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objectives. The risk of cross infection in a busy emergency department (ED) is a serious public health concern, especially in times
of pandemic threats. We simulated cross infections due to respiratory diseases spread by large droplets using empirical data on contacts
(ie, close-proximity interactions of ≤1m) in an ED to quantify risks due to contact and to examine factors with differential risks associated
with them.

design. Prospective study.

participants. Health workers (HCWs) and patients.

setting. A busy ED.

methods. Data on contacts between participants were collected over 6 months by observing two 12-hour shifts per week using a radio-
frequency identification proximity detection system. We simulated cross infection due to a novel agent across these contacts to determine risks
associated with HCW role, chief complaint category, arrival mode, and ED disposition status.

results. Cross-infection risk between HCWs was substantially greater than between patients or between patients and HCWs. Providers had
the least risk, followed by nurses, and nonpatient care staff had the most risk. There were no differences by patient chief complaint category.
We detected differential risk patterns by arrival mode and by HCW role. Although no differential risk was associated with ED disposition status,
0.1 infections were expected per shift among patients admitted to hospital.

conclusion. These simulations demonstrate that, on average, 11 patients who were infected in the ED will be admitted to the hospital over
the course of an 8-week local influenza outbreak. These patients are a source of further cross-infection risk once in the hospital.
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The risk of cross infection in a busy emergency department
(ED) is a serious public health concern, especially during
a pandemic threat. The importance of this risk was demon-
strated dramatically during the 2003 severe acute respiratory
syndrome (SARS) epidemic, in which 128 cases of SARS could
be directly or indirectly linked to exposure to a SARS patient
who sat for hours in the busy ED of a community hospital
awaiting assignment to a hospital bed.1 More recently, the
presentation of a patient infectious with Ebola virus disease to
an ED in Dallas, Texas, resulted in a need to monitor more
than 180 individuals, many of them hospital personnel, who
were in close contact with this patient or with 2 nurses who
became infected after exposure to this patient.2

Understanding the dynamics of cross infection in the ED
will facilitate the development of improved mitigation efforts.
To fully assess the risk of cross infection, one must not only

understand the disease itself but also the complex spatial and
social environment of the ED in which cross infection occurs.
In the past, many simulation models have used random
mixing patterns of all people present to quantify infections.3–9

However, for many situations, random mixing is not a good
model, and for this reason, real-time location systems using
technology such as radiofrequency identification (RFID),
ultrasound, or infrared tagging are being increasingly used to
empirically determine such mixing patterns.10–12

To this end, we undertook a study of close-proximity
interactions (contacts) among patients and healthcare workers
(HCWs) in a busy ED.13 We used these data to construct the
social-contact networks we used to simulate the transmission
of infection from 1 infectious individual present in the ED
during a 12-hour shift. Our objectives were to quantify
infectious disease risks due to contacts and to determine
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whether individual characteristics are associated with differ-
ential patterns in the risk of infection.

methods

Study Design

Data on contacts that occurred ≤1 m distance between patients
and staff in the busy ED of a large urban hospital were collected
using an RFID system described elsewhere.13 This ED has 25,000
square feet and 31 beds, with annual census exceeding 57,000, of
whom more than 14,000 patients are admitted. The ED has a
modern design with centralized workspaces for staff and walled
patient treatment rooms. The Emory University Institutional
Review Board reviewed and approved this study. The data we
collected about the contacts were the study IDs of the 2 indivi-
duals involved and length of contact. From the study IDs, we
were able to link to other individual characteristics.

Briefly, we had planned to observe contacts among
patients and staff during two 12-hour shifts per week for
1 year. As implemented, we observed 293,181 contacts of 4,732
patient and 85 staff participants during 81 shifts during the
study year (July 1, 2009, to June 30, 2010). In this study, we
restricted our analysis to data from the first 6 months of the
study (35 shifts). We restricted analysis to this subset of shifts
because examination of participation by patients and staff
across the year showed a significant decline. We attributed staff
participation decline to a system failure that did not alert us to
battery depletion in permanent tags worn by staff. No similar
physical reason for the decline in patient participation was
observed; thus, we attributed it to waning abilities of the
research team to keep up with a task that was too large for
them. Biases in estimates of measures of interest may have
resulted from missing individuals and their concomitant
contacts. We restricted analyses to shifts in the first 6 months
of our observation period because the decline in staff partici-
pation started at the beginning of the second half of the year.
The observations included here should not be biased by the
presence of missing data.

Simulation Modeling

For each pair of individuals involved in a contact, we calculated
the total duration for all of their contacts during a shift. We then
used this duration as input for the simulationmodel. Specifically,
we modeled the probability of infection for a contact with an
exponential distribution function on the duration of the inter-
action.We assumed a common risk for all individuals present, as
would be the case for a novel infectious agent for which no
vaccine exists. Specifically, we were interested in staff role,
patient chief complaint, and patient arrival mode. We also
assumed that all ED occupants other than the infectious source
were disease free at the start of the shift. In addition, because the
ED is an important source of hospital admissions (ie, with ~ 40%
of admissions nationally stemming from an ED visit),14 we were

interested in patient ED disposition status, that is, whether they
were admitted to the hospital or not.
For purposes of this study, we assumed a susceptible–

infected (SI) model with the probability of infection following
an exponential distribution such that the probability of an
infection in 1 minute was 0.007. We did not consider a full
susceptible–infected–recovered (SIR) model because our limited
period of observation did not allow us to determine whether an
exposed participant became infectious after an appropriate
incubation period. This parameterization was drawn from the
observed attack rate of influenza over 3 hours in a commercial
airliner.15 We considered each participant in all shifts as a pos-
sible single source of infection, and we simulated infection
transmission 10,000 times for these individuals.

Data Analysis

We computed the number of expected infections per shift
(EIs) by averaging how many times a given participant in a
given shift was “infected.” We then averaged the 10,000 simu-
lations over all participants in all shifts. Patients were classified
according to arrival mode (ie, by emergency medical services
[EMS] or not), chief complaint as categorized by the ESSENCE
criteria,16 and discharge disposition status (ie, admitted to the
hospital or not). The HCWs were classified according to their
role (ie, provider, nurse, or staff). From the simulation results,
we were able to determine the percent infected for each par-
ticipant; we then cross classified him or her according to the
factors of interest and calculated summary statistics for the
categories of participants.

results

In the 6-month observation period, we made 1,263 observa-
tions of 85 distinct HCWs, and 2,374 patient encounters were
observed. Overall, 45,877 contacts were observed. Table 1
provides descriptive statistics regarding the length of these
contacts. Because there is considerable variability in contact
length, the statistics are also provided for each type of contact.
Notably, HCW–HCW contacts tended to be much longer than
either HCW–patient or patient–patient contacts.
Figure 1 shows that the risk of cross infection was greater for

other HCWs than for patients. In this context, an average of
0.4 patients and 6.5 other HCWs were infected due to contacts
with an infectious HCW per 12-hour shift. In comparison,

table 1. Descriptive Statistics Regarding Length of Contacts by Type

Contact Type
Median Contact
Length, min

Interquartile
Range, min

No. of
Observations

Overall 5.7 (0.8–31.5) 45,877
Patient–patient 3.1 (0.5–13) 16,453
HCW–patient 2.9 (0.4–11.1) 14,117
HCW–HCW 38.6 (4.4–188.2) 15,307

NOTE. HCW, healthcare worker.
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0.4 other patients and 0.2 HCWs were infected due to contacts
with an infectious patient per 12-hour shift.

Having found that HCWs played a large role in cross trans-
mission, we next evaluated the influence of staff role. Figure 2
shows that an infectious provider was more likely to infect a
patient (1.3 EIs) or another provider (1.1 EIs) compared to
nurses (0.8 EIs) or other staff (0.4 EIs). In comparison, infectious
nurses and staff were more likely to infect their cohorts
(2.6 nurse-to-nurse EIs vs 6.5 staff-to-staff EIs) or each other
(2.6 nurse-to-staff EIs vs 3.8 staff-to-nurse EIs) than providers
(0.8 provider-to-nurse EIs vs 0.4 provider-to-staff EIs).

Expected infections varied little across patient chief complaint
categories, with the median EIs being <0.2 for all cross classifi-
cations. Most had median EIs< 0.1 (Supplemental Figure 1).
The same was true for a patient exposed to an infectious HCW
and for an HCW exposed to an infectious patient.

We also categorized patients according to their arrival mode
(ie, by EMS or not) (Supplemental Figure 2). Susceptible
patients who arrived by EMS had modestly but consistently
lower median EIs values than those who arrived by other
means, regardless of the source of infection: EMS patients

(0.12 vs 0.23), non-EMS patients (0.09 vs 0.30), caregiver (0.14
vs 0.28), provider (0.57 vs 0.87), or staff (0.05 vs 0.28).
Finally, we classified patients according to their ED disposition

status (ie, admitted to hospital or not) (Supplemental Figure 3).
On average, we detected 0.1 EIs among susceptible patients who
were subsequently admitted to the hospital, regardless of infec-
tion source.

discussion

This study is the first direct observation of contacts among
patients and staff in the hospital ED environment and the first
application of network science to such interactions over an
extended period. It is also the first to examine differences in EIs
by participant characteristics. As such, we have 2 major findings.
First, we have shown that HCWs who report to work sick are the
primary vectors for cross infection in the ED for respiratory
diseases spread by large droplets. Furthermore, HCWs in the ED
tend to view patients rather than their colleagues as the primary
vectors for cross infection risk. The magnitude of the difference
in EIs between infectious HCWs and infectious patients is

figure 1. Risk of cross infection from infectious patient or infectious healthcare worker (HCW). Number of other participants infected
(column) by 1 infectious person present in the emergency department (ED) (row), according to participant role (patient or HCW), over
10,000 simulations. Middle line indicates median; open diamond symbol is mean; upper and lower edges are placed at the 75th and 25th
percentiles, respectively. Whiskers are placed at 1.5 times interquartile range beyond the 75th and 25th percentiles. Open circles indicate
observations beyond the whisker values.
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surprising. Moreover, the differential among HCW roles was
unanticipated; staff and nurses are more likely than providers or
patients to infect others based only on the number and duration
of their proximal interactions. Second, EMS arrivals are at lower
risk of becoming infected than patients arriving by other modes.
This observation is somewhat surprising; there is often a swarm
of activity surrounding an EMS patient when he or she enters the
ED, and this swarm might be expected to lead to more EIs.

Our study has several strengths. Many other infectious
disease simulations3–9 assume random mixing patterns, while
our study is based on empirical data with which the (nonran-
dom) mixing pattern is measured. In addition, we measured the
duration of all contacts between individuals throughout a shift,
allowing us to give a time-based rather than contact-based risk of
infection. In contrast, many other studies of contacts using
technology (eg, RFID, infrared motes) to determine mixing
patterns have done so over comparatively short periods of time

(1 day to 1 week).10–12,17–19 In comparison, we have measured
shifts over many months. Finally, we are the first to apply these
sophisticated modeling techniques to determine infection risk in
the ED setting.
In this simulation, we incorporated only 1 infection rate based

on a case study of influenza transmission.15 Our model assumed
that all exposed individuals were equally susceptible and did not
allow for differential probability of infection. Thus, our model
does not allow for a vaccine-preventable infection. Also, some
patients may be more likely to become infected because they are
immunocompromised. In addition, HCWs may use personal
protective equipment (PPE) or rigorous hand hygiene (HH)
measures, decreasing the probability of cross infection. However,
HCWadherence rates to HHprotocols are generally low, varying
from 40% to 60%.20 Moreover, HCWs are likely not using PPE
and HH measures when interacting with one another. Our
model also approximates the scenario in which infection is

figure 2. Average number of other participants infected by participant type, healthcare worker (HCW) role expanded. Number of other
participants (column) infected by infectious person present in the emergency department (ED) (row), according to participant role (patient
or HCW) with HCW role classified as provider, nurse, or staff. Middle line indicates median; open diamond symbol is mean; upper and
lower edges are placed at the 75th and 25th percentiles, respectively. Whiskers are placed at 1.5 times the interquartile range beyond the 75th
and 25th percentiles. Open circles indicate observations beyond the whisker values.
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spread only via large droplets, not allowing for cross infection via
aerosolized virus.21 Ourmodel assumes a given infection rate (ie,
probability of infection per unit time) based on influenza, but
this rate can be varied up or down for infectious agents that are
more or less likely to cause infection in a given period of
time, for example, measles or the coronavirus associated with
Middle Eastern respiratory syndrome. As these rates vary up or
down, the numbers of infections resulting will likewise vary up
or down in a multiplicative fashion.

Notably, the providers have different risk patterns than
other HCW groups. We attribute these differential risks to the
workflow in this ED. At the time of the study, the nurses and
staff worked as teams, each with an assigned group of beds,
whereas the providers worked throughout the ED.

Interestingly, we found no differential risk of cross infection
between patients according to chief complaint categories. Possibly,
the ESSENCE criteria do not differentiate on features that are
related to contact times. We also found no differential risk asso-
ciated with ED disposition status. Nonetheless, although 0.1 EIs
for patients admitted to the hospital seems small on a per-shift
basis, it would result in ~11 patients admitted over the course of
an 8-week local outbreak of seasonal influenza, providing further
opportunities for cross infection in other hospital areas.

The results of this simulation study reinforce our findings of
differences in network connectivity measures between patients
arriving via EMS versus patients arriving via other means.22

Here, there is a differential risk via patient transport category
and HCW role. Risk of cross infection is greatest between non-
EMS patients and staff, while risk of cross infection between
EMS patients and staff is much lower than between EMS
patients and either providers or nurses, and these are much less
than risks between non-EMS patients and either providers or
nurses. Intuitively, one would presume that patients arriving
by EMS are typically of higher acuity than patients arriving by
other modes; thus, they would need more HCW contact time
to sort out their complex issues, contrary to what we observed.
There are several possible reasons for these counterintuitive
findings: (1) Patients arriving by EMS have a different
geographical pathway of care compared to non-EMS patients.
EMS patients are taken from the ambulance bay directly to a
patient room, and most services (e.g., triage, phlebotomy, etc)
come to them. Non-EMS patients typically stay in the waiting
room between these same services until a provider is ready for
them, at which point they go to a patient room. (2) Healthcare
workers deliver some services in the ED to non-EMS patients
that EMS personnel deliver to EMS patients en route
(eg, obtaining medical history, starting intravenous drips,
starting oxygen delivery). Thus, the time that HCWs initially
need with an EMS patient at the beginning of the admission is
curtailed. (3) Because EMS patients are more acutely ill, they
are more likely to be admitted to the hospital than non-EMS
patients. The time spent at the end of the visit is much less
because there is no need for HCW involvement in discharge
activities such as getting the patient dressed, getting the patient
into a wheelchair, or giving discharge instructions.

In addition, patients arriving with respiratory infection do
not appear to differ substantially in rates of infection of other
ED occupants. This may be due to observation of infection
control measures oriented to patients. These measures,
oriented toward patients, center around signage encouraging
cough etiquette, whereas measures oriented toward HCWs
include mandatory vaccination policies and use of PPE and
HH during contacts with patients. Our results reinforce the
importance of mandatory vaccination policies for HCWs and
policies prioritizing HCWs for receiving vaccines as developed
in response to novel infections. We speculate that there is
considerable social pressure for HCWs to work, especially in
epidemic periods. This behavior must change. In addition,
HCWs should use PPE and HH during periods with potential
for contacts among themselves to reduce cross-infection risk.
As new EDs are built and existing EDs renovated, architectural
and engineering solutions must be found to artificially create
social distance in areas with high HCW–HCW contact
potential. Our findings present opportunities to reimagine
infection control in this environment.
Although we have identified differential risks for HCWs

depending on role and patient arrival mode, we have not defined
the geographical areas of the ED in which the HCW–HCW
contacts have occurred nor the geographical pathways of care for
patients and resultant contacts. Thus, future work should char-
acterize the geographical distribution of these contacts and of
risk of cross infection. Such understanding will pave the way for
structural and functional countermeasures for cross infection.
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