
Article
An image analysis method
 for regionally defined
cellular phenotyping of the Drosophila midgut
Graphical abstract
Highlights
d LAM is an image analysis method for quantitative analysis of

the whole midgut

d LAM allows automated identification of the major regional

borders

d Midguts have a high density of enteroendocrine cells at major

border regions

d Midgut stem cells display regionally heterogeneous injury

response
Viitanen et al., 2021, Cell Reports Methods 1, 100059
September 27, 2021 ª 2021 The Author(s).
https://doi.org/10.1016/j.crmeth.2021.100059
Authors

Arto Viitanen, Josef Gullmets,

Jack Morikka, Pekka Katajisto,

Jaakko Mattila, Ville Hietakangas

Correspondence
jaakko.i.mattila@helsinki.fi (J.M.),
ville.hietakangas@helsinki.fi (V.H.)

In brief

The intestine is divided into functionally

distinct regions along its anteroposterior

axis. Here, Viitanen and co-workers

develop a quantitative image analysis

approach to map and compare cellular

phenotypes of Drosophila midgut with

subregional resolution.
ll

mailto:jaakko.i.mattila@helsinki.fi
mailto:ville.hietakangas@helsinki.fi
https://doi.org/10.1016/j.crmeth.2021.100059
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crmeth.2021.100059&domain=pdf


OPEN ACCESS

ll
Article

An image analysis method for regionally defined
cellular phenotyping of the Drosophilamidgut
Arto Viitanen,1,2 Josef Gullmets,1,2 Jack Morikka,1,2 Pekka Katajisto,1,2 Jaakko Mattila,1,* and Ville Hietakangas1,2,3,*
1Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
2Institute of Biotechnology, University of Helsinki, Helsinki 00790, Finland
3Lead contact

*Correspondence: jaakko.i.mattila@helsinki.fi (J.M.), ville.hietakangas@helsinki.fi (V.H.)
https://doi.org/10.1016/j.crmeth.2021.100059
MOTIVATION Because of the combination of small size and regionalized structure, the Drosophila midgut
is an ideal model for organ-wide analyses of intestinal cells, including stem cells. Although imaging of the
whole midgut is feasible by using fast and affordable tile scan imaging, the downstream analysis remains
challenging. Because cellular phenotypes are inherently variable, it is necessary to quantitatively analyze
several replicate midguts, which requires proper alignment of the spatially resolved cellular data. Each
midgut has a unique morphology, which brings about the need for time-consuming and subjective manual
work to identify, align, and compare the intestinal regions of replicate samples. Because of these technical
challenges, the potential of Drosophila midgut for organ-wide analysis has not been taken to full use.
SUMMARY
The intestine is divided into functionally distinct regions along the anteroposterior (A/P) axis. How the
regional identity influences the function of intestinal stem cells (ISCs) and their offspring remain largely unre-
solved. We introduce an imaging-based method, ‘‘Linear Analysis of Midgut’’ (LAM), which allows quantita-
tive, regionally defined cellular phenotyping of the whole Drosophilamidgut. LAM transforms image-derived
cellular data from three-dimensional midguts into a linearized representation, binning it into segments along
the A/P axis. Through automated multivariate determination of regional borders, LAM allows mapping and
comparison of cellular features and frequencies with subregional resolution. Through the use of LAM, we
quantify the distributions of ISCs, enteroblasts, and enteroendocrine cells in a steady-state midgut, and
reveal unprecedented regional heterogeneity in the ISC response to aDrosophilamodel of colitis. Altogether,
LAM is a powerful tool for organ-wide quantitative analysis of the regional heterogeneity of midgut cells.
INTRODUCTION

The intestine has a critical role in regulating organismal meta-

bolism and immunity (Miguel-Aliaga et al., 2018). These func-

tions are dynamically modulated by environmental factors,

such as nutrition and microbes. Uncovering the mechanistic ba-

sis of the underlying regulation requires tractable in vivo model

systems. The Drosophila midgut, analogous to the mammalian

small intestine, has proved to be a powerful model for under-

standing intestinal physiology (Miguel-Aliaga et al., 2018). The

midgut is composed of four cell types: the absorptive entero-

cytes (ECs), their differentiating progenitor cells, called entero-

blasts (EBs), the hormone-secreting enteroendocrine (EE) cells,

and the mitotic intestinal stem cells (ISCs) (Miguel-Aliaga et al.,

2018). The midgut is an adaptive regenerative organ whose

cellular turnover and composition is affected by diet, sex, inflam-

mation, age, and reproductive status (Biteau et al., 2008; Buchon

et al., 2009, 2013; Hudry et al., 2016; Reiff et al., 2015). Previous
Cell Reports
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studies have uncovered regulatory pathways involved in the

control of intestinal homeostasis through inter- and intracellular

signaling (Gervais and Bardin, 2017; Guo et al., 2016).

To perform the functions of digestion, absorption, metabolism,

nutrient sensing, and signaling in a sequentially coordinated

manner, the animal intestine is compartmentalized into regions

along its anteroposterior (A/P) axis (Miguel-Aliaga et al., 2018;

O’Brien, 2013). Moreover, human intestinal pathophysiologies,

such as cancer or inflammatory disorders, often manifest in a re-

gion-specific manner (Missiaglia et al., 2014; Mowat and Agace,

2014). Therefore, the mechanisms that establish, maintain, and

modulate the regionalized functions of the intestine are of high

biological andmedical relevance. TheDrosophilamidgut regions

have been distinguished on the basis of anatomical characteris-

tics, differential staining with histological dyes, and region-spe-

cific gene expression patterns (Buchon et al., 2013; Dimitriadis,

1991; Marianes and Spradling, 2013). Buchon et al. (2013)

divided the midgut into six major regions (R0 to R5), which can
Methods 1, 100059, September 27, 2021 ª 2021 The Author(s). 1
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be distinguished on the basis of cross-intestinal anatomy. R1–R5

were further divided into 14 subregions on the basis of morpho-

logical, histological, and gene expression differences. In a paral-

lel study, Marianes and Spradling (2013) divided the midgut into

ten zones, with significant overlap to the 14 subregions defined

by Buchon et al. (2013).

Molecular analyses of the intestinal cell types have given more

detailed insight into midgut regionalization. Consistent with

sequentially coordinated digestion and absorption, the digestive

enzyme and nutrient transporter genes display strictly region-

specific expression patterns in the ECs (Dutta et al., 2015). The

EE cells, mediating the signaling function of the intestine, can

be divided into ten subtypes displaying region-specific distribu-

tion (Guo et al., 2019). In addition to the differentiated cell types,

it has also been proposed that the function of undifferentiated

ISCs depends on regional identity. The ISCs display regional au-

tonomy, i.e., their differentiated daughter cells do not cross most

region boundaries (Marianes and Spradling, 2013). The ISCs in

different midgut regions also display distinct morphological fea-

tures as well as differential gene expression, exemplified by the

finding that more than 900 genes show regional expression vari-

ation in the ISCs (Dutta et al., 2015; Marianes and Spradling,

2013). The acidic R3 region, often termed the stomach of

Drosophila, contains stem cells that have been deemed quies-

cent in unchallenged conditions but activated in response to

stressful stimuli, such as heat shock or pathogen ingestion

(Strand and Micchelli, 2011). Despite the evidence strongly

implying regional ISC heterogeneity, most studies on ISCs focus

on one specific region (mostly R4), and the possible impact of

regional identity and tissue environment on ISC regulation is

largely overlooked.

Achieving representative data of the midgut requires unbiased

quantitative analysis of all midgut regions. Rapid development of

affordable and fast tile scan imaging has made it feasible to

collect high-resolution imaging data from the whole midgut.

High phenotypic variation between midguts limits the reproduc-

ibility of qualitative analysis and sets the requirement for robust

quantitative analysis of replicate samples. However, achieving

quantitative and regionally defined data frommidgut cells has re-

mained a major bottleneck, hampering the use of organ-wide

analysis. Here we describe a widely applicable phenotyping

method called LAM (Linear Analysis of Midgut) to achieve

spatially defined quantitative data on midgut cells. LAM trans-

forms data from three-dimensional (3D) midgut images into

one dimension by an algorithm design that couples cellular iden-

tities into a specific position at a linear representation of the

midgut. This enables binning of cell-specific data along the A/P

axis and joining of replicate samples into spatially resolved

data matrices. The use of one-dimensional (1D) data enables

automatization of the regional boundary identification, allowing

accurate alignment of corresponding regions. These features

enable LAM to achieve robust quantitative phenotyping of mid-

guts with subregional resolution. To facilitate the downstream

data analysis, LAM includes various options for visualization,

statistical analysis, and data subsetting. A graphical user inter-

face, user manual, and tutorial videos make LAM accessible to

all researchers. As a proof of concept, we use LAM to quantita-

tively analyze regional distributions of ISCs, EBs, and EE cells.
2 Cell Reports Methods 1, 100059, September 27, 2021
We also demonstrate the regional heterogeneity of the injury

response to a well-established colitis model, dextran sulfate so-

dium (DSS) treatment. The organ-wide analysis by using LAM re-

vealed several features of DSS-induced response, including a

failure of regenerative stem cell activation in R3, a regionally

discordant pattern of stem cell division and differentiation in R4

versus R5, and an increase in EE cell numbers in the posterior

R4/R5 region. By making unbiased, quantitative, organ-wide

analysis highly feasible, LAM is expected to open new avenues

for the analysis of regional heterogeneity of midgut cells.

RESULTS

An approach for spatially defined quantitative
phenotyping of the Drosophila midgut
To analyze the spatial heterogeneity of intestinal cell responses

in an unbiased and reproducible manner, we developed an intes-

tinal phenotyping approach that is automated, quantitative, and

regionally defined. For imaging the nuclei of pseudostratified

midgut epithelium, fixed 40,6-diamidino-2-phenylindole (DAPI)-

stained tissues were mounted in between a coverslip and a mi-

croscope slide with 0.12-mm spacers. Flattening the intestinal

tube into two epithelial layers while still separated by its lumen

allowed z-stack acquisition of one layer, saving time and

reducing file size (Figure 1A). As an initial step, we sought a

means to reduce the tile scan stacks of nonlinear midguts into

a linearized representation (Figure 1B). To this end, an algorithm

that approximates the midlines of partially uncoiled midguts

along their A/P axis was used. The algorithm first transformed

coordinates of nuclei belonging to themidgut into a binary image

onto which pixel erosion was applied to produce a pixel-wide

skeleton. The pixels of the skeleton were then iteratively scored

to produce a linear representation of the midgut (Figure 1C),

which we colloquially call vectors, as they reduce the data into

1D arrays. Subsequently, any object in the 3D space, such as

nuclei, and any associated characteristics could be projected

and have their x:y:z coordinates reduced to a linear reference.

Thereby, the projection point’s normalized distance along the

midline vector directly corresponds to the location along the

A/P axis of the linearized midgut (Figure 1D). The vector and

data were then divided into bins, the number of which can be

adjusted to a desired spatial resolution. Because of the linear

referencing and binning of the measured cellular features, data

collected from different intestines could be joined as biological

replicates in a spatially relevant datamatrix, where each row cor-

responds to the same biological location. As a result, the binning

and joining of data allowed spatially defined quantitative repre-

sentation and statistical analysis between sample groups.

Next, we wanted to address whether the quantitative informa-

tion obtained by using our algorithm allowed automatic determi-

nation of the borders of midgut regions. Midgut regions are

characterized by differences in enterocyte ploidy and density

(Figure 2A) (Marianes and Spradling, 2013) and are separated

by constrictions of the midgut radius (Buchon et al., 2013). We

first separated the polyploid enteroblast and enterocyte popula-

tion from diploid cells, based on nuclear area (Figure 2B). The

filtered cell population was then projected onto the A/P vector

along with associated data on polyploid nuclear area and



Figure 1. A pipeline for regionally defined

quantification of Drosophila midguts

(A) Schematic presentation of the whole midgut

imaging.

(B) A representative tile scan image of DAPI (cyan)-

stained midgut. After imaging and stitching of the

tiles, the image is processed to exclude any features

lying outside the area of interest. Subsequently, the

image is analyzed for DAPI spots by, for example,

the spot-detection algorithm of the Imaris software,

or by StarDist segmentation.

(C) Pixel selection in skeleton vector creation. The

vector is a piecewise line starting from leftmost

pixels of the binary image skeleton. The vector is

extended with pixel coordinates based on a scoring

system that gives penalties depending on the pixel’s

directional change and distance. With n as the last

pixel of the vector, a direction-giving line is formed

based on coordinates of n and the average coordi-

nate of n-1 and n-2. On this line, a projection point

(green circle) is created equidistant from n as the

average coordinate. For each candidate pixel, dis-

tances to n (dvector) and the projection point (dpoint)

are determined, both contributing equally to the

penalty. Additionally, the absolute radian changes

of each pixel in relation to n and the direction line is

multiplied by 10 and added to the distance scores to

give the full penalty. The pixel with the smallest

penalty is added to the vector, and subsequently the

algorithm would follow the pixel in darker gray.

(D) Projection and linearization. The spots, and any accompanying data, are projected onto the vector. The vector is then binned, where the number of bins is

chosen on the basis of the desired resolution. An ‘‘anchoring point’’ (AP) is introduced into a morphologically distinct place, such as the border between the

copper cell region (CCR) and the large flat cells (LFC) region of the middle midgut (arrow).
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nucleus-to-nucleus nearest distances. Together with midgut

width computed from the projection distances of all nuclei along

the vector, these data enabled multivariate mapping for the

detection of borders. Because of high variability of morphology,

it was not possible to reliably detect the borders from individual

midguts (data not shown). This led us to explore border detection

from combined measurements of several replicate samples. As

even minor variation in region proportions could produce a com-

pounding error resulting in misalignment of border signals be-

tween samples, we sought to create more accurate bin-to-bin

correspondence. Consequently, we introduced an anchoring

point (AP) in the middle of the midgut, located at the border of

the copper cell region (CCR) and large flat cell (LFC) region,

which can be easily identified on the basis of the difference in nu-

clear distance (Figure 1D). Alignment of the projected polyploid

areas, nearest distances, and midgut widths from several repli-

cate midguts by using the APs revealed characteristic midgut

profiles, as described by Buchon et al. (2013) (Figures 2C–2E).

Although the borders of all regions are not uniform, they are char-

acterized by sudden, localized changes in values. Therefore, we

fitted a Chebyshev polynomial to the normalized data to simulate

background context and subtracted it from the values as an

adjustment (Figure 2F). After scoring each replicate by summing

the values of its weighted variables, distinct patterns could be

detected in the joined scores (Figure 2G). Smoothing and peak

detection with average values of each group allowed for robust

identification of four peaks corresponding to region borders

B1–B4 (Figure 2H).
Midgut total length, as well as the length of the individual re-

gions, is variable (Buchon et al., 2013). This poses a challenge

for aligning corresponding regions of replicate samples. Accord-

ingly, the utilization of a single alignment point in the middle

midgut, i.e., the point where the vectors of different samples

are anchored together, can lead to an imprecise alignment of

the regions toward the anterior and posterior ends (Figure 2I).

On the other hand, anchoring the samples from the ends will

reduce the accuracy of the alignment in the middle regions (Fig-

ure 2J). To minimize noise introduced by the variable length, we

utilized region border analysis to apply several independent

alignment points, resulting in a more optimal comparison of

midgut regions. In this ‘‘split and combine’’ approach the vectors

and projected data were cut on the basis of region border detec-

tion, aligned separately, and rejoined back together (Figure 2K).

Although this pipeline could lead to slight discrepancy in bin

lengths between different regions, it improved accuracy in

regional comparisons between the midguts.

We have implemented the analysis tools described above

into a Python package, called ‘‘Linear Analysis of Midgut’’ or

LAM (https://github.com/hietakangas-laboratory/LAM). LAM

provides various options for analyzing midgut image-derived

feature data, such as object coordinates for measuring cell-to-

cell distances and cell clustering (Figures 3A and 3B), object

size, and object intensities in a regional manner. It also

provides various options for plotting and statistical analysis

between sample groups (Figure 3C). We also provide a

separate tool for stitching tile images for large-scale datasets
Cell Reports Methods 1, 100059, September 27, 2021 3
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Figure 2. Border detection and alignment of midguts for pairwise comparison by LAM

(A) Midgut regions have distinct enterocyte size and density. Representative images of DAPI (cyan)-stained nuclei from the midgut R2–R5 regions. Scale bar,

10 mm.

(B) Nuclei area profile from whole midguts determined by identification of DAPI spot areas from the Imaris spot-detection algorithm. For the subsequent analysis

of midgut region borders, the diploid cells were filtered out from the dataset.

(C) Polyploid nuclei area profile along the A/P axis of midgut. AP, anchoring point. n = 32 midguts. Light-blue shading is the standard deviation.

(D) Nuclei nearest distance profile along the A/P axis of midgut. The distance between nuclei is a proxy for cell density. AP, anchoring point. n = 32midguts. Light-

blue shading is the standard deviation.

(E) Width profile along the A/P axis of midgut. Midgut width is approximated by following the vector bin-by-bin and summing the average projection distances of

the most distant decile of cells on both sides of the vector. AP, anchoring point. n = 32 midguts. Light-blue shading is the standard deviation.

(F–H) Border-detection algorithm performs a multivariate border region detection for each sample and outputs average border locations for each sample group.

(F) Smoothed scores of default border-detection variables along A/P axis of a sample. The variables are scored on the basis of weighted divergence from ex-

pected values, i.e., from a fitted fifth degree Chebyshev polynomial. The variable scores are summed to provide a total score for each location of a sample, which

are then rescaled to interval [0,1] in order to give comparable peak locations despite phenotypic differences. (G) Total scores of samples belonging to one sample

(legend continued on next page)
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Figure 3. Functionalities of LAM

(A and B) Feature-to-feature distances and clustering. Both functionalities are

based on calculating distances to neighbors of each feature. (A) Feature-to-

feature distance calculations determine the nearest neighbors of a channel’s

features either on one channel’s dataset (left) or compared with a target

channel’s dataset (right). In practice, the functionality can be used in deter-

mining cell densities and differences in cell dynamics. In the schematics, the

colored circles indicate feature locations of different channels, and the arrows

show the nearest features in the channel that is under analysis. (B) The clus-

tering algorithm is based on finding neighbors of each feature on one channel

to form ‘‘cluster seeds.’’ The seeds are then merged on the basis of shared

feature IDs to form the final clusters (blue circles). In the figure, the centroid of

feature number 1 falls within the cluster seed of feature 0, whereas feature 2

does not. However, as feature 2 is within the proximity of feature 1, during the

merging of seeds all these numbered features are joined into one cluster.

(C) Pairwise sample group comparisons in LAM. All groups are first analyzed

alone and then compared against the control group. LAM analysis can include

any number of sample groups, but each group is statistically tested only

against the control group.
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(https://github.com/hietakangas-laboratory/Stitch). Finally, LAM

is accompanied by a step-by-step guide, tutorial videos (https://

www.youtube.com/playlist?list=PLjv-8Gzxh3AynUtI3HaahU2o

ddMbDpgtx), and a user-friendly graphical user interface.

Region-specific cellular profiling of the steady-state
Drosophila midgut
To date, no quantitative data on regional distribution of cell types

in a steady-state midgut are available. We used LAM to establish
group (n = 32). The red line is the median score of the sample group and black lin

score, grouping of samples leads to emergence of trends that can be used for pea

(red line) shows approximate locations of border regions, as defined by value cha

for peak detection. The vertical red lines at peak locations show their prominenc

(I–K) Anchoring ofmidgut samples for regional alignment. (I) Midpoint anchoring. U

between copper cells and large flat cells, results in accurate alignment close to the

point is a user-defined image coordinate that is projected onto the normalized [0

equal for each sample. The samples are aligned within a data matrix by assigning

unequal alignment of the midgut ends due to varying proportions of regions, and

Aligning the samples from both ends propagates the error toward the middle of t

Split and combine anchoring. In this method, border peak analysis determines vec

more accurate regional comparison of different midgut samples.
such a dataset for mated young (7 days old) females, grown on

chemically defined holidic medium (Figure 4A) (Piper et al.,

2014). With the chosen experimental settings, we expect the

midguts to be in a gradually renewing steady state. The

border-detection algorithm was used to identify regions R1–

R5. To identify intestinal cell types, we used specific markers

for ISCs (Delta-LacZ), EBs (Su(H)-LacZ), and EE cells (anti-Pros-

pero) along with Esg-Gal4,UAS-GFP,tub-Gal80ts (Esgts), which

marks ISCs and EBs (Figures S1A and S1B) (Jiang et al.,

2009). The relative (normalized to total cell number) and total

cell numbers within regions R1–R5 were calculated (Figures

4B–4D and S1C–S1F). The analysis shows clear regional varia-

tion in the proportional numbers of distinct cell types—for

example, the EE cells were most concentrated in R3 (Figure 4D).

The overall regional pattern of Delta-positive ISC and Su(H)-pos-

itive EB distributions largely overlap with each other (Figures 4E

and 4F). The relative number of ISCs and EBs are high in themid-

dle, and the posterior of R4 (corresponding to R4bc) as well as in

the anterior R5 (corresponding to the R5a). In R2, ISCs and EBs

are most abundant in the middle of the region (corresponding to

the R2b). Notably, R1 contains very low numbers of ISCs and

EBs compared with the rest of the midgut (Figures 4E and 4F).

As the LAManalysis was performed at the resolution of 62 bins

per midgut, we were able to identify even more fine-structured

patterns of cellular distribution. For example, R3 is divided into

the acid-secreting CCR and the LFC region flanked by intestinal

constrictions. Plotting the polyploid EC nuclei number, area,

nuclei-to-nuclei distance, and midgut width revealed typical to-

pology of the CCR and LFC along the R3 region (Figures 4H–

4L). Interestingly, the anterior side of R3, composed of the

CCR, displayed high relative numbers of ISCs and EBs. Howev-

er, their respective distributions within this region differed

slightly: ISCs were most abundant in the middle and posterior

parts of CCR, whereas EBs were primarily clustered in the ante-

rior end of the CCR, adjacent to the R2/R3 border (Figures 4M–

4O). This is in line with the findings that the CCR can be subdi-

vided into molecularly distinct regions (Strand and Micchelli,

2011) and suggests the existence of localized signals directing

the balance between stem cell renewal and differentiation in

the CCR. In addition to ISCs and EBs, EE cells displayed specific

patterns in themiddlemidgut (Figures 4M and 4P). A high density

of EE cells was present in a narrow stripe at the anterior CCR, as

well as directly after the R3/R4 border (Figure 4P). The latter

stripe corresponded to the so-called iron cell region, which con-

tains enterocytes highly expressing the iron storage protein

Ferritin (Marianes and Spradling, 2013). Interestingly, additional
es are individual samples. Although individual samples have great variation in

k detection. (H) Peak detection performed on a sample group’s median scores

nges in multiple variables. The group’s score is smoothed and rescaled to [0,1]

e. The marked borders from left to right are B1, B2, B3, and B4.

sing a single anchoring point in a distinct morphological site, such as the border

anchoring point but propagates error toward the distal regions. The anchoring

,1] vector. The vector is then divided into a user-defined number of bins that is

them to indices according to the bin of their projected anchoring point. Note the

variable lengths at either side of the anchoring point. (J) Endpoint anchoring.

he midgut. In this method, a user-defined anchoring point is not necessary. (K)

tor cut points. This allows splitting, realigning, and rejoining of the vectors with
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enrichments of the EE cells were observed in the distal ends of

the midgut, at the border between the crop and R1, and at the

border between the midgut and hindgut (Figure 4G). Taken

together, profiling of the cellular distributions along the steady-

state midgut A/P axis by LAM revealed unprecedented patterns

of cell organization and demonstrated the performance of LAM

in quantitative analysis of subregional phenotypic features

(Figure 4Q).

DSS feeding results in regional changes to midgut
morphology and ISC differentiation
As a further proof of concept of the functionalities in LAM, we

analyzed the injury response of ISCs in a widely used colitis

model, oral administration of DSS (Figure 5A). DSS treatment

has been reported to induce regenerative ISC proliferation and

accumulation of Su(H)-positive enteroblasts, and there were no

significant changes in numbers of Delta- or Prospero-positive

cells (Amcheslavsky et al., 2009). An analysis of the morpholog-

ical features of the midgut revealed that DSS feeding results in

significant, region-specific changes in midgut morphology.

Midgut width and length were affected in several regions, espe-

cially in R3 and R4, R3 displaying the strongest relative reduction

in midgut length (Figures 5B and 5C). Furthermore, the size and

patterning of nuclei were altered in a region-specific manner

(Figure 5D). These changes somewhat compromised border

detection, in particular preventing reliable detection of the first

border (B1, Figure 5E). One of the most striking consequences

of DSS feeding was the prominent reduction of R3 cell numbers

(Figures 5F and 5G). This implies that the ECs of R3 are more

sensitive and/or that the R3 ISCs are not equally capable of

maintaining homeostatic regeneration upon DSS treatment. In

line with EC loss in R3, DSS treatment resulted in significant

loss of polyploid cells, whereas the number of smaller diploid

nuclei was less affected (Figure 5H). Consistent with the notion

of the stem cells’ inability to divide and compensate for cell

death, the number of ISC-derived GFP-marked cells was not

significantly increased in the R3 region upon acute DSS treat-

ment (Figure 5I). As a consequence of these changes, the typical

subregional R3 morphology, including differential patterning and

number of ECs in the CCR and LFC region, was lost in the DSS-

treated flies (Figures 5J and 5K). Altogether, based on the anal-
Figure 4. Cellular profiling of a steady-state midgut by LAM

(A) Experimental design used for the regional steady-state midgut profiling. Age

UAS-GFP, and Su(H)-LacZ genotypes were kept at +25�C for 6 days and then s

(B–D) Relative numbers of ISCs (B), EBs (C), and EE cells (D) in R1–R5 regions, c

(E–G) Sample and average heatmaps of cellular distributions along the midgut A

(H) Area distribution of R3 nuclei.

(I) Polyploid nuclei number along the R3 A/P axis.

(J) Polyploid nuclei area along the R3 A/P axis. Light-blue shading is the standar

(K) Average polyploid nuclei-to-nuclei distance along the R3 A/P axis. Light-blue

(L) R3 width along the A/P axis. Light-blue shading is the standard deviation.

(M) Representative images of R3 region showing the localization of Dl-lacZ-positi

EBs (lower panels). DNA is stained with DAPI and is shown in cyan. Scale bar, 1

(N) ISC number along the R3 A/P axis.

(O) EB number along the R3 A/P axis.

(P) EE cell number along the R3 A/P axis.

(Q) Schematic model displaying the steady-state distribution of ISCs, EBs, and E

Segmentation of the images was performed by Imaris software. See also Figure
ysis of the morphological and cellular parameters, our results

indicate severe sensitivity of the R3 region to acute DSS treat-

ment concomitant with impaired stem cell activation to compen-

sate for the cell loss.

To further investigate the regional heterogeneity of ISC differ-

entiation during DSS-induced injury, we used cell-type-specific

markers for ISCs (Delta-LacZ), EBs (Su(H)-LacZ), and EE cells

(anti-Prospero). Consistent with earlier findings (Amcheslavsky

et al., 2009), DSS treatment led to accumulation of Su(H)-posi-

tive EBs (Figures 6A and 6B). However, the accumulation of

EBs displayed region-specific differences, being most promi-

nent in R5 and particularly low in R1, and in the anterior parts

of R4 (Figure 6B). In contrast to the previous report (Amcheslav-

sky et al., 2009), we detected widespread accumulation of Delta-

positive ISCs, especially in R2 and R4 (Figures 6C and 6D).

Notably, the regional pattern of Delta- and Su(H)-positive cells

did not fully correlate. This might be explained by a regional dif-

ference in the prevalence of symmetric ISC-ISC divisions (high

Delta in the R4) and asymmetric ISC-EB divisions (high Su(H)

in the R5) (Figures 6B and 6D). Interestingly, we also noticed

that the nuclei of the Su(H)-positive cells were significantly larger

in R5 compared with R4. Thismight reflect impaired regulation of

the Notch signaling pathway with failure to switch off Su(H)

expression in the differentiating enterocytes in the R5 region

(Figures 6A and 6E). Consistent with the low amount of stem cells

in R1 during steady state, few Delta-positive cells were detected

in the anterior parts of the midgut after the DSS treatment (Fig-

ure 6D). The levels of Prospero-positive EE cells remained stable

upon the DSS treatment in most of the midgut area (Figure 6F).

Interestingly, however, an area ranging from posterior R4 to

anterior R5 displayed significantly elevated numbers of Pros-

pero-positive cells after the DSS treatment (Figure 6F). In conclu-

sion, the DSS-induced injury response displays prominent

regional heterogeneity in terms of stem cell activation, division,

and differentiation profiles.

DISCUSSION

Here, we present an approach to quantitatively study cellular

phenotypes of the whole Drosophila midgut. In combination

with fast tile scan imaging and efficient image feature detection
-matched, mated females of Esg-Gal4ts, UAS-GFP, Delta-LacZ or Esg-Gal4ts,

hifted to +29�C for 1 day.

alculated as the number of specific cells per total number of cells.

/P axis for ISCs (E), EBs (F), and EE cells (G).

d deviation.

shading is the standard deviation.

ve ISCs and Prospero-positive EE cells (upper panels) and Su(H)-lacZ-positive

00 mm.

E cells in the R3 region.

S1.
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Figure 5. DSS feeding results in regional changes to midgut morphology

(A) Experimental design of the DSS feeding experiment. Age-matched, mated females of Esg FO, UAS-GFP, Delta-LacZ or Esg FO, UAS-GFP, and Su(H)-LacZ

genotypes were kept at the restrictive temperature (+18�C) for 5 days and then shifted to the permissive temperature (+29�C) to induce the flip-out clones in the

presence of 3% DSS. The intestines were then analyzed after 5 days.

(B) LAM width profile of the control and DSS-treated midguts. Light-blue and orange shadings are the standard deviations. p values are calculated by Mann-

Whitney-Wilcoxon U test using a 3-bin window.

(C) Length of R1 + R2, R3, R4, and R5 midgut regions of control and DSS-fed flies.

(D) Representative images of R1–R5 midgut regions of control and DSS-fed flies. DNA is stained with DAPI and is shown in cyan. Scale bar, 20 mm.

(E) Border peak analysis of midguts of control and DSS-fed flies.

(F) LAM profile of number of cells between control and DSS-treatedmidguts. Light-blue and orange shadings are the standard deviations. p values are calculated

by Mann-Whitney-Wilcoxon U test using a 3-bin window.

(G) Representative images of the R3 region of control (left panel) and DSS-fed (right panel) flies. DNA is stained with DAPI and is shown in cyan. Scale bar, 100 mm.

(H) Area distribution of R3 nuclei in midguts of control and DSS-fed flies. Comparison of the number of R3 diploid and polyploid nuclei betweenmidguts of control

and DSS-fed flies.

(I) Area distribution of R3 GFP-positive nuclei in midguts of control and DSS-fed flies. Comparison of the number of R3 GFP-positive nuclei between midguts of

control and DSS-fed flies.

(J) Number of polyploid nuclei in R3. Anterior to the left, posterior to the right.

(K) Mean distance between polyploid nuclei in R3. Anterior to the left, posterior to the right.

p values in (C) are calculated by the two-sample t test. p values in (H) and (I) are calculated by Mann-Whitney-Wilcoxon U test. Segmentation of the images was

performed by Imaris software except in (F), where StarDist was used.
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Figure 6. DSS feeding results in regional

changes to ISC differentiation

(A) Representative images of the R4 (left panels) and

R5 (right panels) regions of control and DSS-fed

midguts from Esg-Gal4ts, UAS-GFP, and Su(H)-

LacZ flies. DNA is stained with DAPI and is shown in

cyan. Scale bar, 20 mm.

(B) Regional quantification of Su(H)-LacZ-positive

EBs of midguts of control and DSS-fed flies.

(C) Representative images of the R4 (left panels) and

R5 (right panels) regions of control and DSS-fed

midguts from Esg-Gal4ts, UAS-GFP, and Delta-

LacZ flies. DNA is stained with DAPI and is shown in

cyan. Scale bar, 20 mm.

(D) Regional quantification of Delta-LacZ-positive

ISCs of midguts of control and DSS-fed flies.

(E) Nuclei area quantification of Su(H)-positive cells

in R4 and R5 regions.

(F) Regional quantification of Prospero-positive EE

cells of midguts of control and DSS-fed flies.

p values in (E) are calculated by two-way ANOVA

followed by Tukey’s test. p values in (B), (D), and (F)

are calculated by Mann-Whitney-Wilcoxon U test

using a 3-bin window. Segmentation of the images

was performed by Imaris software.
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algorithms, LAM enables, for the first time, quantitative and

regionally defined automated phenotyping of all cells in the

whole midgut. LAM allows (1) coupling of cellular identities to a

specific position along the A/P axis, (2) automated detection of

regional boundaries, and consequently (3) quantitative and sta-

tistical analysis of cellular phenotypes along the regions of the

midgut, with subregional resolution. In doing so, LAM (4) opens

the path for organ-wide studies of midgut cells and eliminates

the bias caused by selective analysis of a specific midgut area.

Through these advances, LAM will allow the exploration of

regional heterogeneity of midgut cells, including the ISCs, and

will significantly increase the representativeness of midgut

phenotypic data. The graphical user interface makes LAM

accessible even for scientists with limited experience in compu-

tational image analysis.

Variations in regional distribution of midgut cells
We tested the performance of LAM by analyzing the distribution

of ISCs, EBs, and EE cells in a steady-state midgut of mated

young females. This analysis revealed several new features of
Cell Reports
cellular distributions, including partially

overlapping clusters of Delta- and Su(H)-

positive cells within the CCR/R3ab subre-

gion. In addition, EE cells were observed

to cluster around the main regional bound-

aries, including the cardia-R1, R2-R3, R3-

R4, and R5-hindgut boundaries, suggest-

ing a common regional organizer for the

specification of EE cell fate in these re-

gions. One such signal could be the Wg

signaling pathway, whose activity has

been shown to localize to these regions

(Tian et al., 2016). Notably, due to the
high variation of phenotypes between individual midguts, it

would have not been possible to reliably detect such features

by qualitative analysis of individual midguts. This demonstrates

the ability of LAM to detect variable phenotypes with high subre-

gional resolution. The resolution of LAM is influenced by the

numbers of bins, which can be freely adjusted by the user. The

optimal number of bins depends on the density of input data

points as well as data quality, which influences the accuracy of

alignment of individual midguts.

Regional heterogeneity of the injury response in a
Drosophila colitis model
As another proof of principle, we employed a widely used

Drosophila colitis model induced by DSS feeding. Use of LAM al-

lowed us to identify several new features of stem cell activation

and differentiation not previously documented in the literature,

providing new insight into the previously reported models of

midgut injury response (Amcheslavsky et al., 2009; Jiang et al.,

2016). We noticed a significant reduction of the total cell numbers

in R3, which coincidedwith low activation of stemcells inR3when
Methods 1, 100059, September 27, 2021 9
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compared with the neighboring R2 and R4 regions. As our exper-

iment focused on an acute 5-day DSS response, it remains

possible that R3 ISCs react with slower kinetics or that R3 ISCs

differentially dependonother environmental factors, suchasnutri-

tion. In fact, a previous study has demonstrated that the R3 stem

cells are capable of inducing a regenerative response during a

slightly longer (>1 week) DSS administration period on a diet with

20% sucrose (in contrast to 2% in our study) (Wang et al., 2014).

Outside R3, DSS treatment led to a relatively uniform increase in

Delta-positivecells, except inR1,whichcontains fewerDelta-pos-

itive cells to start with. Notably, our data differ from those of an

earlier study (Amcheslavsky et al., 2009) showing noaccumulation

of Delta-positive cells upon acuteDSS treatment. A possible tech-

nical explanation for the discrepancy is the perdurance of the

b-Galactosidase protein, expressed by the Delta-LacZ reporter.

Whereas the overall pattern of Su(H)-positive cells was similar to

that of the Delta-positive cells, the posterior midgut displayed

interesting quantitative differences. Most of R4 showed only a

modest increase in Su(H)-positive cells, but an area from the pos-

terior end of R4 to R5 displayed a very high increase in relative

numbers of EBs in response to DSS. Comparison of the regional

profiles of Delta-LacZ and Su(H)-LacZ reporters is consistent

with theconclusion that thedifferentiation ratesof ISCsdisplaysig-

nificant regional differences,with the ISCs of R5 beingmore prone

to EB fate. In addition, the Su(H)-positive cells in the R5 region of

the DSS-treated midguts showed enlarged nuclei compared

with the EBs in other regions. Although the molecular details ex-

plaining thedifference in ISC fatebetweenR4andR5areasyet un-

known, regional transcriptome mapping has revealed existing

gene expression differences between the ISCs of these regions

(Dutta et al., 2015).Onecandidate in regulating ISC fate in these re-

gions is the transcription factor Snail, whose expression is rela-

tivelyhigh inR5 ISCs. ForcedexpressionofSnail preventedEBdif-

ferentiation into ECs, leading to an accumulation of EBs (Dutta

et al., 2015). Hence, it will be interesting to learn whether intrinsic

differences in Snail expression, or possible region-specific

extrinsic factors, underlie the region-specific differentiation pat-

terns in the injured midgut.

Concluding remarks
In addition to the physiology of midgut regionality, the unbiased

organ-wide analysis with LAM can improve representativeness

of midgut data in general. Considering the concern of confirma-

tion bias throughout the scientific literature, there is a risk that

studies focusing on a narrow (often undefined) area of themidgut

primarily record and present data from areas that give the stron-

gest phenotypes. Considering our DSS experiment, a focused

analysis of only one (sub)region would have yielded several

different, and sometimes even mutually contradictory, biological

conclusions, depending on the region chosen. Therefore, one

should exercise caution when making generalized conclusions

based on the findings of a small subset of ISCs. We propose

an approach whereby the phenotypic response for a given treat-

ment/genotype is first quantitatively analyzed and reported at

the level of the whole midgut, with more detailed follow-up ex-

periments concentrated on the specific region(s) of interest. In

conclusion, we expect that the unbiased organ-wide analysis

offered by LAM will allow the pursuit of more representative
10 Cell Reports Methods 1, 100059, September 27, 2021
data and uncover the extent of tissue context-dependence of

stem cell regulation as well as increasing the understanding of

the physiological roles of intestinal regionalization.

Limitations of study
The performance of LAM is dependent on the quality of themidgut

preparations, image acquisition, and image segmentation for

cellular objects. Each step is to be carefully considered for suc-

cessful application of LAM. In our experiments, the intestines

weremounted between amicroscopeslidewith 0.12-mmspacers

and a coverslip. Images were obtained to capture half of the

midgut circumference, thus assuming the cellular heterogeneity

to be equal on each side.Whenmounted, themidgut is not always

equally flat along the A/P axis. Special care is needed to avoid

disproportional recording of the midgut circumference in different

regions. To circumvent any bias fromdisproportional imaging, it is

possible to extend the z stacks to include the full circumference of

the midgut if required. Although LAM allows the recording of all

imaged cells, the projection of objects to the midline vector is

dimensionally restricted, andLAMdoesnot account for orientation

on the z axis.Consequently, the informationoncell stratification as

well as the 3Dgeometry of the intestinal cylinder is not usedduring

object counting. z-axis coordinates are, however, taken into ac-

count when calculating the object distances and clustering, allow-

ing reliable data acquisition around the intestinal circumference.

The algorithm for detecting region borders is based on the

morphological characteristics of the regions, such asmidgut con-

strictions, aswell as thenuclear sizeanddistance,whichwerepre-

viously applied to manually map borders between physiologically

distinct compartments (Buchon et al., 2013). Although the parallel

use of multiple parameters increases the robustness of border

detection, it remains possible that experimental conditions, such

as those influencing visceral muscle function or changing the ratio

between cell types (e.g., EB accumulation), might influence the

border detection. As was the case with DSS treatment, a subset

of borders can often still be reliably detected. Specific ad hoc so-

lutions, such as region-specific GFP traps or elimination of EBs

from the analysis (by using a marker), might be applied under

such circumstances. Object segmentation is a critical step for

calculating the nuclear features characteristic of different regions.

The performance of the traditional object segmentation methods,

such as intensity thresholding, is compromised by high cellular

densities, cell-size variation, cell stratification, and intensity differ-

ences. The variation in the success of nuclear segmentation

possiblyhamperedour attempts to reliablydetect regionalborders

from individual midguts. We overcame this limitation by applying

sample group average values to locate the borders of individual

samples. Deep-learning-based nuclear segmentation algorithms,

such as StarDist (Schmidt et al., 2018; Weigert et al., 2020), are

likely to further improve the accuracy.
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Piper, M.D.W., Blanc, E., Leit~ao-Gonçalves, R., Yang, M., He, X., Linford, N.J.,

Hoddinott, M.P., Hopfen, C., Soultoukis, G.A., Niemeyer, C., et al. (2014). A ho-

lidic medium for Drosophila melanogaster. Nat. Methods 11, 100–105.

Preibisch, S., Saalfeld, S., and Tomancak, P. (2009). Globally optimal stitching

of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465.
Cell Reports Methods 1, 100059, September 27, 2021 11

https://doi.org/10.1016/j.crmeth.2021.100059
https://doi.org/10.1016/j.crmeth.2021.100059
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref1
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref1
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref2
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref2
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref2
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref3
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref3
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref3
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref4
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref4
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref4
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref5
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref5
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref5
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref6
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref6
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref6
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref6
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref7
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref7
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref8
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref8
https://github.com/Toblerity/Shapely
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref10
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref10
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref10
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref11
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref11
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref11
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref12
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref12
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref12
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref13
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref13
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref13
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref14
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref14
http://bitplane.com
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref16
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref16
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref17
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref17
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref17
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref18
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref18
https://doi.org/10.7554/eLife.00886
https://doi.org/10.7554/eLife.00886
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref20
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref20
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref21
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref21
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref22
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref22
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref22
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref22
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref23
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref23
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref24
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref24
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref25
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref25
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref25
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref25
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref26
http://refhub.elsevier.com/S2667-2375(21)00107-7/sref26


Article
ll

OPEN ACCESS
Reiff, T., Jacobson, J., Cognigni, P., Antonello, Z., Ballesta, E., Tan, K.J., Yew,

J.Y., Dominguez,M., andMiguel-Aliaga, I. (2015). Endocrine remodelling of the

adult intestine sustains reproduction in Drosophila. eLife 4, e06930.

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch,

T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., et al. (2012). Fiji: an

open-source platform for biological-image analysis. Nat. Methods 9, 676–682.

SciPy 1.0 Contributors; Virtanen, P., Gommers, R., Oliphant, T.E., Haberland,

M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W.,

et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Py-

thon. Nat. Methods 17, 261–272.

Schmidt, U., Weigert, M., Broaddus, C., andMyers, G. (2018). In MICCAI 2018.

Lecture Notes in Computer Science, 11071, J. Schnabel, C. Davatzikos, C. Al-
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit IgG fraction against

b-galactosidase

MP Bio Cat# 0855976;

RRID: AB_2334934

Anti-Prospero antibody DSHB Cat# Pros(MR1A); RRID: AB_528440

Vectashield mounting medium

with DAPI

Vector Laboratories Cat# H-1200;

RRID: AB_2336790

Dextran sulfate sodium salt MP Bio CAS: 9011-18-1

Deposited data

Segmentation data (figures) This paper DOI: https://doi.org/10.23729/fac30a2e-

1de5-45d6-879e-f67129bc822d;

URL:

https://etsin.fairdata.fi/dataset/78fc1f12-

f4d0-4d5a-b2ba-d72f9998145b

Experimental models: Organisms/strains

Delta-LacZ Bloomington Cat# 11651;

RRID: BDSC_11651

Gbe + Su(H)-lacZ Furriols and Bray, 2001 N/A

w; Esg-Gal4, Tub-Gal80-ts,

UAS-GFP (Esĝ ts)

Jiang and Edgar, 2009 N/A

Esĝ ts ; UAS-Flp, Act>CD2>Gal4

(Esg FO)

Jiang et al., 2009 N/A

Software and algorithms

Fiji/ImageJ Schindelin et al., 2012 RRID: SCR_003070;

URL: https://imagej.net/Fiji

ImageJ Grid/Collection plugin Preibisch et al., 2009 URL: https://imagej.net/Grid/Collection_Stitching_Plugin

Imaris 9.5.1 Bitplane Inc., 2019 RRID: SCR_007370;

URL: https://imaris.oxinst.com/

LAM 0.4.2 This paper Zenodo: https://doi.org/10.5281/zenodo.5037180;

GitHub: https://github.com/hietakangas-laboratory/LAM

LAM-helper-modules 1.0.0 This paper Zenodo: https://doi.org/10.5281/zenodo.5037000;

GitHub: https://github.com/hietakangas-laboratory/

LAM-helper-modules

predictSD 1.0.0 This paper Zenodo: https://doi.org/10.5281/zenodo.5036995;

GitHub: https://github.com/hietakangas-laboratory/predictSD

Python 3.7 Python Software Foundation RRID: SCR_008394;

URL: https://www.python.org/

StarDist 0.6.2 Schmidt et al., 2018; Weigert

et al., 2020

GitHub: https://github.com/stardist/stardist

Stitch 1.0.0 This paper Zenodo: https://doi.org/10.5281/zenodo.5037000;

GitHub: https://github.com/hietakangas-laboratory/Stitch

Other

Holidic Drosophila diet Piper et al., 2014 N/A
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RESOURCE AVAILABILITY

Lead contact

d Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Ville

Hietakangas (ville.hietakangas@helsinki.fi).

Materials availability

d This study did not generate new unique reagents.

Data and code availability

d The raw image data reported in this study cannot be deposited in a public repository because of file size. To request access,

contact Ville Hietakangas (ville.hietakangas@helsinki.fi). In addition, segmentation data on cell-like objects from the raw images

have been deposited at IDA-database and are publicly available as of the date of publication. URL and DOI are listed in the key

resources table.

d All original code has been deposited at GitHub and Zenodo and is publicly available as of the date of publication. LAM is also

available on Python Package Index (PyPI). URLs and DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Drosophila stocks and husbandry
Fly stocks used in this study: w; Esg-Gal4, Tub-Gal80-ts, UAS-GFP ; UAS-Flp, Act>CD2>Gal4 (Esg FO) (Jiang et al., 2009), w; Esg-

Gal4, Tub-Gal80-ts, UAS-GFP (Esgts) (Jiang and Edgar, 2009), Delta-LacZ (Dl-LacZ, Bloomington 11651), Gbe+Su(H)-lacZ (Su(H)-

LacZ, Furriols and Bray, 2001). Flies were maintained at 25�C, on medium containing agar 0.6% (w/v), malt 6.5% (w/v), semolina

3.2% (w/v), baker’s yeast 1.8% (w/v), nipagin 2.4%, propionic acid 0.7%.

METHOD DETAILS

DSS treatment
36-50 KDa DSS was obtained from Fisher Scientific (cat no. 11424352). Staged Esg FO>UAS-GFP, Delta-LacZ and Esg FO>UAS-

GFP, Su(H)-LacZ pupae were collected into vials containing holidic diet (Piper et al., 2014). After eclosion the flies were kept on the

holidic diet for 5 days at 18�C, and then transferred into vials containing 2% sucrose (w/v) in medium containing agar 0.5% (w/v),

nipagin 2.4%, and propionic acid 0.7%, in water with or without 3% DSS, and then kept at +29�C for 5 days.

Immunohistochemistry
For immunofluorescence staining, intestines were dissected in PBS and fixed in 8% paraformaldehyde for 3 hours. Tissues were

washed with 0.1% Triton-X 100 in PBS and blocked in 1% bovine serum albumin for 1 h. Subsequently, tissues were stained with

anti-b-Galactosidase (1:400) (MP Biomedicals cat no: 0855976-CF) and/or anti-Prospero (1:1000) (MR1A, DSHB) antibodies. The

samples were mounted in Vectashield mounting media with DAPI (Vector Laboratories) and imaged using the Aurox clarity confocal

system (Aurox).

Microscopy and image processing
Fixed and immunostained whole midguts were mounted in between a microscope slide with 0.12 mm spacers and a coverslip, fol-

lowed by tile scan imaging by the Aurox clarity spinning disc confocal microscope from the anterior to posterior end. To reduce the

image size and scanning time, stacks of only one side of the flattened midgut epithelium were obtained. For stitching the tiles and

image processing in ImageJ (Schindelin et al. 2012), we generated a python script, ‘‘Stitch’’, with a graphical user interface

(https://github.com/hietakangas-laboratory/Stitch). ‘‘Stitch’’ is a programme for stitching together a series of tiff images within a

directory, utilizing the ImageJGrid/Collection plugin (Preibisch et al., 2009), and performing stitching formultiple directories in a batch

process. This programme can stitch together a series of tiff images using only a companion.ome metadata file associated with the

tiff series. Alternatively, as in this article, ‘‘Stitch’’ can utilize the tile positions output from the microscope to perform image

stitching. Full usage instructions and details are available in the ‘‘Stitch’’ user guide. After stitching and image processing, TIFFs

were converted to Imaris (Bitplane) files, and features were obtained by the Imaris spot detection algorithm (Imaris (version 9.5.1)

2019). Raw feature data, including spot surface area measurements, were exported and used as input for LAM for further
e2 Cell Reports Methods 1, 100059, September 27, 2021
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analysis (see the LAM user guide for details). Python script for enabling easy export of bulk Imaris .csv files to LAM is available in

github (https://github.com/hietakangas-laboratory/LAM-helper-modules). The repository also contains python scripts with graphical

user interface for exporting manually drawn midgut vectors and anchoring points in Fiji/ImageJ. Notably, LAM input is not restricted

to Imaris, but accepts data from any source with at least coordinates and unique object identifiers in wide-format tables. We have

included python code for running the deep-learning tool StarDist (Weigert et al. 2020) on 3D midgut images in addition to several

pre-trained segmentation models (https://github.com/hietakangas-laboratory/predictSD).

Methods in LAM
Data handling in LAM is performed with NumPy (Harris et al., 2020) and Pandas (McKinney, 2010), while plotting is done using mat-

plotlib (Hunter, 2007) and Seaborn (Waskom et al., 2020). Geometric and image operations are performed with Shapely (Gillies, 2007)

and Scikit-image (van derWalt et al., 2014), respectively. Statistics are calculated with scipy.stats (SciPy 1.0 Contributors et al., 2020)

and statsmodels (Seabold and Perktold, 2010). The border detection additionally uses scipy.signal (SciPy 1.0 Contributors et al.,

2020) for locating regions of high signal. LAM includes an easy-to-use graphical user interface (GUI) with enabling/disabling of related

options as well as a default settings file that can be edited at will to control all runs. LAM also supports execution from the command

line using a limited scope of arguments. Full description of the usage of LAM and step-by-step instructions can be found in the LAM

user guide found in GitHub (https://github.com/hietakangas-laboratory/LAM). LAM video tutorials are available at (https://www.

youtube.com/playlist?list=PLjv-8Gzxh3AynUtI3HaahU2oddMbDpgtx).

Vector creation
LAMprovides two alternativemethods for creating piecewisemedian lines, whichwe colloquially call vectors, formidgut images: bin-

smoothing and skeletonization. The methods provided by LAM require the midguts to be horizontally oriented, but the vectors can

alternatively be given as coordinate files without restrictions in orientation. An auxiliary script is provided to rotate data to horizontal

orientation. Bin-smoothing of the data is performed by binning the x-axis after which the median of the nuclei co-ordinates is calcu-

lated for each bin. Then a piecewise line is created to connect the binmidpoints. The number of bins is a user defined parameter to be

adjusted for suitable level of smoothing. In the skeleton vector creation option, the DAPI channel co-ordinate data is first converted

into a binary image where each nuclei is resized to one pixel. As a result, a binary matrix is created where pixels of nuclei are marked

as one, and empty pixels as zero. The binary image is then processed with resizing, smoothing, binary dilation, as well as hole filling in

order to produce a continuous blob (user defined parameters, see user guide for more details). The matrix is then subjected to skel-

etonization, where pixels of the image are eroded until reduced to pixel-wide structures. The vector starting point is determined as the

average of five pixel co-ordinates having the smallest x value. The vector is then drawn from pixel to pixel by scoring pixels within a

specified range (find distance in GUI) using the following penalty function:

penalty = dvector + dpoint + jradj � 10
where dvector is the distance of the pixel to the last co-ordinate of the vector, and dpoint is the pixel’s distance to the projection point

ahead of the last coordinate. The projection point is determined by adding the previous vector progression (distance and direction)

into the last vector point. The final scoring component, the modulus of radians, is the difference in direction between the last vector

co-ordinate and a pixel compared to a fitted line between the last three vector co-ordinates. The x and y co-ordinates of the pixel with

the smallest penalty are then added to the path of the vector, and the next pixels are scored based on these coordinates, and so on

until no more pixels are found (Figure 1C).

Projection and counting
All segmented image objects and their associated data, which we collectively call features, are projected to the vector using linear

referencing methods of the shapely package. To this end, each feature coordinate is assigned a value based on the normalized dis-

tance [0.1] to its nearest coordinate point along the A/P length of the vector. The features can then be counted by dividing the vector

into a user-defined number of bins of equal length. The default 62 bins is suitable for standard analysis of midgut cell types, but if

studying e.g. cell type subpopulations that are more sparse, the bin number may need to be reduced to avoid number of cells per

bin skewing towards zero. In contrast, the number of bins may be increased for better resolution if the data has sufficiently high den-

sity of cells of interest. By conserving the bin number between samples, LAM enables building of data matrices for bin-to-bin and

windowed statistical comparisons.

Bin-wise comparability between sample groups may be reduced by variation in region length. Consequently, LAM allows the data

to be joined using the samples’ APs, i.e., linear references of distinguishable points for each midgut, to maximize correspondence of

regions within the data matrix. Each sample’s data can be centered at a specific index position of the matrix when using individual

APs. Alternatively, the vector and data can be cut, re-binned, and recombined at each segment flanked by the APs in the ‘‘split and

combine’’ approach. To align the samples region-to-region in the ‘‘split and combine’’ approach, the APs can be obtained using

LAM’s border detection on the data.
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Feature-to-feature distances
LAM has the option to compute pairwise Euclidean distances between nearest features (Figure 3A). The distances can be calculated

between features on one channel, e.g. DAPI, or between two channels, e.g. the distance from each Delta+-cell to nearest Pros+-cell.

The features can additionally be filtered by area, volume, or another user defined variable. The algorithm finds for each feature the

shortest distance to another feature in the filtered dataset.

Feature clustering
LAM also includes an algorithm for cluster analysis that functions in a similar manner to the feature-to-feature distance calculations.

Cell clusters in the midgut tend to either take the form of longer strands or a more spherical shape, and consequently defining the

clusters by their shapes would be problematic. To overcome this, LAM takes the approach to cluster the cells by their proximity

to each other (Figure 3B). For each feature, LAM first finds its neighbors within a user-defined distance inside a constructed k-d

tree of the 3D co-ordinate data. Found features are thenmarked as a ‘‘cluster seed’’. After all seeds are found, they aremerged based

on shared feature identification. As a result, unique clusters with no shared features are formed. The clusters can be further filtered by

a user-defined number of features, and are finally assigned unique cluster identification numbers.

Gut width measurement
LAM computes the width of each midgut along its vector. The midgut is binned into segments of equal length, and nuclei with the

largest distances to the vector are found. As the vector may not exactly follow the true center of the midgut, the handedness of

the nuclei relative to the vector are determined. Average distance of the furthest decile of nuclei is calculated for both hand sides,

and the width at each bin is the sum of these averages.

Automatic border detection
Before running the algorithm, the nuclei area distribution is determined, and only polyploid nuclei are included into the analysis. The

borders are detected based on normalized values of (i) polyploid nuclei distance to its nearest neighbor, (ii) midgut width, (iii) midgut

width bin-to-bin difference, and (iv) polyploid nuclei area bin-to-bin difference (default setting variables). These variables have region

specific variation along the midgut’s A/P-axis, and local changes correspond to the major region borders. In order to find local

changes of the variables, a fitted fifth degree Chebyshev polynomial is subtracted from the values as a context adjustment. To

this end, for each bin (x) in the full range of bins [0 . a], a total score is calculated by summing the weighted (w) deviations of

each variable’s (vi.n) normalized value from the fitted curve (c):

fx˛ Nj0% x% ag; xscore =
Xn

i = 1

�
vxi � cx

�
$wi

The resulting score arrays are then smoothed and rescaled to interval [0, 1]. Peak detection is then performed on context-adjusted

group average scores to find signals corresponding to region borders. To increase resolution, the border detection algorithm is run by

twice the number of bins set by the user.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistics in LAM
LAM includes pairwise statistical testing of control and sample groups (Figure 3C). LAM has two types of in-built statistical testing.

Firstly, bin values of the sample group are tested against the respective bin of the control group resulting in a representation of p

values along the A/P axis of the midgut. Secondly, total feature counts of a sample group are tested against the control group.

Both tests are performed with Mann-Whitney-Wilcoxon U test using continuity correction. In the bin-by-bin testing, false discovery

rate correction due to multiple testing is applied. Additionally, for the bin-by-bin testing, a sliding window option of user-defined size

is available. The use of a sliding window has some advantages depending on input data. For example, some cell types of the midgut

may be spatially too sparse for bin-to-bin testing as the cell count at each bin would be skewed towards zero. Consequently, using a

sliding window to merge bins would increase the number of non-zero values in the test population, and therefore increase the

strength of the statistical test.

Other statistical analysis
Statistical analyses were performed in R/Bioconductor. For parametric data, two-sample t-test or two-way ANOVA in conjunction

with Tukey’s HSD test was used. For the non-parametric count data Wilcoxon rank-sum test with multiple testing correction

(FDR<0.05) was used.

ADDITIONAL RESOURCES

LAM tutorial videos: https://www.youtube.com/playlist?list=PLjv-8Gzxh3AynUtI3HaahU2oddMbDpgtx.
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