealed that the FeAT-NPs were effectively taken up by the cells and
not merely externally attached to their membranes, as membrane debris from the lysed cells
were carefully removed before the measurements. However, the Fe concentration and, thus,
the number of nanoparticles taken by cells were closely related to the cell type, as before [8].
As observed, non-treated control cells show similar iron levels, regardless of the cell type
(concentrations ranged from 6.5 ± 0.9 fg Fe/cell in Caco-2 cells to 15.5 ± 0.5 fg Fe/cell in
GM04312 cells). However, when cells were exposed to FeAT-NPs, the highest increase in
iron levels was found in the A2780 cell line, with a final iron concentration of 88.9 ± 6 fg/cell,
which is a nine-fold increase over the control. For the other cell lines, the Fe level in treated
cells increased around four-fold over the respective controls. Thus, A2780 cells (from
ovarian cancer) showed the highest capability to internalize nanoparticles, whereas Caco-2
cells (enterocyte-like cell model) exhibited the significantly lowest FeAT-NPs incorporation.

Table 1. Instrumental conditions for Fe measurement in iCAP-TQ-ICP-MS.

Parameter Value

RF Power [W] 1550
Coolant gas flow [L min−1] 14.0

Auxiliary gas flow [L min−1] 0.8
Carrier gas flow [L min−1] 0.8

Measurement mode Single Quadrupole
Cell gas flow [mL min−1] 0.31(H2)

Q1 bias [V] 0
Qcell bias [V] −5.94

Q3 bias [V] −12.0
Q1 masses [u] Open
Q3 masses [u] 56 (56Fe+)

The differences observed in the uptake of these nanoparticles among cell lines might
be attributed to the fact that they enter the cells through endocytosis [26,27]. However,
there are different endocytic pathways that are cell-specific and, subsequently, determine
the trafficking and intracellular fate of nanoparticles [28,29]. Therefore, the endocytosis
efficiency of nanoparticles in mammalian cells is dependent on their physicochemical
properties, such as size, shape, and surface chemistry, as well as on the cell type [30,31].
However, in this case, no effect of cell size in the FeAT-NPs uptake was detected, since the
largest cells, GM04312, showed a lower uptake level than the smallest ones, A2780.

The next step was to investigate, in vitro first, the release of iron ions from the FeAT-
NPs within the cell cytosol. For this aim, nanoparticles were incubated in different media,
with two different pH values (physiological, pH = 7, and that characteristic of endosomes,
pH = 5). In addition, different cytosolic compounds that might influence Fe release, like
glutathione (GSH) and ascorbic acid (ASC), were also tested. After 12 h and 24 h of
incubation, the different solutions were ultrafiltered and the mass balance of the retained
(thus nanoparticulated) and permeated (thus soluble) fractions was obtained. The observed
results are presented in Figure 1B. It can be seen that Fe release occurs more evidently after
24 h and that the presence of ASC and the pH 5 yielded the highest Fe releases, at both
12 and 24 h. In any case, even after 24 h under these conditions, the total Fe released was
always below 5% in the individual treatments. It is expected that these values would be
slightly higher within the cell cytosol, where most of these conditions occur simultaneously.
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Figure 1. Evaluation of cellular uptake and dissolution of FeAT-NPs by ICP-MS methodologies.
(A) Uptake of FeAT-NPs in different cell models by monitoring intracellular iron in cell lysates by ICP-
MS. Dark grey, cells exposed to 2 mmol·L−1 of Fe as FeAT-NPs, for 3 h, and pale grey, non-exposed
control cells. (B) Iron released from nanoparticles in vitro, incubating them with cell culture medium
for 12 and 24 h, under different conditions: with glutathione (GSH), ascorbic acid (AsA), at pH 5 and
7. (C) HPLC-ICP-MS chromatogram obtained by monitoring the 56Fe signal for synthetic FeAT-NPs.
(D) HPLC-ICP-MS chromatograms obtained by monitoring the 56Fe signal for A2780 cells. Dark grey,
cells exposed to 2 mmol·L−1 of Fe as FeAT-NPs, for 3 h, and pale grey, non-exposed control cells.
(E) The same as in (D) but for GM04312 cells.

To evaluate the possible biotransformation of the FeAT-NPs within the cell cytosol,
a modified reversed-phase high performance liquid chromatography (HPLC) separation,
using a mobile phase containing sodium dodecyl sulfate (SDS; 10 mM) was used in com-
bination with ICP-MS detection (see Table 1). Previous studies in our research group
demonstrated that this speciation/fractionation strategy, initially applied to the separa-
tion of Au and Ag nanoparticles [32,33], could be successfully used to separate synthetic
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FeAT-NPs from aggregates and free iron ions extracted from the cytosol of cells exposed to
the nanoparticles [8]. A mixture of gold nanoparticle standards of different sizes (10 and
30 nm), together with ionic gold, were used for the column calibration. Then, the synthe-
sized nanoparticles were injected into the system and the corresponding chromatogram is
presented in Figure 1C, where the elution of the nanoparticles can be observed in a single
broad peak at about 5.6 min.

This retention time, according to the calibration of the column, might correspond to a size
below 10 nm, in the range of 4–6 nm, which is also in agreement with previous results [8].

Figure 1D,E show, as representative examples, the chromatograms obtained for two of
the cell lines investigated, the A2780 (Figure 1D) and the GM04312 (Figure 1E), showing
results of nanoparticle- treated and untreated cells. Three different fractions can be observed
in them at about 4.8, 5.6 and 6.3 min, respectively, which are also present in the control
cells (free of nanoparticles). Similar chromatographic profiles were obtained for Caco-2 and
HepG2 cells (data not shown).

The comparison between the chromatograms of Figure 1D,E and that of Figure 1C
indicated that the peak at 5.6 min could correspond to the elution of the FeAT-NPs that
remained in the native condition (monodispersed) after incorporation into the cell cytosol.
Moreover, this peak increased significantly upon exposure of the cells to the FeAT-NPs.
In agreement with the total Fe concentration results, this peak was significantly higher in
A2780 than in GM04312 cells. On the other hand, the fraction eluting at about 6.3 min,
according to the column calibration and previous studies [8], could be associated to the
elution of different ionic iron species present in the cell cytosol. This peak also increased
upon exposure to the FeAT-NPs and could be ascribed to the release of ionic iron from
the nanoparticles within the cell cytosol. The increase, in percentage, of this fraction with
respect to the control (the intracellular iron pool contains some of these species even in
the control sample) in A2780 cells was of approximately 7.5%. Similarly, in GM04312 cells,
the increase in the peak area was about 3.5%. Considering that the chromatograms do not
show base-line separation of the different peaks due to the challenging sample, the results
revealed a minimum biotransformation of the nanoparticles within the cell cytosol that
might be correlated with the previously described low solubilization rate of the particles
obtained in in vitro experiments (see Figure 1B).

Finally, not remarkable changes seem to be observed in the Fe-peak at about 4.8 min
that has been ascribed to ferritin (accumulating nanoparticulated iron) but might also be
related to nanoparticles-aggregates [8] that seem to be minor in this case.

2.2. Biological Effects
2.2.1. Cell Viability and Clonogenic Activity

To study the biological effects of the FeAT-NPs, cell viability was determined for all
analyzed cell lines using the resazurin assay, after 3 h exposure to them at concentrations
of 0, 0.5, 1.0, 1.5 and 2 mmol·L−1 of Fe. The results, displayed in Figure 2A, show that
the increase in nanoparticles dosage resulted in a slight decrease in cell viability, in all cell
lines, in a dose-dependent manner, with statistically significant negative regression slopes
(b = −7.9, p = 0.015 for A2780; b = −7.4, p = 0.001 for Caco−2; b = −8.4, p < 0.0001 for HepG2;
b = −7.5, p = 0.001 for GM04312). Cell survival as high as 80% was observed with the
highest tested concentration. Therefore, despite differences in FeAT-NPs uptake between
individual cell types, no significant differences in viability reduction were detected among
cell lines. Moreover, the decreases in viability, although significant, were not biologically
relevant for the tested FeAT-NPs concentrations.
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Figure 2. Biological effects of FeAT-NPs in vitro. (A) Cell viability in Caco-2, HepG2, GM04312 and
A2780 cells after 3 h exposure to FeAT-NPs in concentrations ranging from 0 to 2 mmol·L−1 of Fe.
(B) Clonogenic activity results of Caco-2, HepG2, GM04312 and A2780 cells untreated and treated
with the nanoparticles at a concentration of 2 mmol·L−1 of Fe. (C) ROS induction in cells treated for
3 h, at concentrations ranging from 0 to 2 mmol·L−1 of Fe: data are expressed as the percentage of
DCF fluorescence increase over untreated control cells (as 100%) in Caco-2, HepG2, GM04312 and
A2780 cells. TBHP was used as a positive control in these experiments (see text). (D) DNA damage,
expressed as % Tail DNA, in A2780 and HepG2 cells after 3 h exposure to FeAT-NPs in concentrations
ranging from 0 to 2 mmol·L−1 of Fe. (E) DNA damage, as % Tail DNA, in Caco-2 cells after 3 and 24 h
exposure to concentrations from 0 to 2 mmol·L−1 of Fe in nanoparticles. (F) The same as in (E), but
for GM04312 cells. * p < 0.05; ** p < 0.01; *** p < 0.001.
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The effect of these nanoparticles on cell proliferation was evaluated with the colony
formation assay [34], whose results are presented in Figure 2B. Although for all cell lines,
except HepG2, the clonogenic efficiency decreased after exposure to FeAT-NPs, none of
the differences between treated and untreated cells were statistically significant, for any
cell line.

These results revealed that these nanoparticles were not toxic at the tested Fe concen-
trations, and exerted no significant influence on cell proliferation, in agreement with our
previous results in Caco-2 and HT-29 cells [35].

2.2.2. ROS Induction

The ability of FeAT-NPs to induce the production of intracellular ROS in the four
investigated cell lines was assessed using, as described in Materials and Methods,
a 2,7-dichlorodihydrofluorescein-diacetate (DCFH-DA) fluorescent probe, and tert-Butyl
hydroperoxide (TBHP) as positive control. As presented in Figure 2C, exposure to these
nanoparticles at various Fe concentrations (0.5 to 2 mmol·L−1) for 3 h did not induce
significant ROS formation in Caco-2, HepG2 and GM04312 cells, when compared to their re-
spective untreated (control) cells, although in Caco-2 cells TBHP, at 200 µmol·L−1, induced
significant ROS levels (2.259 ± 0.112 fold-times over the negative control). Differences
between these data and those found before with these cells [35] may be ascribed to the ex-
posure time (3 versus 48 h). HepG2 and GM04312 cells seemed to be more resistant to ROS
formation as slight ROS increases were induced by TBPH (1.258 ± 0.07 fold-times, induced
with 400 µmol·L−1 in HepG2, and 1.120 ± 0.063 fold-times, induced with 200 µmol·L−1 in
GM04312 cells).

In A2780 cells, a statistically significant increase in the level of intracellular ROS was
detected with increasing concentrations of FeAT-NPs, up to 1 mmol·L−1 of Fe, with a linear
regression analysis (y = 0.73x + 0.99, p = 0.0002). These results would agree with the higher
intracellular iron content detected in A2780 cells compared to the other cell types (see
Figure 1A). However, since the induced ROS levels did not double those of the untreated
control cells, and they did not increase further at 2 mmol·L−1 of Fe, such variation might
be punctual. In fact, this ROS increase induced in A2780 cells by the FeAT-NPs was lower
than that induced by the positive control TBHP (2.247 ± 0.237), at 50 µmol·L−1, which was
a rather low concentration as a result of this cell line sensitivity.

These results demonstrated that the ultrasmall FeAT-NPs, at the studied Fe concen-
trations, did not relevantly influence the generation of intracellular ROS in the different
analyzed human cells, even in sensitive ones like A2780, correlating with the results of cell
viability and clonogenic activity.

2.2.3. In Vitro DNA Damage: Comet Assay

To assess the toxicity of a given nanomaterial, the induced DNA damage is an essential
parameter that may be measured with the comet assay. This assay, in its alkaline version,
detects both single and double strand breaks, alkali-labile sites, stalled replication forks
and the activity of DNA excision repair systems [36,37]. Since previous evaluation of
the incorporation of the FeAT-NPs into the cell cytosol, by HPLC-ICP-MS, revealed the
presence of ionic iron and such a finding was also correlated with a slight increase in ROS in
the A2780 cell line, it was necessary to establish if they could induce DNA damage. Prelim-
inary studies using FeAT-NPs in Caco-2 cells concluded that they were not genotoxic [35].
However, in that case, only one concentration (0,25 mmol·L−1 of Fe) was tested.

Therefore, the capacity of ultrasmall FeAT-NPs to induce DNA damage was further
assessed by the alkaline comet assay, using the same treatment conditions used for the other
studied biological parameters. The obtained results are shown in Figure 2D, for A2780 and
HepG2 cells treated for 3 h, Figure 2E, for Caco-2 cells treated for 3 and 24 h, and Figure 2F,
for GM04312 cells also treated for 3 and 24 h with the FeAT-NPs. Although the highest
tested concentration of nanoparticles (2 mmol·L−1 of Fe), after 3 h exposure, induced
statistically significant DNA damage in A2780, HepG2 and Caco-2 cells, and the linear
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dose-response regressions presented significant slopes (p = 0.0003 for A2780; p = 0.0067 for
HepG2; p = 0.0031 for Caco-2), the induced damage was rather low, never doubling the
spontaneous one. Moreover, in the case of Caco-2 cells, treatments of 24 h did not show any
indication of genotoxicity (see Figure 2E). Therefore, treatments with the nanoparticles did
not induce relevant DNA damage in these cells. However, when they were treated with
the positive control, 250 µmol·L−1 methyl methanesulfonate (MMS), high levels of DNA
damage (measured as percentages of Tail DNA) were detected in the same experiments (in
3 h exposures: 33.67 ± 4.49 in A2780, 57.16 ± 13.50 in Caco-2, and 70.15 ± 5.63 in Hep-G2
cells; in 24 h exposure: 45.33 ± 6.09 in Caco-2 cells).

In the case of GM04312 cells (see Figure 2F), these FeAT-NPs induced significant
increases in DNA damage (p < 0.05) at all tested concentrations, when compared to control
cells, with a significant linear dose-response regression slope (R2 = 0.98; b = 3.73 ± 0.49,
p = 0) in 3 h treatments. In this cell model (see Figure 2F), 24 h exposure did not induce
detectable DNA damage at any concentration. Due to this, the regression slope for 24 h
exposure was no longer statistically significant (p = 0.1256). Higher induced DNA damage
was expected in these cells, as compared with the other cell types, and as also detected
for the positive control (64.92 ± 1.61% Tail DNA in 3 h exposures, and 66.17 ± 3.21 in
24 h), since GM04312 cells do not repair several types of DNA damage through the NER
pathway [18,38], including oxidative DNA damage [19,20,39], when produced by the Fe-
generated ROS, even if their levels were low. Furthermore, the decrease on induced DNA
damage detected for the highest analyzed concentration, when comparing short and long
exposures, might be due to toxicity [40] associated to the lack of DNA repair.

These results showed that there was no relationship between the intracellular iron
concentrations and the DNA damage they induced in different cell types. Altogether
these results suggest that not all the FeAT-NPs taken up by cells contributed to increasing
the intracellular ionic iron pool, with the subsequent consequences of DNA damage or
ROS induction.

2.2.4. In Vivo Somatic Mutation and Recombination: SMART Assay

The results obtained in the in vivo evaluation of FeAT-NPs effects in larvae of
D. melanogaster are presented in Figure 3 and Tables 2 and 3.

Regarding the incorporation of the nanoparticles, total Fe determination by ICP-MS
revealed an increase of about 1.7-fold in the exposed larvae to 1.5 mmol·L−1 Fe, and
of about three-fold in the exposed larvae to 5 mmol·L−1 Fe, without apparent toxicity
(Figure 3A). The number of hatched flies per bottle in both treatments, surface and chronic,
in NER efficient and deficient conditions (NER+ and NER−, respectively), that provided
a semi-quantitative estimation of toxicity, showed that these nanoparticles were not toxic, at
any of the tested concentrations (Figure 3A–D). However, the chronic treatments of NER−

larvae showed a decrease in hatched flies as function of the used concentration (Figure 3D).
In the rest of the analyzed conditions, for some of the nanoparticle treatments, the num-

ber of flies that emerged was higher than those of the corresponding negative controls, as if
the treatments were a survival stimulus, as described for other types of nanoparticles [25].

The results of the SMART assay are partly presented in Figure 3A–D, as mosaic eyes
frequencies, and in Tables 2 and 3, as the number of spots in 100 eyes, for surface and
chronic treatments, respectively.

They demonstrated the lack of risk in the exposure to the FeAT-NPs, since positive
genotoxic activity was only detected in NER+ conditions with the two highest tested
FeAT-NPs concentrations in surface treatments, and for both analyzed parameters.
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Figure 3. Biological effects of FeAT-NPs in vivo. (A) Determination of Fe uptake by larvae: Fe
content on larvae of Drosophila Oregon K strains determined after treating them for 72 h, with 1.5 and
5 mmol·L−1 Fe concentrations in FeAT-NPs. (B–E) Frequencies of mosaic eyes, and of emerged flies
(as a semi-quantitative toxicity measurement): (B) After surface treatment of 60 ± 12 h old larvae,
in NER efficient conditions. (C) After surface treatment of 60 ± 12 h old larvae, in NER deficient
conditions. (D) After chronic treatment in NER efficient conditions. (E) After chronic treatment in
NER deficient conditions. * p < 0.05; ** p < 0.01; *** p < 0.001.
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Table 2. Results of the w/w+ SMART assay after surface treatments with different Fe concentrations
in FeAT-NPs. Data are presented as the number of spots in 100 eyes. Data of the average clone size
and of the number of clones per 104 cells are also presented.

Number of spots

Repair Conc. Scored Small Medium Large Total Spot Clones/

Status Sex a (mM) b Eyes N % N % N % N % Size c 104 Cells

NER+ F 0 734 61 8.31 6 0.82 0 0.00 67 9.13 2.14 4.88
0.5 392 34 8.67 3 0.77 i 2 0.51 i 39 9.95 2.49 6.19
1 416 35 8.41 8 1.92 i 0 0.00 i 43 10.34 2.19 5.66

1.5 412 33 8.01 14 3.40+ 1 0.24 i 48 11.65 2.5 7.28
2 580 70 12.07+ 12 2.07 i 2 0.34 i 84 14.48 + 2.34 8.47
5 510 53 10.39 15 2.94 + 3 0.59 i 71 13.92 + 2.65 9.22

MMS 402 81 20.15+ 46 11.44 + 16 3.98 + 143 35.57 + 4.04 34.67
M 0 752 28 3.72 5 0.66 0 0.00 33 4.39 2.16 2.37

0.5 400 14 3.50 1 0.25 i 0 0.00 i 15 3.75 2.06 1.93
1 412 19 4.61 i 1 0.24 i 0 0.00 i 20 4.85 2.05 2.49

1.5 430 17 3.95 i 6 1.40 i 0 0.00 i 23 5.35 i 2.26 3.02
2 542 41 7.56 + 7 1.29 i 0 0.00 i 48 8.86 + 2.06 4.56
5 508 35 6.89 + 10 1.97 i 0 0.00 i 45 8.86 + 2.36 5.23

MMS 392 46 11.73 + 19 4.85 + 4 1.02 + 69 17.60 + 3.25 14.30
NER− F 0 610 56 9.18 12 1.97 1 0.16 69 11.31 2.30 3.26

0.1 316 35 11.08 5 1.58 i 3 0.95 i 43 13.61 3.30 5.62
0.25 308 31 10.06 6 1.95 i 2 0.65 i 39 12.66 3.21 5.07
0.5 492 61 12.40 10 2.03 i 1 0.20 i 72 14.63 2.27 4.09
1 310 33 10.65 10 3.23 i 0 0.00 i 43 13.87 2.28 3.95

2.5 298 30 10.07 8 2.68 i 3 1.01 i 41 13.76 4.05 6.96
5 304 27 8.88 9 2.96 i 0 0.00 i 36 11.84 2.33 3.45

MMS 410 102 24.88 62 15.12 + 45 10.98 + 209 50.98 + 5.25 33.48
M 0 510 32 6.27 5 0.98 1 0.20 38 7.45 2.38 2.28

0.1 302 15 4.97 1 0.33 i 1 0.33 i 17 5.63 2.41 1.70
0.25 302 19 6.29 2 0.66 i 0 0.00 i 21 6.95 2.19 1.90
0.5 494 33 6.68 6 1.21 i 0 0.00 i 39 7.89 2.13 2.10
1 280 16 5.71 5 1.79 i 1 0.36 i 22 7.86 3.05 2.99

2.5 282 17 6.03 0 0.00 i 1 0.35 i 18 6.38 2.89 2.31
5 306 18 5.88 2 0.65 i 0 0.00 i 20 6.54 2.10 1.72

MMS 406 56 13.79 + 29 7.14 + 7 1.72 + 92 22.66 + 3.19 9.05

a: F, females; M, males. b: MMS at a concentration of 2.5 mM, c: Average spot size. Small spots: 2 ommatidia;
medium spots: 3–7 ommatidia; large spots: ≥8 ommatidia. N, number of spots. +, positive genotoxic activity;
i, inconclusive genotoxic activity.

Moreover, this activity seemed to be linked to induction of mutations, and perhaps
intrachromosomal recombination, since the increases in mosaic eyes detected after these
surface treatments were proportionally larger in males than in females. In the case of MMS
(positive control), the increases in mosaic eyes were larger in females than males, indicating
that MMS induced mutations but also quite high levels of recombination. That only positive
results were detected with surface treatments was not unexpected, as higher doses can be
used in this mode of treatment, when compared to the chronic one [41]; moreover, in this
treatment the exposure times, and also the time for repair of induced damage, are shorter
than in the chronic treatments.

When comparing both repair conditions, the frequencies of mosaic eyes were slightly
higher in deficient than in efficient conditions for both sexes and even for negative controls.
Similar results have been described before [42] and they can be ascribed to the fact that part
of the DNA damage, including many of the spontaneous lesions, are repaired by the NER
system [43]. However, in this NER− condition, no genotoxic activity was detected after
any treatment with the FeAT-NPs.
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Table 3. Results of the w/w+ SMART assay after chronic treatments with different Fe concentrations
in FeAT-NPs. Data are presented as the number of spots in 100 eyes. Data of the average clone size
and of the number of clones per 104 cells are also presented.

Number of spots

Repair Conc. Scored Small Medium Large Total Spot Clones/

Status Sex a (mM) b Eyes N % N % N % N % Size c 104 Cells

NER+ F 0 682 67 8.57 9 1.15 0 0.00 76 9.72 2.15 5.28
0.1 512 39 7.62 9 1.76 i 1 0.20 i 49 9.57 2.45 5.86
0.25 350 27 7.71 6 1.71 i 1 0.29 i 34 9.71 2.97 7.85
0.5 428 33 7.71 11 2.57 i 1 0.23 i 45 10.51 2.76 7.25
1 542 52 9.59 8 1.48 i 2 0.37 i 62 11.44 2.38 6.81
2 208 33 10.71 4 1.30 i 0 0.00 i 37 12.01 2.32 6.97

MMS 534 103 16.25 + 42 6.62 + 17 2.68 + 162 25.55 + 3.97 24.53
M 0 592 31 4.48 2 0.29 0 0.00 33 4.77 2.11 2.49

0.1 442 18 4.07 2 0.45 i 0 0.00 i 20 4.52 2.19 2.35
0.25 310 16 5.16 i 1 0.32 i 0 0.00 i 17 5.48 i 2.06 2.99
0.5 352 15 4.26 5 1.42 i 0 0.00 i 20 5.68 i 2.45 3.48
1 508 27 5.31 i 1 0.20 i 0 0.00 i 28 5.51 2.04 2.81
2 208 14 4.52 2 0.65 i 0 0.00 i 16 5.16 2.09 2.76

MMS 502 49 8.14 + 18 2.99 + 2 0.33 i 69 11.46 + 2.53 6.80
NER− F 0 302 30 9.93 6 1.99 0 0.00 36 11.92 2.19 3.27

0.1 308 30 9.74 5 1.62 i 3 0.97 i 38 12.34 3.21 4.95
0.25 302 30 9.93 4 1.32 i 1 0.33 i 35 11.59 2.40 3.48
0.5 304 31 10.20 6 1.97 i 2 0.66 i 39 12.83 3.97 6.37
1 304 32 10.53 3 0.99 i 0 0.00 i 35 11.51 2.11 3.04

MMS 308 68 22.08 + 37 12.01 + 12 3.90 + 117 37.99 + 4.55 21.61
0 300 18 6.00 2 0.67 0 0.00 20 6.67 2.10 1.75

0.1 306 18 5.88 1 0.33 i 0 0.00 i 19 6.21 2.06 1.59
M 0.25 304 22 7.24 i 1 0.33 i 0 0.00 i 23 7.57 i 2.04 1.93

0.5 304 19 6.25 i 4 1.32 i 0 0.00 i 23 7.57 i 2.19 2.07
1 302 23 7.62 i 2 0.66 i 0 0.00 i 25 8.28 i 2.12 2.19

MMS 300 43 14.33 + 15 5.00 + 3 1.00 i 61 20.33 + 3.08 7.84

a: F, females; M, males. b: MMS at a concentration of 0.25 mM, c: Average spot size. Small spots: 2 ommatidia;
medium spots: 3–7 ommatidia; large spots: ≥8 ommatidia. N, number of spots. +, positive genotoxic activity;
i, inconclusive genotoxic activity.

This lack of NER effect in vivo differs from the results obtained in vitro, with the
comet assay. This assay detects DNA damage (strand breaks), whereas the SMART assay
detects the consequence of this DNA damage, that is mutations and recombination. Thus,
it is feasible that in some cells, the DNA damage is repaired by other systems besides
NER (for instance, Base Excision Repair system, BER) before they become the origin of
mutations. Furthermore, since the applied doses of nanoparticles were of the same order in
both assays, the level of induced DNA damage in vivo should be lower than in vitro and,
therefore, easier to repair.

The analysis of the average clone size revealed that the induced damage was fixed
as mutations (or recombination) quite late on the larvae development, as the size of most
spots was rather small. This fact agrees with an easy repair of induced DNA damage, since
only the damage induced immediately before pupation seems to be detected.

When compared with other iron oxide nanoparticles, or nanomaterials, whose geno-
toxicity was studied in Drosophila [44,45], the FeAT-NPs are the smallest, and the only ones
that are non-magnetic, but no relevant differences in genotoxic activity were found among
them as larger and magnetic IONPs nanoparticles (<50 nm) showed no dose-dependent
genotoxicity, at 1 and 10 mmol·L−1 concentrations [44]; whereas, when mixed with nickel,
IONPs (30 nm) were genotoxic only at one of the tested concentration (200 µg mL−1) [45].

3. Materials and Methods
3.1. Instrumentation

All ICP-MS (inductively coupled plasma mass spectrometry) experiments during this
work were performed using the triple quadrupole instrument iCAP TQ ICP-MS (Thermo
Fisher Scientific, Bremen, Germany) working in the single quadrupole (SQ)-hydrogen
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mode (collision cell mode to eliminate 40Ar16O and 40Ar16O1H polyatomic interferences)
for 56Fe+ monitoring. The ICP-MS instrument was fitted with a cyclonic spray chamber
and a conventional concentric nebulizer.

Chromatographic separations were carried out using the Agilent 1260 HPLC system
(Agilent Technologies, Tokyo, Japan) equipped with a Nucleosil C18 separation column
(7 mm particle size, 250 × 4.6 mm i.d., pore size 1000 Å, Phenomenex, Aschaffenburg,
Germany). Detection of iron was performed on-line with the iCAP TQ ICP-MS instrument.
The flow from the HPLC was introduced into the ICP-MS instrument via a 15 cm long
polyether ketone (PEEK®) tube, which was connected to the polytetrafluoroethylene (PTFE)
sample tube of the nebulizer

For centrifugation/ultrafiltration steps, a centrifuge Biofuge Stratos Heraeus (Thermo
Fisher Scientifc) was used.

Fluorescence measurements were performed using an Infinite 200 (Tecan, Zürich,
Switzerland) microplate reader. Flow cytometry experiments were performed using a
CytoFLEX S Flow Cytometer (Beckman Coulter Life Science, Indianapolis, IN, USA).

Nucleoids from the comet assay were photographed, for a posterior quantitative
determination of DNA damage, in an Olympus BCX-61 fluorescence microscope, with an
Olympus DP70 CCD-coupled camera, from the Scientific and Technical Services (SCTs) of
the University of Oviedo.

3.2. Chemicals and Materials

All solutions were prepared using 18 MΩ cm deionized water obtained from a PURE-
LAB flex 3 (ELGA VEOLIA, Lane End, UK). Iron (III) chloride hexahydrate (98%, Sigma-
Aldrich, Madrid, Spain) was used as the precursor for the nanoparticle synthesis. Sodium
tartrate dihydrate (99–101%, Sigma-Aldrich) and adipic acid (99%, Sigma-Aldrich) were
solubilized in 0.9% potassium chloride solution (Merck, Darmstadt, Germany) to be used as
the nanoparticle coating agents. Ammonium acetate (>98%, Sigma-Aldrich) was used for
the synthesis buffer and 5 mol·L−1 sodium hydroxide (Merck) was used for the nanopar-
ticle precipitation. Standard solutions of Fe and Ge (1000 mg L−1, Merck) were used for
total Fe determinations by ICP-MS. Sodium dodecyl sulfate (SDS, 98.5%, Sigma-Aldrich)
and ammonium acetate (>98%, Sigma-Aldrich) were used in the mobile phases for the
chromatographic separations.

RPMI 1640 Dulbecco’s culture medium, phosphate-buffered saline (PBS) and fetal
bovine serum (FBS) were purchased from Gibco (Thermo-Fisher, Spain), and modified Ea-
gle’s medium (DMEM) and trypsin, from Biowest, were supplied by VWR-Avantor (Spain);
plasmocin was obtained from InvivoGen (San Diego, EEUU) and methyl methanesulfonate
(MMS), tert-butyl hydroperoxide (TBHP), 2,7-dichlorodihydrofluorescein-diacetate (DCFH-
DA) were bought from Sigma-Aldrich. Low melting point (LMP) and normal melting point
(NMP) agaroses, from Invitrogen, were acquired from Sigma-Aldrich. All other chemicals
used were of the highest purity and available from commercial sources.

CellTilter-Blue® Cell Viability Assay Kit was purchased from Promega (Wisconsin,
EEUU) and 30,000 Da and 3000 Da Ultra-15 MWCO centrifugal filter units were obtained
from Millipore (Darmstadt, Germany).

3.3. Synthesis of Ultrasmall Iron Hydroxide Adipate Tartrate Nanoparticles

Ultrasmall iron hydroxide adipate tartrate nanoparticles, FeAT-NPs, (5–10 nm ferric
oxy-hydroxide core coated with tartaric/adipic acid) were synthesized according to previ-
ous publications [8]. Briefly, an acidic concentrated stock solution of FeCl3 was added to
a solution containing tartaric acid and adipic acid in 0.9% (w/v) of KCl to achieve a molar
ratio of Fe: adipic acid: tartaric acid in the final suspension of 2:1:1. The initial pH of the
mixture was always below 2.0 and the iron was fully soluble. The pH was then slowly
increased by dropwise addition of a concentrated solution of NaOH (5 mol·L−1) until basic
pH for iron precipitation. The entire mixture was then oven-dried at 45 ◦C for a minimum
of 24 h. Purification of the synthetized FeAT-NPs was performed by two centrifugation
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and ultrafiltration steps using first a 30,000 Da Ultra-15 MWCO centrifugal filter and then
a 3000 Da Ultra-15 MWCO centrifugal filter. The size and shape characterization of these
nanoparticles was published in previous articles of our research group [8]. To prevent
stability problems, fresh particles were synthesized for every experiment of this paper.

3.4. Cell Lines, Cell Culture and Drosophila Strains

A2780 (human ovarian carcinoma), Caco-2 (human colorectal adenocarcinoma) and
HepG2 (human hepatocarcinoma) cell lines were obtained from the Biotechnological and
Biomedical Assays Unit at the SCTs of the University of Oviedo, and GM04312 (immor-
talized human skin fibroblasts from a XPA gene mutant patient [18] cells were purchased
from the NIGMS Human Genetic Cell Repository, Coriell Institute for Medical Research
(Camden, NJ, USA).

All these cell lines were cultured in 25-cm2 flasks at 37 ◦C in an atmosphere of 5% CO2
and a relative humidity of approximately 95%. A2780 cells were maintained in RPMI 1640
medium supplemented with 10% FBS and 0.2% Plasmocin®. Caco-2, HepG2 and GM04312
cells were grown in DMEM medium supplemented with 10% FBS and 0.2% Plasmocin®.
At 90% confluence, cells were harvested by using trypsin and were subcultured into 25-cm2

flasks, six-well plates, or 96-well plates, depending on the experiments to be performed.
The in vivo analysis of FeAT-NPs effects on larvae of D. melanogaster was performed in

efficient and NER deficient repair conditions. For the efficient conditions, Oregon-K strains,
yellow and white (OK-y and OK-w), were used due to their sensitivity to ROS inducing
agents [24], and for NER deficient conditions, mus201 strains, yellow and white (mus201-y
and mus201-w), were selected as mus201 is a homologue of the XPG gene [46] and, therefore,
these flies do not present NER activity.

3.5. Quantification of Iron in Cells and D. melanogaster Larvae, and Iron Speciation

Cells were seeded in 25-cm2 flasks, at 1 × 106 cells per flask, and after 48 h, when
all of them were at around 80% cell confluence, they were treated with the FeAT-NPs at
a concentration of 2 mmol·L−1 of Fe for 3 h. After treatment, cells were washed three times
with PBS, harvested with trypsin and counted. Cell concentrations varied among cell lines,
as a result of their size and growth rate: 7.5–9 × 106 cells for A2780, 9–11 × 106 cells for
Caco-2, 5–7 × 106 cells for HepG2 and 3.5–5 × 106 cells for GM04312. Cells were then
precipitated by centrifugation to obtain a clean cell pellet. The experiment was made in
triplicate for each cell line. Cells not exposed to FeAT-NPs served as negative control in
each experiment.

Cell pellets were lysed by addition of 1 mL of cold ultrapure water, followed by
five freeze−thaw cycles using liquid nitrogen and a 60 ◦C water bath. After lysis, cell
debris was removed by centrifugation (10,000 g, 5 min, 4 ◦C) and the supernatants were
collected and analyzed for total Fe content and Fe speciation. Total Fe concentrations were
determined, in aliquots of the cell lysate supernatants previously acidified in 0.1% HNO3,
by ICP-MS (experimental conditions in Table 1), using a calibration curve obtained by
continuous nebulization, after optimizing the sample consumption. Calibration curves
were prepared using Ge as internal standard, and diluting Fe and Ge stock solutions
(1000 mg L−1 in 1% HNO3).

For determination of Fe in D. melanogaster, second/third instar Oregon-K larvae
were treated with 1.5 mmol·L−1 and 5 mmol·L−1 FeAT-NPs diluted in phosphate buffer
(pH = 6.8). Phosphate buffer was used as the negative control. Seventy-two hours after
the treatment, using highly concentrated sucrose solutions, larvae were collected in a glass
vial, washed with ultrapure water several times, until all of them were clean and at the
bottom of the vial, and then they were removed to Eppendorfs. The larvae samples were
subjected to an acid digestion with 200 µL of HNO3 (65%) for 1 h and 200 µL of H2O2
(30%) for 4 h until no solid residues were observed. Samples were diluted for further
analysis. A Fe calibration curve was performed for the quantification of the iron content in
the digested samples.
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For Fe speciation studies in the cells cytosols, 100 µL aliquots of the cell lysate su-
pernatants, diluted 1:1 in the mobile phase, were injected into the HPLC-ICP-MS chro-
matographic system. Separation was carried out in isocratic mode using an ammonium
acetate buffer (pH 6.8) solution, containing SDS (10 mmol·L−1), as mobile phase at a flow
rate of 0.5 mL·min−1. Detection was performed by ICP-MS monitoring iron (conditions
in Table 1).

3.6. Cell Viability Assay

Cell viability was assessed with the resazurin assay, using the CellTilter-Blue® Cell
Viability Assay Kit from Promega. The assay is based on the ability of living cells to
convert a redox dye (resazurin) into a fluorescent end product (resorufin), with maximum
excitation and emission wavelengths of 560 nm and 590 nm, respectively. In brief, cells
were seeded in 96-well plates (7500 cells per well for A2780 and Caco-2 cells and 10,000 cells
per well for HepG2 and GM04312 cells, as a result of their different proliferation rate) and
incubated for 48 h to allow their attachment to the plate. The cells were then treated in
triplicate with FeAT-NPs, at different Fe concentrations (from 0 to 2 mmol·L−1) for 3 h.
A positive control was established using 600 µmol·L−1 of MMS. After the treatment, the
medium was removed, and the cells were washed with PBS. Then, fresh medium containing
20 µL of reaction mixture from CellTilter-Blue® Cell Viability Assay Kit was added. The
plate was shacked for 10 s and incubated using standard cell culture conditions for 4 h,
after which fluorescence was measured using a microplate reader (Infinitive 200, Tecan,
Switzerland). The percentage of cell viability was calculated from the fluorescence emission
values obtained with the microplate reader, using the following equation:

% cell viability =
fluorescence of treated cells
fluorescence of control cells

∗ 100

Three independent experiments were performed per cell line.

3.7. Clonogenic Activity

The clonogenic activity, defined as the ability of a single cell to grow into a colony
(a group of at least 50 cells), was studied with the clonogenic, or colony formation, assay
that determines cell reproductive death after treatment [34]. To carry it out, for each
investigated cell line, 105 cells per well were seeded in a 6-well plate for 24 h and then
treated for 3 h, at 37 ◦C, in culture medium with FeAT-NPs, at concentrations of 0 and
2 mmol·L−1 of Fe. Immediately after treatment, 2000 cells per well were re-plated in new
6-well plates to assess colony forming efficiency. The plates were left in the incubator for
6–10 days, depending on the cell line, until clones of at least 50 cells appeared. The cells
were washed with PBS, fixed with methanol: acetic acid (3:1) for 5 min and stained with
0.5% crystal violet in methanol for 15 min. The dye mixture was removed, the plates rinsed
with tap water and the colony numbers were counted after drying. Three independent
experiments were performed per cell line.

3.8. Reactive Oxygen Species Measurement

Intracellular ROS was measured using the cell permeation reagent DCFH-DA, which
is a fluorescent dye that can measure hydrogen peroxide, hydroxyl radicals, peroxy rad-
icals and other ROS molecules within the cell. After diffusion into the cell, DCFH-DA
is deacetylated by intracellular esterase to generate a non-fluorescent compound, which
is rapidly oxidized by ROS to 2,7-dichlorofluorescein (DCF), that is highly fluorescent
having a maximum excitation and emission spectra at 495 nm and 529 nm, respectively.
The fluorescence intensity is directly proportional to the level of ROS in the cytosol.

For these experiments, cells were seeded in 6-well plates, at a density of 5 × 105 cells
per well, were incubated for 48 h, and then were treated for 3 h with FeAT-NPs, at different
Fe concentrations (0–2 mmol·L−1). Tert-butyl hydroperoxide (TBHP), at varying concentra-
tions depending on the cells (from 50 to 400 µmol·L−1) due to their different sensitivities,
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was used as positive ROS inducer. After the treatment, cells were harvested with trypsin,
centrifuged at 1200 rpm for 10 min, washed with 5 mL PBS and counted. The cells were
then incubated with 20 nmol·L−1 DCFH-DA, prepared at 2 mmol·L−1 in dimethyl sulfoxide
(DMSO) and diluted with PBS, at a density of 106 cells per mL, during 30 min in the dark.
Cells were then washed thrice, with 10 mL PBS, and were set to a concentration of 106 cells
per mL in PBS. The fluorescence was measured by flow cytometry (Cytoflex S, Beckman
Coulter) in the FITC channel. Approximately 104 cells per condition were analyzed in each
of the three performed independent experiments.

3.9. Comet Assay

The alkaline single-cell gel electrophoresis, or comet, assay was performed to deter-
mine the DNA damage (i.e., strand breaks, stalled replication forks and alkaline labile sites)
as described previously by Collins [36], with slight modifications. After seeding, incubat-
ing, and treating the cells as described for ROS measurement, in 6-well plates, cells were
collected at a concentration of 1.5 × 106 cells per mL. MMS (250 µmol·L−1) was used as
positive control. Treated cells were embedded in LMP agarose to a final 0.5% concentration
and layered onto slides pre-coated with 0.5% NMP agarose. From this last step on, all
the process was performed in darkness or under a red light. After gel solidification, the
slides were immersed in cold, fresh lysis solution (2.5 mol·L−1 NaCl, 0.25 mol·L−1 NaOH,
100 mmol·L−1 Na2EDTA, 10 mmol·L−1 Tris, pH 10, with 10% DMSO and 1% Triton X-100)
for 1 h, at 4 ◦C. The slides were then placed into a horizontal electrophoresis tank and
covered with cold electrophoresis buffer (1 mmol·L−1 Na2EDTA, 300 mmol·L−1 NaOH,
pH 13), for 20 min at 4 ◦C, for DNA unwinding and conversion of alkali-labile sites to
single-strand breaks. Electrophoresis was performed in the same buffer at 0.81 V/cm and
300 mA, for 20 min at 4 ◦C. After electrophoresis, the slides were neutralized three times
for 5 min with 0.4 mol·L−1 Tris buffer (pH 7.5), fixed in absolute ethanol and air-dried
overnight. Slides were then coded for blind analysis and stained with 40 µL of ethidium
bromide (0.4 µg mL−1) with 1 µL of the fluorescence protector Vectashield® (VECTOR
laboratories, Inc. Burlingame). Nucleoids were visualized at 400× magnification with an
OlympusBX61 fluorescence microscope, equipped with appropriate filters, and an Olym-
pus DP70 digital camera. Photos taken from 75 nucleoids per slide were analyzed with
the interactive automated comet software program KOMET 5 (Kinetic Imaging Limited,
now Andor-Oxford Instruments, Belfast, UK). The percentage of DNA in the comet tail (%
Tail DNA) was the parameter used to measure DNA damage. For each cell line, two slides
were analyzed per FeAT-NPs concentration in each experiment, and three independent
experiments were carried out.

3.10. In Vivo SMART Assay of Drosophila

This assay monitors in wild-type eyes the presence of white mutant spots, generated
by loss of heterozygosity due to point mutations and/or deletions at the white locus,
or to mitotic recombination or nondisyunction in heterozygous cells [23,24,47]. Partial
discrimination between these endpoints might be achieved comparing data from females
and males as spots can be induced in females by all four endpoints (although mostly by
mutations and recombination), whereas in males, only mutations and intrachromosomal
recombination can induce them [24,41].

To perform the assay, two different treatments were carried out: chronic and surface.
For both of them, 50 virgin females w+/w+ (yellow phenotype) were mass mated with
30 males w/Y (white phenotype) and, after 48 h, they were transferred to bottles with
instant Carolina Formula 4–24 Drosophila Medium (Carolina, Burlington, NC). In chronic
treatments this medium was hydrated with solutions of the different FeAT-NPs concentra-
tions (0–2 mmol·L−1 of Fe), in phosphate buffer, pH = 6.8, and the flies were allowed to lay
eggs for 24 h. In surface treatments, the Carolina medium was hydrated with phosphate
buffer pH = 6.8, the flies were allowed to lay eggs for 24 h and, after 60 ± 12 h, 1.5 mL of
the different FeAT-NPs concentrations (0–5 mmol·L−1 of Fe), in phosphate buffer pH = 6.8,
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were added to each bottle. In addition to the negative control (phosphate buffer, pH = 6.8),
a positive control, with 2.5 mmol·L−1 of MMS, was carried out in each experiment. The eyes
of hatched females and males, submerged in solutions with ethanol, tween-80 and water
to allow a clear scoring of ommatidia, were observed with a stereomicroscope Leica GZ6
(Leica), at 45x magnification, looking for mutant white spots. The eyes with at least one spot
(mosaic eyes) were counted, as well as the number of spots per 100 eyes, (counting as inde-
pendent two spots in one eye if they were separated by four rows of normal ommatidia); in
this last case, the spot size, based on the number of affected ommatidia (small: 2 ommatidia,
medium: 3–8 ommatidia, large: >8 ommatidia), was also determined. At least 300 eyes per
sex and tested condition, from a minimum of two independent experiments, were analyzed.
Toxicity was semi-quantitatively estimated counting the number of emerged flies per bottle,
in all the tested conditions.

3.11. Statistical Analysis

The data are presented as mean values ± standard deviation (SD), or standard error
(SE). The differences between non-treated (negative control) and treated cells, in the dif-
ferent experiments and assays, were evaluated with paired and unpaired Student’s t tests.
Linearity of dose–response data were checked with linear regression analyses.

For the Drosophila data, the mosaic eyes induced by each nanoparticle concentration,
as well as the positive control, were compared to the negative control with Chi square tests.
In addition, the Frei–Würgler double-decision chi-square test was applied to the analysis of
the number of spots in 100 eyes, with m = 2 for small, medium, and total spots and m = 5
for large spots. In this case, results were expressed as negative (−), positive (+), weakly
positive (w+) or inconclusive (i), based on the acceptance, or rejection, of the null (H0) or
alternative (HA) hypothesis [42].

4. Conclusions

Some pharmacokinetic aspects of nanoparticulated iron products, with regard to their
performance in humans, can be modelled by animal and cell-based models, according
to the European Medicines Agency. In this work, the incorporation, biotransformation
and biological effects of FeAT-NPs have been addressed in cell cultures and in the larvae
of D. melanogaster. The cellular incorporation has been shown to be cell type-dependent,
probably as a function of the endocytic mechanisms, with the highest incorporation in
the smallest cells, that is in the A2780 model of ovarian cancer. No precipitation of these
nanoparticles was ever detected in any experiment, independently of the exposure time.
Metabolic evolution within the cell cytosol revealed minimum solubilization of the incor-
porated particles after three hours exposure that did not compromise cell viability in any
of the studied cell models. In agreement with the elemental speciation studies and to the
minimal production of free ionic iron within this period, minimum ROS increase was also
observed in all the cells under study. Furthermore, induced DNA damage, detected with
the comet assay, was only biologically relevant in the NER deficient fibroblasts model, at
the highest exposure concentrations. Thus, although DNA oxidative damage could be
occurring, the repairing mechanisms of the cells seem to be efficient to eliminate it in the
studied models. Finally, in vivo experiments in larvae of D. melanogaster showed some evi-
dence of genotoxicity with the two highest FeAT-NPs concentrations, in surface treatments,
in both sexes, but with small increases with respect to the negative control. Overall, the
synthetic FeAT-NPs are shown to be safe enough to be used, alone or as carrier, of different
drugs in future experiments. Nevertheless, distribution studies in a relevant animal model
are essential to evaluate distribution, metabolism and excretion of these nanoparticles and
to evaluate the degree of their in vivo degradation or solubilization products.
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