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Abstract: The use of liquefied petroleum gas (LPG) for cooking is a strategy to reduce household
air pollution (HAP) exposure and improve health. We conducted this feasibility study to evaluate
personal exposure measurement methods to representatively assess reductions in HAP exposure.
We enrolled 30 pregnant women to wear a MicroPEM for 24 h to assess their HAP exposure when
cooking with a traditional stove (baseline) and with an LPG stove (intervention). The women wore
the MicroPEM an average of 77% and 69% of the time during the baseline and intervention phases,
respectively. Mean gravimetric PM2.5 mass and black carbon concentrations were comparable during
baseline and intervention. Temporal analysis of the MicroPEM nephelometer data identified high
PM2.5 concentrations in the afternoon, late evening, and overnight during the intervention phase.
Likely seasonal sources present during the intervention phase were emissions from brick kiln and rice
parboiling facilities, and evening kerosene lamp and mosquito coil use. Mean background adjusted
PM2.5 concentrations during cooking were lower during intervention at 71 µg/m3, versus 105 µg/m3

during baseline. Representative real-time personal PM2.5 concentration measurements supplemented
with ambient PM2.5 measures and surveys will be a valuable tool to disentangle external sources of
PM2.5, other indoor HAP sources, and fuel-sparing behaviors when assessing the HAP reduction due
to intervention with LPG stoves.

Keywords: household air pollution; personal exposure; biomass; liquified petroleum gas; pregnancy

1. Introduction

Globally, household air pollution (HAP), which includes hazardous substances such as
carbon monoxide (CO), particulate matter (PM), and other environmental toxins, is the third
leading health risk for mortality and the most important environmental health risk [1–3].
The global mortality attributable to HAP is 4.3 million deaths or 7.7% of all deaths from
acute respiratory infection, ischemic heart disease, and lung cancer [1]. Approximately
3 billion people depend on biomass fuels (e.g., wood, dung, crop waste) for cooking,
heating, and lighting [4,5]. The poor-quality fuels, inefficient stoves with highly polluting
combustion processes, and poorly functioning chimneys for good indoor ventilation, cause
chronic exposure to elevated HAP concentrations. HAP contributes to a significant health
burden on various populations, namely, low- and middle-income countries (LMICS) and
women of reproductive age [5,6]. According to the World Health Organization (WHO),
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women and children bear the greatest burden of this exposure as a particularly vulnerable
group [7,8]. In South Asia, HAP exposure is the number one health risk for childhood
communicable diseases, rising to prominence over poor water and sanitation and childhood
micronutrient deficiencies [1].

The adverse outcomes of HAP on maternal and child health are a concerning topic
regarding public health. Pregnant women and their fetuses are especially prone to adverse
impacts of HAP regarding perinatal complications leading to stillbirth and neonatal mor-
tality. The toxic particulate matter and gases can cross the placenta and reduce oxygen
delivery to the fetus, hindering human development [9,10]. One study that assessed the
impact of exposure to cooking fuels on stillbirths concluded there was an increased risk
(absolute risk reduction (aRR) 1.44, 95% confidence interval (CI) 1.3–1.61) of perinatal
mortality among households using polluting fuels [11]. Meta-analyses reported pooled
estimates for stillbirth odds ratio (OR) were 1.51 (95% CI: 1.23, 1.85) and OR 1.51 (95% CI:
1.23, 1.85) [12,13]. The included studies, however, were retrospective with potential for
selection bias and did not account for important risk factors [10,14–16].

Low birth weight, an important indicator for morbidity and mortality in infancy, has
been measured in various studies to assess the impact of biomass fuel [17]. A recent study
in Sri Lanka found that high exposure to HAP resulted in an increased risk of low birth
weight compared to a lower exposure category, which only used clean energy as cooking
fuel (aOR 3.23 (95% CI 1.17–8.89)) [18]. However, many of these studies were cross-sectional
and used proxy measures instead of direct measurement of HAP exposure.

The HAP-related health outcomes associated with traditional cooking practices have
encouraged adoption of alternative fuel to decrease HAP exposure. Further, ventilation,
stove condition, time spent cooking, and other factors must also be studied to gain a
comprehensive understanding of opportunities to reduce HAP exposure [19]. Liquid
petroleum gas (LPG), a mixture of propane and butane, burns efficiently and therefore emits
less pollution than a traditional biomass stove [20]. Support for improving accessibility to
LPG stoves has increased in part due to improved short-term health outcomes [18,21–23].

It is likely that an LPG stove can help lower indoor PM2.5 levels to the WHO target
of 10 µg/m3, which is highly favorable compared to other speculated interventions with
improved biomass cookstoves [22,24]. Two studies have estimated a ≈33% reduction in
personal exposure to PM2.5 in pregnant women associated with using LPG fuels instead
of biomass fuels [25,26]. Likewise, studies have shown that CO concentrations decrease
with the use of LPG stoves [27]. This is important because CO, which has a particularly
strong affinity for hemoglobin, is a primary source of compromised oxygenation of the
fetus [19]. Chronic CO exposure is also specifically linked to other outcomes, including
asthma, cardiovascular disease, and neurological development [28]. Despite the benefits of
LPG stoves, some studies show that overall PM2.5 exposure levels are still 18 times higher
than the WHO standard in areas that implement LPG usage, which leads us to speculate
other possible contributors to exposure [29].

The availability of LPG fuel in low-resource settings such as Bangladesh is currently
limited to urban populations, whereas rural populations rely almost universally on tradi-
tional biomass fuels. Important social implications must be considered before deciding
whether the widespread adoption of LPG stoves is the most viable and sustainable option
for improving air quality. The impact of a clean cooking intervention on HAP exposure
reduction and associated improved health outcomes depends on behavior change that
leads to sustained LPG stove adoption [30–32]. Cultural cooking practices, willingness
to pay, fuel accessibility, economic factors associated with fuel costs and stove mainte-
nance, and inadequate estimates of HAP reduction can adversely impact any clean cooking
intervention [33–38].

This study aims to provide context on how we can directly target rural, pregnant
women’s HAP exposure from traditional stove use to improve perinatal and neonatal
outcomes. In preparation for a prospective community-based randomized controlled clean
cooking trial of perinatal and neonatal mortality and morbidity in rural Bangladesh, we
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conducted a feasibility study. We aimed to assess the barriers and facilitators for conducting
the clean cooking trial with pregnant women, including an evaluation of methods to assess
reductions in HAP exposure (Poriborton: The CHANge Trial, ACTRN12618001214224).
Our objectives were to assess the data quality and information gained from personal
exposure monitoring, characterize the women’s exposure distributions pre- and post-
intervention, and quantify the reduction in HAP exposure that resulted from the clean
cooking intervention.

2. Materials and Methods

The Poriborton: The CHANge Trial feasibility study is described in Raynes-Greenow
(2020) [30]. To briefly summarize, pregnant women’s exposure to HAP before and dur-
ing LPG stove distribution were measured. A subset of 30 women with gestational age
between 12 to 20 weeks and not using LPG for cooking enrolled in the feasibility trial
were recruited for personal exposure monitoring. HAP exposure measurements during
traditional stove use occurred during May–July 2016 and after LPG stove distribution in
November–December 2016 (Table 1). All participants used a traditional clay stove and
readily available biomass fuels. Only one participant cooked with their traditional stove
inside their home; the remainder had their traditional stoves in a separate building or
outdoors. Four participants also had access to an electric or other type of stove kept inside
their home. Cigarette smoking occurred inside 16 of the homes. Locally made, two burner
LPG stoves were installed inside the home, not in a separate kitchen outside the home,
during the 3 month intervention phase. Each participant received 3 LPG cylinders during
the intervention phase. Stoves and cylinders were free to study participants.

Table 1. Cooking, fuel, and tobacco use characteristics.

Characteristic Response Number

Primary household cook Study participant 30
Kitchen location Separate building used as kitchen 26

(Traditional stove) Home, separate room from sleeping 1
Home, same room used for sleeping 0

Outdoor 3
Primary stove Traditional, clay stove 30

Stove used other than cooking No 30
Typical cooking fuels used Cow dung 28

Wood, bamboo 28
Straw, leaves, crop residue 27

Husks, grass 11
Kerosene 0

LPG 0
Electricity 2

Other 2
Smoking inside home Yes 16

No 14
Number of smokers 1 11

2 5

The MicroPEM™ (RTI, Research Triangle Park, NC, USA), a low burden and wearable
(240 g with batteries) particulate matter (PM) exposure monitor, assessed personal exposure
to HAP pre- and post-intervention. Dual stage impactors aerodynamically selected the
PM2.5 fraction for collection on a pre-weighed 25 mm PTFE filter (Zefon International,
Ocala, FL, USA). Gravimetric analysis of the filter determined the average PM2.5 personal
exposure concentration over the 24 h measurement period [39]. Black carbon (BC) and
brown carbon—environmental tobacco smoke (BrC-ETS) mass on the filter were measured
by multiwavelength optical transmittance [40]. The MicroPEM measured PM2.5 real-time
concentrations every 10 s via light scattering nephelometry. Nephelometer data were
corrected such that the integrated average was equal to the corresponding gravimetric
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concentration then consolidated to a 1 min average. Participant compliance with wearing
the MicroPEM in the pocket of a sash located on the upper left of the women’s chest was
calculated from the accelerometer data [41]. Statistical analysis (SAS Enterprise v7.1, SAS,
Cary, NC, USA) validated the MicroPEM filter and nephelometer data. Sample periods less
than 22 h and outlier PM2.5 concentrations were flagged as invalid. The invalid samples
were confirmed by visual analysis of the MicroPEM data file and the filter. PROC GLM
compared PM2.5 mass and species concentration reductions pre- and post-intervention.

3. Results

We collected valid paired baseline and intervention data from 22 of 30 women (73%)
and 87% of the total samples (52 of 60). All eight invalid MicroPEM samples occurred
during baseline. Mishandling of MicroPEM filters by the data collection team before or after
sample collection invalidated six samples. The remaining two invalid samples occurred
because the MicroPEM experienced battery failure that resulted in sample collection periods
shorter than 22 h. All study participants wore the MicroPEM an average of 77 ± 6% (min–
max: 49–93%) and 69 ± 7% (min–max: 43–89%) of their time awake during baseline
and intervention, respectively. The wearing compliance values show participants wore
the MicroPEM consistently, indicating that the data collected are representative of their
exposure.

Mean gravimetric PM2.5 concentrations during baseline and intervention were compa-
rable: 81.3 µg/m3 vs. 75.3 µg/m3 (p = 0.518) (Table 2). Black carbon comprised 56.4 µg/m3

(69.3%) and 68.7 µg/m3 (91.2%) of the PM2.5 mass during baseline and intervention, re-
spectively, and were statistically similar (p = 0.646). BrC-ETS concentrations were low:
4.1 µg/m3 during baseline and less than 1 µg/m3 during intervention (p < 0.0001).

Table 2. PM2.5, BC, and BrC-ETS concentration distributions measured during the baseline and
intervention phases.

PM2.5 (µg/m3) BC (µg/m3) BrC-ETS (µg/m3)

Baseline Intervention Baseline Intervention Baseline Intervention
Mean 81.3 75.3 56.4 68.7 4.1 * 0.2 *

SD 43.8 19.0 20.2 14.8 7.6 0.7
Median 63.1 91.7 54.0 67.2 0 0

IQR 59.0 23.5 24.3 21.0 5.7 0
* p < 0.0001.

Figure 1 is a percentile distribution plot of the 1 min average PM2.5 nephelometer
concentrations across all participants with valid data during the baseline and interven-
tion phases. The nephelometer concentrations during baseline exhibited a log-normal
distribution, as evidenced by the linearity of the line, until the inflection point at approx-
imately 25 µg/m3 (65th percentile). The change in slope at that point suggests a strong
source of PM2.5, likely from traditional stoves, was present. Nephelometer concentrations
during the LPG intervention were higher than baseline values until the 94th percentile
was crossed. The exposure concentration distribution during intervention was log-normal
until the 97th percentile, when a slight increase in slope occurred. The small slope change
suggests participants had a sporadic but weak secondary source of PM2.5 exposure during
the intervention phase.
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Figure 1. Probability distribution of the valid, 1 min average PM2.5 nephelometer concentrations
measured during baseline and intervention. The percentiles are the fraction of the exposure data less
than the corresponding concentration.

Figure 2 shows the mean baseline and intervention PM2.5 nephelometer concentrations
for each hour of the day. The average hourly data suggest that PM2.5 exposure was lower
when cooking with the LPG stove. During peak cooking hours of 06:00 to 08:00, 12:00 to
14:00, and 16:00 to 18:00, the mean PM2.5 concentrations during the baseline concentrations
exceeded the intervention concentrations (Table S1). The mean MicroPEM nephelometer
concentration during cooking periods with LPG was 84.6 µg/m3 vs. 136.5 µg/m3 with
traditional stoves. The width of the 95% confidence intervals during these periods of
cooking were also wider during baseline than during intervention.

However, the background PM2.5 concentration during intervention was higher than
during the baseline phase. The higher concentrations during the intervention phase were
prominent overnight, starting at 19:00 h and continuing to 07:00 h. This finding suggests a
source of ambient or HAP PM2.5 besides cookstove emissions influenced the participant’s
exposure and caused their 24 h average PM2.5 exposure during each phase to be similar.
The higher PM2.5 background concentrations were also evident during the day from 09:00
to 14:00 h, but the differences were not as strong. To elucidate the PM2.5 contributions from
traditional and LPG fuel use, we estimated the average background PM2.5 concentrations
and subtracted that value from the hourly averages (Figure 3, Table S2). The background
corrected baseline and intervention PM2.5 concentrations during cooking were 103.5 µg/m3

and 71.5 µg/m3, respectively. Background corrected values during non-cooking periods
were 20.8 µg/m3 and 21.8 µg/m3 for baseline and intervention, respectively. Daily mean
concentrations were 53.4 µg/m3 and 38.4 µg/m3 for baseline and intervention, respectively.
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Note, the elevated intervention phase PM2.5 concentrations during the overnight hours
remained after correction for background PM2.5.
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4. Discussion

Using personal, real-time PM2.5 exposure data, this feasibility study assessed the effect
of an LPG cookstove intervention on HAP reduction in rural Bangladesh. Our findings
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suggest that the use of LPG fuel reduced peak HAP exposure. Aside from this main finding,
the personal level data strongly suggest that higher personal PM concentrations present
during the intervention phase of the study were caused by ambient PM sources that were
not specifically measured in this study. Additionally, the validity of the MicroPEM data
collected showed personal exposure measurements were feasible with proper training
and support.

Continuous measurements of personal exposure suggested that the use of cleaner LPG
cookstoves reduced peak HAP exposure. The non-significant reduction in exposure as
measured by the daily average concentration, on the basis of gravimetric mass or neph-
elometer measures, could suggest the LPG intervention was not effective at reducing HAP
exposure. However, we determined from the time series PM2.5 concentrations measured by
the nephelometer that the background PM2.5 concentration during the intervention phase
was higher than during baseline. After subtracting the mean background concentrations
for baseline and intervention, it became apparent that PM2.5 exposures were lower during
cooking periods with LPG fuel than with traditional fuels. The absence of an increase in
PM2.5 concentration around 12:00 h, lunch, during the intervention phase strongly suggests
any PM2.5 increase in the morning or evening originated from other sources of HAP. Over-
all, we estimate that the use of LPG fuel reduced exposure to HAP during cooking periods
by approximately 31%, from 103.5 µg/m3 to 71.5 µg/m3.

This reduction in PM2.5 concentrations provided additional evidence for the effec-
tiveness of a widespread LPG intervention, which is a similar result compared to several
other studies. A pilot study in India as part of the HAPIN trial reported mean personal
PM2.5 exposures in homes that used LPG were 36 µg/m3 versus 75 µg/m3 in homes using
biomass fuels [42]. In the GRAPHS study, there was a 32% reduction in PM2.5 exposure
in the LPG arm compared to the control arm [27]. In rural Nepal, the mean PM2.5 con-
centration was 442 µg/m3 with LPG stove usage, compared to a 1380 µg/m3 average
concentration associated with traditional biomass stoves [29]. Similarly, there was a 33%
reduction in personal exposure to PM2.5 in pregnant women associated with using LPG
for cooking instead of biomass in an effectiveness study in rural Mexico [26]. Another
study in Guatemala showed similar statistics, supporting the health benefits of LPG stove
usage when compared to more traditional methods [25]. Despite this significant finding
that LPG stoves can reduce the level of PM2.5 in a household, PM concentrations in our
study still exceeded the WHO recommendation for an annual mean of 35 µg/m3 and a
24 h mean of 25 µg/m3. This suggests other contributing factors to pollution levels other
than cookstoves.

Seasonality was an external factor that affected the background PM2.5 in the study’s lo-
cation. Baseline exposure assessment was conducted from May through June and coincided
with the monsoon season for Bangladesh. We suspect the daily rainfall reduced the back-
ground ambient PM2.5 concentrations that would infiltrate into participant’s homes [43].
The LPG intervention and exposure assessment was performed in November and Decem-
ber, dry months that are also periods when brick production and rice mills are more active.
The research team counted 33 rice mills and previous research estimated nine brick kilns
within our study area (Figure S1) [44]. The PM2.5 emissions generated using traditional
fuels by these facilities would create an elevated ambient PM2.5 concentration that could
easily infiltrate into the participant’s homes and be measured by a personal exposure
monitor. The homes in the study area are frequently constructed of natural materials that
have high infiltration factors [5].

Additionally, other participant behaviors could have contributed to the increase in
PM2.5 concentrations between 18:00 and 23:00 h during the intervention phase. Bangladesh
experiences cooler temperatures in November and December, which increases traditional
fuel use to heat the participant’s homes, especially evident since 29 of the 30 participants
kept their traditional stoves in a separate kitchen [45]. Our survey data determined stove
stacking was common as participants tried to conserve their LPG fuel for cooking and use
traditional fuels for other activities such as heating [30]. Anecdotal evidence also suggests
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study participants used household products that produce significant amounts of PM2.5, es-
pecially black carbon, during the winter. Mosquitos are a nuisance in November–December,
and mosquito coil use is likely high during those months leading to the measured elevated
PM2.5 concentrations [46,47]. Use of kerosene lamps as a light source is common in rural
Bangladesh and was observed by study personnel during the intervention phase [48,49].
Kerosene combustion is known to be a significant source of HAP and black carbon [50–52].
These two sources could have contributed the more than more than 90% of the average
PM2.5 mass during the intervention phase.

Low burden, real-time exposure monitors such as MicroPEM devices are proving,
through various studies including this one, to be a major advancement that improves
cost-effectiveness, efficiency, and productivity of exposure-health studies [27,53–55]. When
they were combined with the Beacon method, another recently developed tool, researchers
began to obtain a complete picture of the microenvironmental PM2.5 concentrations within
a household that determine a person’s exposure and associated health [56]. Measuring
personal level exposure data with a MicroPEM and a Beacon, instead of using stationary
monitors, reduces the exposure misclassification that could weaken epidemiological studies.
Stationary monitors are typically placed closer to the stove than the study participants,
which can also cause an overestimation of exposure levels [55]. The MicroPEM-Beacon ap-
proach provides microenvironmental exposure data that could account for other household
or ambient sources of PM2.5 when assessing the intervention effectiveness. This approach
could be especially useful for non-cooks who spend more time away from the stove and
have greater exposure to HAP sources [55].

The high data quality of this feasibility study is comparable to previous studies con-
ducted in low-resource and low-income environments. Our overall MicroPEM sample
validity was 83% or 73%, calculated on a matched pair basis for each participant. Chillrud
et al. and Chartier et al. had MicroPEM sample validity rates of 80% and 97%, respec-
tively [27,55]. Our data validity rate could have been higher if the sample size was larger
because problems handling MicroPEM filters were not identified until the baseline sample
collection for the 30 participants was almost complete. High data quality resulting from
this study was also largely due to high wearing compliance for the 24 h period among
participants and real-time data, which accurately depicts exposure on a daily, personal
level and contributes greatly to temporal information. This points to multiple sources of
exposure related to this study, helps us to focus on which factors have the greatest influence
on HAP levels, and disentangles the influence of a clean cooking intervention from other
ambient or HAP sources.

Exposure misclassification was low because our mean wearing compliances were
77 ± 6% and 69 ± 7% for baseline and LPG use phases, respectively. This was 37% greater
than the minimum of 40% recommended for personal exposure measurements [41,55,57].
This offers evidence that the MicroPEM is a low-burden, feasible, and effective method
of personal exposure monitoring. Wearing compliance is important in determining the
overall effectiveness of MicroPEMs because it provides insight into participant engagement
and overall study burden; higher engagement and enthusiasm is associated with higher
wearing compliance [53,55,57]. Additional factors must be considered to evaluate burden
from a well-rounded approach. For example, the burden of more than two consecutive
days of personal PM2.5 exposure data collection can increase overall burden and reduce
wearing compliance [53]. A much higher potential for better compliance is possible, as
shown in previous studies. A similar Sri Lankan study that used the MicroPEM yielded a
wearing compliance of 87.2% for the first 24 h of data collection [58]. Likewise, a personal
PM exposure study of pregnant women conducted in the USA reports a mean compliance
of 56%, which supports the minimal burden of MicroPEM devices [59]. Higher validity of
data can be assumed from these MicroPEM measurements since periods of non-compliance
in these studies most often occurred during non-cooking times.

This study followed a train-the-trainer (TTT) approach, which is an educational public
health preparedness model where an organizing institution identifies potential trainers
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connected to the community that are targeted for training; these trainers are provided with
instructional tools and programmatic guidelines with the intention of passing down this
education to target audiences [60]. TTT is regarded as a sustainable method due to its long-
term sustainability, cost-effectiveness, and ability to maximize social capital and community
connectivity [60]. Repetitive training within this model was required to minimize user error.
This training model combined with the implementation of monthly data quality review
provided us confidence that we could obtain 90% valid sample collection during the full
clinical trial.

5. Conclusions

This feasibility study found that the use of LPG fuel reduced exposure to PM2.5 during
cooking. Using the real-time data that it provided, we observed a reduction of PM2.5
exposure during peak cooking times. This points to evidence that interventions regarding
cooking behavior and technology reform could help drastically reduce pollution levels and
therefore improve maternal and neonatal health outcomes. In addition, it is evident that
real-time, low burden PM2.5 exposure data are a valuable tool to evaluate the effectiveness
of a clean cook-stove intervention; this type of exposure analysis consists of each valid
participant’s 1 min PM2.5 exposure data over the 24 h sampling period. The wearable,
cost-effective, and efficient MicroPEM device offers significant promise for the future of
personal air pollution exposure research. The real-time monitoring approach employed by
this technology was implemented in the clinical trial that is currently underway.

This feasibility study has several strengths that advance exposure research. One
important strength is the high wearing compliance, which shows that the participants
thought the MicroPEM was sufficiently enough of a low burden to wear most of their
time awake. This high compliance produced valid data that are representative of true
exposure levels. Additionally, the errors causing invalid data were addressed and resolved
among field technicians and handlers, strengthening the full clinical trial before it fully
began in September 2019. The real-time monitoring made possible by the MicroPEM
device provides a more accurate estimate of exposure levels since the monitors are more
personalized to the wearer; for example, non-cooks and other house dwellers who spend
less time away from the stove will likely experience less exposure compared to cooks. The
more confident real-time data provided through the methods of this study is crucial in
reducing personal exposure.

The feasibility study also highlighted improvements to the exposure monitoring
protocol for implementation during the current clinical trial. The final clinical trial design
incorporated longitudinal PM2.5 exposure assessment of the participants in both arms at
three times that roughly corresponding to three different seasons. To confirm the positive
bias in personal exposure levels from ambient air pollution, we deployed PurpleAir sensors
outside our two field offices for continuous measurement of ambient PM2.5 throughout the
clinical trial. We also added collection of questionnaire and observational data on kerosene
lamp use, mosquito coils, biomass fuel use for household heating, and other potential
sources of HAP.

This feasibility study emphasizes the need for real-time, personal level data as we move
forward with the full clinical trial. The elevated PM baseline we report post-intervention
shows that other sources besides cookstove emissions contribute to HAP, hence the need
for continuous personal to understand external sources that could impact measured PM2.5
exposure concentrations and the LPG cookstove intervention efficacy. However, to achieve
the WHO indoor air quality standard, other HAP sources and the infiltration of ambient
PM need controlled.
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